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Abstract. Secchi depth (SD), a primary metric to assess trophic state, is controlled in many
lakes by algal densities, measured as chlorophyll-a (chl-a) concentration. Two other optically
related water quality variables also directly affect SD: non-algal suspended solids (SSNA) and
colored dissolved organic matter (CDOM, expressed as the absorption coefficient at 440 nm,
a440). Using a database of ~1,460 samples from ~625 inland lake basins in Minnesota and two
other Upper Midwest states, Wisconsin and Michigan, we analyzed relationships among these
variables, with special focus on CDOM levels that influence SD values and the Minnesota SD
standards used to assess eutrophication impairment of lakes. Log-transformed chl-a, total sus-
pended solids (TSS), and SD were strongly correlated with each other; log(a440) had major
effects on log(SD) but was only weakly correlatedwith log(chl-a) and log(TSS). Multiple regres-
sion models for log(SD) and 1/SD based on the three driving variables (chl-a, SSNA, and
CDOM) explained ~80% of the variance in SD in the whole data set, but substantial differences
in the form of the best-fit relationships were found between major ecoregions. High chl-a con-
centrations (> 50 lg/L) and TSS (> 20 mg/L) rarely occurred in lakes with high CDOM
(a440 > ~4 m�1), and all lakes with a440 > 8 m�1 had SD ≤ 2.0 m despite low chl-a values
(<10 lg/L) in most lakes. Further statistical analyses revealed that CDOM has significant
effects on SD at a440 values > ~ 4 m�1. Thus, SD is not an accurate trophic state metric in mod-
erately to highly colored lakes, and Minnesota’s 2-m SD criterion should not be the sole metric
to assess eutrophication impairment in warm/cool-water lakes of the Northern Lakes and For-
est ecoregion. More generally, trophic state assessments using SD in regions with large land-
scape sources of CDOM need to account for effects of CDOM on SD.

Key words: chlorophyll a; colored dissolved organic matter; dissolved colored organic matter; ecoregion;
lakes; Secchi depth; total suspended solids; trophic state; Upper Midwest.

INTRODUCTION

Secchi depth (SD), the most common indicator of lake
water clarity and quality, has long played an important
role in defining lake trophic state (N€urnberg 1996, Heisk-
ary and Wilson 2008, Lottig et al. 2014). Along with
chlorophyll and total phosphorus, SD is one of the three
metrics in Carlson’s (1977) trophic state indices. The State
of Minnesota uses SD in numeric standards to determine
whether or not awater body meets the water quality condi-
tions that support its designated beneficial uses, e.g.,

aquatic life and recreational uses such as swimming
(Heiskary andWilson 2008). SD is used extensively by citi-
zen monitoring programs to track trends in lake trophic
status, owing to its simplicity and low measurement costs
(e.g., Lottig et al. 2014, Heiskary and Egge 2016), and it
also is useful to estimate other optical properties, such as
the diffuse attenuation coefficient for photosynthetically
active radiation, KPAR (Lee et al. 2018).
As an integrative measure of water clarity, SD is deter-

mined primarily by three variables. Algal biomass, usu-
ally measured as chlorophyll a (chl-a), has a major
influence of SD, and SD is often used as a proxy for
algal levels. A second factor is non-algal suspended
solids (SSNA), including clays and other suspended min-
erals, that often are affected by storm events, particu-
larly in rivers and reservoirs. The third is colored
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dissolved organic matter (CDOM), which is composed
largely of humic substances. In many lakes affected by
eutrophication, algal biomass (chl-a) is the primary
determinant of SD. Several studies have reported hyper-
bolic relationships between SD and chl-a and linear rela-
tionships between log SD and log chl-a (e.g., Carlson
1977). SSNA can be a key determinant of water clarity in
surface waters where watershed conditions promote soil
erosion but is not commonly a major factor in natural
recreational lakes of the Upper Midwest (UMW) states.
Colored dissolved organic matter similarly is not impor-
tant in many lakes, but high levels are common in
regions dominated by forests and wetlands, such as the
Northern Lakes and Forests (NLF) ecoregion (Fig. 1) in
northeastern Minnesota, northern Wisconsin, Upper
Michigan and the northern half of Lower Michigan
(Griffin et al. 2018) and in similar ecoregions in the
northeastern and southeastern U.S. (Omernik 1987,
Omernik and Griffith 2014).
Colored dissolved organic matter levels are increasing

