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1960 0.05 — 0.02 — 1. 90
1981 0. 894 0. 90 0. 014 - 2.83
1988 1.115 1. 84 0.012 0.032 3.30
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1993"" — 2. 62 — 0.09 4.3
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Approaches to Mechanisms and Control
of Eutrophication of Shallow Lakes
in the Middle and Lower Reaches of the Yangze River

QIN Bogiang

Waning Ilnstitute of Geograply & Limnology. Chinese Academy of Sciences. Nanjing 210008, . . China )

Abstract

The middle and lower reaches of the Yangtze River are one of the central areas of
freshwater shallow lakes in China. Most of the lakes have been under mesotrophic or
eutrophic conditions, the latter are especially common in urban lakes. Human activities
have played a key role in the eutrophication process from at least two aspects: continu-
ous effluents of industrial, agricultural and domestic wastewater could add nutrient to
the lake; and reclamation, stone-built dikes, cultivation could damage natural habitats
and reduce nutrient output from the lake.

The seriousness of eutrophication has aroused attention of national government. Two
of the "Three Lakes” Water Pollution and Prevention Control Program that give priori-
ty to the Tenth-Five-Year-Plan of China are situated in the plain, i.e. , Taihu Lake and
Chaohu Lake. The nutrient status has been under a relative high level in most lakes.
The eco-environmental questions in lakes are conspicuous even though local govern-
ments have taken some measures to prevent further environmental deteriorations. Steps
dealing with external nutrient loadings have achieved good results in deep lakes interna-
tionally, while they are no longer so effective in shallow lakes, because we lack a
through understanding of mechanisms of eutrophication in shallow lakes. World-ac-
knowledged experiences of shallow lakes eutrophication control have proved that eu-
trophication still prevails even though area-source nutrient loading to the lake could be
reduced to a minimum level. Internal sources from the sediment may certainly relate to

the maintenance of eutrophication. The kinetics of water could re-suspend sediments,
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and effect the nutrient release process, underwater light intensity and primary produc-
tion as well.

To control eutrophication in shallow lakes must take both external loading of nutrient
and internal loading into consideration. One of the effective measures for internal load-
ing is the restoration of aquatic plants in order to inhibit the re-suspension and sediment
release. Researches on the experimental ecological restoration and functions of ecosys-
tem deterioration are needed. As a result, external control on nutrient source pollution
is not enough in shallow lakes; internal nutrient within lakes must be emphasized. Two
techniques have been applied in internal loading control, i. e., dredging and macro-
phytes restoration. The former requires a complete knowledge on the trophic history in
lake ecosystem so that an exact schedule on the scope and depth of dredging could be de-
termined lest newlyexposed sediments become fresh internal release source. The latter
could inhibit sediment suspension under dynamic conditions, and absorb nutrient within
lakes so as to diminish nutrient load as well. Macrophytes flourishing and algae bloom
outbreak are two aspects of eutrophication in lakes. Why macrophytes-dominated lake
could be evolved into an algae-dominate one? How to revolve the process? Future
macrophytes restoration must answer them. Researches abroad prove that a macro-
phytes-dominated lake could be turned into an algae-dominated one under strong exter-
nal disturbances and steady high lake level; once algae-dominated, the lake would come
to another steady state for nutrient cycling. To restore macrophytes and get cleaner wa-
ter, this cyclic process must be broken down. Consequently, it is strongly recommended
that researches on the mechanisms and control of eutrophication in shallow lakes be ini-
tiated, so that a theoretical and technical basis could be provided for future launching
national programs on eutrophication control in China.

Keywords : Middle and lower reaches of the Yangtze River; shallow lakes; lake eu-

trophication; control; mechanism