in some temperate and boreal regions, e.g., Scandinavia
(Haaland et al. 2010), for reasons still not fully under-
stood. Lakes where CDOM affects SD levels thus may
become more common in the future as a result of
increasing precipitation (Leech et al. 2018), declining
acidification (Monteith et al. 2007), or both. Evidence
for the widespread occurrence of this “browning” phe-
nomenon in the Upper Midwest is inconclusive (Bre-
zonik et al. 2015), however, and several studies have

shown that CDOM temporal trends in individual lakes
are not monotonic but driven by variations in climate
and hydrologic conditions (Pace and Cole 2002, Jane
et al. 2017, Carpenter and Pace 2018, Corman et al.
2018, Leech et al. 2018).
Limnologists have long recognized that SD can be con-

trolled by CDOM. Based on data from 470 northeastern
Wisconsin lakes, Juday and Birge (1933) concluded that
color had more important effects on lake SD than plank-
ton did, and they found an inverse hyperbolic relationship
between SD and lake color. Brezonik (1978) found a linear
relationship between inverse SD (1/SD) and color using
in situ mesocosms to which a concentrated source of
humic color was added. Data from a Florida lake survey
also showed a strong regression relationship between 1/SD
and color and turbidity (Brezonik 1978). These studies
showed that CDOM strongly influences SD at moderate
to high levels of CDOM and low levels of algal biomass.
Less well known are the relationships between

CDOM, SD, chl-a, and total suspended solids (TSS) in
lakes with higher and more variable algal biomass and
mineral turbidity. When both CDOM and algae co-
occur at levels that affect SD, failure to consider the
influence of CDOM will bias interpretations of lake
impairment and trophic state based solely on SD. Conse-
quently, the U.S. EPA (2000) recommended that devel-
opment of water quality standards to assess lake
eutrophication should consider CDOM as a potential
confounding factor of trophic status measurements.

FIG. 1. Map of Upper Midwest states showing Minnesota ecoregions delineated by Omernik and Griffith (2014). Database
includes lakes from all ecoregions except for DLA, where only a few small lakes occur.
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Despite the now broadly recognized importance of
CDOM in lake ecosystems, e.g., the nutrient-color para-
digm (Williamson et al. 1999, 2014, Webster et al.
2008), its quantitative influence on SD is poorly known,
partly because CDOM is measured much less often than
SD and other trophic indicators (chl-a and total phos-
phorus). A recent study on coastal waters suggested that
CDOM should be routinely monitored to help interpret
water clarity monitoring (Harvey et al. 2015), but
CDOM impacts have not yet been formally integrated
with lake assessments. Here we use a large database on
lakes of the UMW to examine relationships among four
common optical water quality parameters, chl-a, TSS,
CDOM, and SD, and evaluate the CDOM levels that
affect interpretation of SD as a trophic state metric.

METHODS

Study area and data sources

This study focused on the large, lake-rich NLF ecore-
gion that extends across the UMW states of Minnesota,
Wisconsin, and Michigan (Fig. 1) and comparisons with
two ecoregions to its south: the North Central Hard-
wood Forest (NCHF) and Western Corn Belt Plains
(WCBP; Omernik and Griffith 2014). The NLF is heav-
ily forested (approximately 50%, mixed conifers and
hardwoods). About one-third of its area is wetlands and
lakes (Homer et al. 2015), and the high proportion of
forest and wetlands in the NLF leads to an abundance
of lakes with high CDOM. The ecoregion has little
urban and agricultural land (4% and 7%, respectively).
In contrast, nearly one-half (48%) of the NCHF is used
for agriculture and 9% is urban; forests account for one-
quarter of the ecoregion, and wetlands constitute 10% of
land cover. Lakes are abundant throughout the NCHF,
but high CDOM levels are uncommon (Griffin et al.
2018). The WCBP, southernmost ecoregion in Min-
nesota, is dominated by agricultural land (83%) and has
only ~ 4% forest. It tends to have higher chlorophyll and
smaller SD values than the NLF and NCHF.
We have been studying CDOM and mapping its abun-

dance in UMW lakes since 2014 using a combination of
field campaigns and satellite imagery (e.g., Brezonik et al.
2015, Olmanson et al. 2016, Griffin et al. 2018). Ground-
based sampling in 2014–2015 was focused in the NLF
and NCHF in northern Minnesota (Fig. 1A). In 2016
sampling was expanded to include NLF and NCHF por-
tions that extend across Wisconsin and Michigan, as well
as the Northern Minnesota Wetlands (NMW), an ecore-
gion in north-central Minnesota that has only ~100 lakes,
very few of which are road accessible (Fig. 1B). Sample
collection in 2017 was extended to the WCBP and other
ecoregions in central, western, and southernMinnesota.
The Minnesota Pollution Control Agency (MPCA)

routinely monitors ~150 lakes across the state each year
for water quality assessments. Since 2015 they have
included CDOM in their measurements. We combined

the 2014–2017 UMN data from ground-based sam-
pling (708 site-date measurement sets) with 754 sets of
2015–2017 measurements on ground-based samples by
the MPCA to produce a data set of 1,462 site-date mea-
surements with little overlap between the two data
sources. Many lakes were sampled more than once in
both studies, and all observations (site-date combina-
tions) were treated separately; i.e., multiple samples from
a lake were not averaged. The final data set includes data
from 251 MPCA lake basins and 382 UMN basins.

Sampling and analysis methods

Sampling procedures and field and laboratory analyses
followed standard limnological practices. Detailed meth-
ods are described elsewhere (Egge et al. 2018, Griffin et al.
2018). In brief, UMN water samples were collected from
~0.25 m below the lake surface, and the MPCA collected
a 0–2 m integrated sample of the epilimnion. Samples
were stored in acid-washed and triple-rinsed polycarbon-
ate or high-density polyethylene bottles and filtered for
chl-a and dissolved constituents within 24 h of collection.
Chl-a was filtered from water with 0.22 lm cellulose
nitrate filters (0.45 lm glass fiber filters for MPCA) and
stored frozen until analysis by fluorometry after 90% ace-
tone extraction. Total suspended solids (TSS) was mea-
sured as the additional dry weight after filtration and
drying at 105°C, normalized by volume. Water for CDOM
analysis was filtered through 0.45 lm Geotech High
Capacity filters and stored in the dark at 4°C in pre-ashed
40-mL amber glass bottles until analysis within 1 month
of collection. Absorbance at 440 nm, measured using a
Shimadzu (Columbia, Maryland, USA) 1601UV-PC dual
beam spectrophotometer through 1- or 5-cm quartz cuv-
ettes against a nanopure water blank, was converted to
Napierian absorption coefficients (Kirk 1994) using:

a440 ¼ 2:303 A440

l
(1)

where a440 is the absorption coefficient at 440 nm, A440

is absorbance at 440 nm, and l is cell path length (m).
Absorbance scans were blank-corrected before conver-
sion. CDOM values are reported as a440.

Statistical analyses

The data were assembled into an Excel 2016 spread-
sheet. Distributional statistics and principal components
analysis based on inter-parameter correlation coeffi-
cients were analyzed using JMP Pro 13.1 (SAS Institute,
Inc., Cary, North Carolina, USA). Generalized simple
and multiple regression analyses were conducted using
the Akaike information criterion (AIC) to select the best
models, and least-squares regressions then were run on
these models. Concentrations of non-algal suspended
solids (SSNA) and their log transforms were estimated as
the chl-a detrended values of TSS, calculated as the
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residuals from a regression of log(TSS) vs. log(chl-a)
using the whole database.

Physically based predictive equation for SD

A physically based relationship between SD and its
controlling constituents (chl-a, CDOM, and TSS) is
derived as follows for use in evaluating the effects of the
three controlling variables on SD. Lorenzen (1980) and
Megard et al. (1980) demonstrated that SD can be
expressed in terms of an equation of the form

SD ¼ ln Io=Iz
k0NA þ k0Achl-a

(2)

where SD is the depth (in m) at which the Secchi disk dis-
appears, Iz is the light intensity at the depth of disappear-
ance, Io is the light intensity at the water surface, k0NA is the
light attenuation coefficient for all non-algal constituents
causing either light absorption or scattering, and k0A is the
light attenuation coefficient caused by algal biomass,
expressed as chl-a concentration. The usual assumption is
that Iz = 0.1 Io at the depth of Secchi disk disappearance
(Brezonik 1978, Megard et al. 1980). The term ln(Io/Iz)
thus becomes a constant, 2.303, that is subsumed into the
attenuation coefficients, and Eq. 2 becomes

1=SD ¼ kNA þ kAchl-a (3)

where kNA = k0NA=2:303 and kA = k0A=2:303.
The coefficient for light attenuation by non-algal con-

stituents, kNA, is a composite coefficient that can be
expanded into terms for the specific constituents causing
light attenuation; e.g., for most natural waters

kNA ¼ kw þ kNAP �NAPþ kCDOM � a440 (4)

where kw is the light attenuation coefficient for water itself;
kNAP is the light attenuation coefficient for non-algal parti-
cles (clays, other minerals, and organic particles not
derived from or associated with algal activity); NAP is the
concentration (mg/L) of these particles; kCDOM is the
attenuation coefficient for light absorption by CDOM;
and a440 is the measure of CDOM. The attenuation coeffi-
cient for water itself is small compared to the other factors
and not important in most lakes of interest here. Excep-
tions in Minnesota might be Lake Superior and the deep,
ultra-oligotrophic lakes found in abandoned iron mine pits
of the Mesabi Range, where SD values of 15 m or more
can occur. For simplicity, we assumed kw is negligible in
the following analysis. NAP was calculated as the chl-a
detrended TSS, i.e., SSNA. Eq. 3 thus becomes

1=SD ¼ kA � chl-aþ kNAP � SSNA þ kCDOM � a440:

(5)

Eq. 5 was used to evaluate the effects of chl-a, SSNA,
and a440 on SD in UMW lakes.

RESULTS

Distributions and relationships among optically important
variables

The database comprised wide ranges of all four water
quality variables (Fig. 2, Table 1) and encompassed a
wide range of trophic conditions (ultra-oligotrophic to
hypereutrophic) and lake types. All four variables had
skewed distributions with a preponderance of data at the
low end of the range and long tails; log transformations
yielded more Gaussian-like distributions (Fig. 2). Con-
sequently, most of our statistical analyses were per-
formed on log-transformed data. Ecoregion-specific
analyses were performed for the NLF, NCHF, and
WCPB, which contain 90% of Minnesota’s lakes and
encompass a wide range of land uses and ecological con-
ditions; each had 90+ sites in our database. The database
had only 14–34 unique site/date measurement sets for
the three other Minnesota ecoregions, and they were
only included in statewide analyses.
Large differences were found between the ecoregions

(also see Heiskary et al. 1987, Olmanson et al. 2014).
Nearly all the lakes with high color occurred in the NLF
(Griffin et al. 2018), which also had the highest mean,
median, maximum, and interquartile values for a440.
Only 2.5% of the a440 values were > 4.2 m�1 in the
NCHF, and the maximum a440 in the WCBP was only
4.4 m�1. Mean and median concentrations of chl-a were
in the oligotrophic range in the NLF, higher in the
NCHF, and much higher in the WCBP, but extreme val-
ues >100 lg/L in the NLF and NCHF and >700 lg/L in
the WCBP indicated that hypereutrophic conditions
occur in all three ecoregions. Mean and median SD val-
ues showed the opposite trend, with highest values in the
NLF and lowest values (indicative of hypereutrophy) in
the WCBP, but the NLF also had many low SD values
(<1 m) associated with high CDOM levels. The highest
SD in the database, 19.5 m, was measured in a deep,
ultra-oligotrophic abandoned iron mine pit in the NLF.
TSS concentrations generally were low to moderate (75
percentile values <10 mg/L except in the WCBP), but a
few exceptions indicative of high SSNA were found in all
three ecoregions. Mean and median TSS values followed
the same ecoregional pattern as chl-a, suggesting that
algal biomass may be an important contributor to TSS in
UMW lakes.
A correlation matrix of the four variables for the

whole data set (Table 2; Appendix S1: Fig. S1) showed
that log-transforms of chl-a, TSS, and SD were strongly
correlated with each other (r = 0.76–0.78), but log a440
was only moderately correlated with log(SD) (r = 0.53)
and very weakly correlated with log(chl-a) and log
(TSS). The high correlation between chl-a and TSS sup-
ports the above suggestion that algal biomass is an
important contributor to TSS in UMW lakes and that
the two variables are not independent in their effects on
SD.
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A principal components analysis on log-transformed
values of SD, chl-a, TSS, and a440 showed that TSS and
chl-a had similar and high loadings on the first principal
component (PC1; Fig. 3). SD also had a high loading
on PC1 but in a negative direction. PC1 thus can be
viewed essentially as a composite trophic state variable.
In contrast, PC2 had high loading from a440 and much
lower loadings from the other three variables; PC2 thus
appears to represent a (humic) color component that is
largely orthogonal to the trophic state component. The
essentially orthogonal relationship between TSS and
a440 in the principal components analysis (Fig. 3) is simi-
lar to that found by Olson et al. (2018) between turbid-
ity (an optical property related to TSS) and a440 in
glacially fed alpine lakes of the Canadian Rocky Moun-
tains.
Given the above findings, the negative linear relation-

ship between log(SD) and log(chl-a) for all the data
(Fig. 4A) was expected, but the fit (R2 = 0.61) was lower
than others have reported for similar relationships (e.g.,
R2 = 0.86, Carlson 1977; R2 = 0.82 and 0.69; N€urnberg
1996). Many outliers in Fig. 4A are below the line of

best fit; in these cases, SD was less than expected based
on chl-a concentration, implying that some other factor
(s) also affected SD. Removal of samples with
a440 > 3.0 m�1, which was found to be a limiting value
for CDOM domination by allochthonous sources (Grif-
fin et al. 2018), improved the fit to R2 = 0.76. A few
sites, mostly with high TSS, however, still fell far from
the regression line (Fig. 4B).
The three highly correlated variables, chl-a, TSS, and

SD, all had complicated relationships with CDOM
(a440). High values of the first two (Fig. 5A, B) were
essentially orthogonal to the a440 distribution, with chl-a
concentrations > ~ 50 lg/L and TSS > 20 mg/L occupy-
ing narrow ranges of CDOM (a440 generally < 3.5 m�1

and 4.5 m�1, respectively), supporting the nutrient-color
paradigm (Williamson et al. 1999). Of the 203 samples
with both measured a440 and chl-a values, only two sam-
ples with a440 > 5 m�1 had chl-a > 50 lg/L. One value
(57 lg/L; Fox Lake, Minnesota, USA) was from a shal-
low, bog-stained NLF lake with both wetlands and agri-
cultural activity in its riparian zone. The other value
(64 lg/L, shallow, wetland-dominated Turner Lake, near
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FIG. 2. Histograms and box-and-whisker plots of data distribution for the four optically related water quality variables and
their log-transformations. SD, Secchi depth; CDOM a440, colored dissolved organic matter, expressed as the absorption coefficient
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Brainerd, Minnesota, USA) is an anomaly insofar as the
next highest chl-a value in two seasons of monthly sam-
pling was only 27 lg/L. Similarly, of the 192 samples
with both measured a440 and TSS, only two with
a440 > 5 m�1 had TSS > 15 mg/L. Both were from sites

in the St. Louis River Estuary of Lake Superior that are
influenced by runoff from the Pokegama River, which
drains a region with highly erodible clay soils (Roesler
et al. 2018).
The distribution of SD vs. a440 was somewhat broader

than that of chl-a or TSS (Fig. 5C), but almost no SD
values > 3.0 m occurred for a440 > 3 m�1, and no SD
values > 2 m were found for a440 > 8 m�1 (Fig. 5D).
High CDOM levels apparently are antithetical to pro-
duction of high levels of algal biomass and related
organic suspended solids in UMW lakes, as Thrane
et al. (2014) found for boreal lakes. Despite the low
chl-a concentrations associated with high-CDOM
waters, their SD values are small because of light
absorption by CDOM. Similarly, catchment factors that
promote high export of CDOM into UMW lakes, such
as wetlands and other poorly drained landscape features,
apparently are not favorable for high export of mineral
or non-algal organic suspended solids into lakes.

SD predictive relationships

We evaluated relationships between SD and its con-
trolling variables singly and in combination using log-
transformed values for the whole data set and separately
for the NLF, NCHF, and WCBP ecoregions using gener-
alized regression analysis and the AIC to select the best
models (Table 3). For the whole database, the best-fit
relationship (R2 = 0.80) included all three predictor vari-
ables, but a two-variable relationship with chl-a and a440
was found to be best (R2 = 0.76) for the NLF. Although
the three-variable model had slightly higher R2, addition
of TSS added little explanatory power and increased the
AIC, probably because TSS concentrations in this ecore-
gion are low and generally associated with chl-a. In con-
trast, a two-variable model using chl-a and TSS was the

TABLE 1. Statistical summaries of optical water quality
variables for all data and for data separated by ecoregion.

Parameter a440 (m
�1)

Chl-a
(lg/L) SD (m)

TSS
(mg/L)

All data
Mean 3.68 16.74 2.31 7.26
Median 1.31 6.33 1.80 3.20
Standard deviation 5.45 36.28 1.72 12.94
SEE 0.16 1.06 0.05 0.41
Maximum 32.5 721 19.5 120
75th percentile 4.01 15.36 3.3 6.58
25th percentile 0.67 3.14 1.0 2.00
N 1,193 1,177 1,238 991

NLF ecoregion
Mean 4.79 8.6 2.60 3.77
Median 1.93 5.1 2.13 2.80
Standard deviation 6.22 10.6 1.76 4.67
SEE 0.22 0.4 0.06 0.18
Maximum 32.5 124.8 19.51 93.4
75th percentile 6.7 10.0 3.6 4.4
25th percentile 0.7 2.8 1.3 2.0
N 793 749 823 655

NCHF ecoregion
Mean 1.23 26.11 2.12 8.77
Median 0.97 8.19 1.57 4.80
Standard deviation 1.00 29.25 1.65 14.09
SEE 0.06 1.76 0.1 0.98
Maximum 8.27 264 7.4 120
75th percentile 1.51 25.4 2.8 9.2
25th percentile 0.57 3.7 0.9 2.4
N 268 275 248 205

WCBP ecoregion
Mean 1.48 73.9 0.77 29.9
Median 1.20 42.3 0.52 21.5
Standard deviation 0.88 97.5 0.64 24.6
SEE 0.10 105.2 0.07 2.8
Maximum 4.42 721 3.4 111
75th percentile 2.13 111 1.1 39.2
25th percentile 0.84 17.3 0.3 11.2
N 73 86 92 76

Note: Ecoregions are NLF, northern lakes and forests;
NCHF, north central hardwood forest; and WCBP, western
corn belt plains. SEE, standard error of estimate.

TABLE 2. Correlation matrix of Pearson r values for the four
water quality variables.

log(a440) log(chl-a) log(SD) log(TSS)

log(a440) 1.000 0.253 �0.528 0.147
log(chl-a) 1.000 �0.761 0.778
log(SD) 1.000 �0.759
log(TSS) 1.000
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FIG. 3. PC1 vs. PC2 for principal component analysis of the
four optical water quality variables. Inset box shows eigenvec-
tors for the first two principal components.
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best predictive model for the NCHF, and CDOM was
not an important predictor of SD in the NCHFowing to
the relative homogeneity of lake color in the ecoregion.
More ambiguous results were found for the WCBP, with
two two-variable models yielding similar R2 and AIC
values (Table 3). R2 values for both models were lower
than those for the best models for the whole database
and NLF and NCHF ecoregions, reflecting more com-
pressed variable ranges in this nutrient-rich ecoregion
(Table 1).
In terms of simple bivariate relationships, log(TSS)

and log(chl-a) had nearly the same predictive values of
log(SD) for the whole database (Table 3), which likely
reflects the important role of algae as a TSS source in
lakes of this study. In contrast, log(SSNA) was a poor
predictor (R2 = 0.08), supporting the idea that SSNA is
not an important control on SD in most UMW lakes.
Log(a440) by itself also was a poor predictor of log(SD)
for the whole database, no doubt because of the L-
shaped distribution of the SD–a440 relationship
(Fig. 5C).
Because of the strong correlation between chl-a and

TSS, we were concerned that including both variables in
the regression could “double-count” the influence of
chl-a. A three-term SD regression in which TSS was
replaced by SSNA gave the same fit (R2 and RMSE), but
increased the equation coefficient for log(chl-a)
(Table 3). The RMSE for the three-term log(SD) equa-
tion (0.163) translates to an SD of 1.45 m.
The above log-log relationships can be criticized as

empirical, and the physically based relationship between
SD and its controlling constituents (Eq. 5) derived in
the Methods section was applied to the chl-a, a440, and
SSNA data for all sites in the database using multiple
regression analysis. Although the R2 (0.79) for this equa-
tion is comparable to that for the three-term log SD

equation (0.80, Table 3), the RMSE (0.54) translates to
larger uncertainty in SD (1.85 m). Moreover, the large
intercept value implies that the equation applies only to
relatively low SD values; an SD > 2.8 m would require
negative values for one or more of the predictor vari-
ables, which clearly is not possible.
Reasons for the limitations of the 1/SD equation are

found in the predictor variable distributions (Fig. 5A–
C). High chl-a and TSS concentrations occurred nearly
exclusively at low a440, and these high values caused low
SD (Fig. 4, Table 2); low SD is equivalent to high 1/SD.
High chl-a and TSS at some sites with low a440 thus pro-
moted high 1/SD values, which distorted the 1/SD vs.
a440 relationship, effectively decreasing the slope of the
best-fit line between 1/SD and a440. This distortion can
be seen in a plot of 1/SD vs. a440 (Fig. 6A), which
includes only sites with chl-a < 10 lg/L. High 1/SD val-
ues (> ~ 1 m�1) for sites with a440 < 3 m�1 were associ-
ated with high TSS (typically 15–20 mg/L). Given the
low chl-a concentrations at these sites, the TSS likely
was mostly SSNA (e.g., clay minerals or non-algal
organic matter from allochthonous sources or macro-
phytes). These high values pulled the regression line
upward at low a440 and decreased the slope and fit (R2)
of the relationship, indicating that the relationship
should not be used to quantify CDOM effects on SD. A
plot of 1/SD vs. a440 for sites with chl-a < 10 lg/L and
a440 > 3 m�1 effectively eliminated the sites affected by
high SSNA (Fig. 6B).

DISCUSSION

Relationships of SD with other optical variables

SD often is used as a surrogate for estimating algal
biomass and trophic state and, in many lakes, SD alone

y = -0.596x + 0.80
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FIG. 4. (A) log(SD) vs. log(chl-a) for all samples in the UMN-MPCA 2014–2017 database; (B) same plot with samples having
a440 > 3 m�1 removed.
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is a good estimator of trophic state (Carlson 1977, N€urn-
berg 1996, Heiskary and Wilson 2008). SD is also a good
measure for evaluating recreational suitability, as users
often respond to water clarity when deciding whether a
water body is suitable for recreation (Smeltzer and
Heiskary 1990, Heiskary and Wilson 2005). For these
reasons and the widespread availability of data, the U.S.
EPA recommended the use of SD to develop lake and
reservoir nutrient standards (U.S. EPA 2000).
SD thus is now widely accepted for trophic state

assessment, but our results indicate that it cannot be
applied uniformly. Moreover, there is a long history of
studies demonstrating that algal production (chl-a con-
centration) does not always control SD. Juday and Birge
(1933) found an inverse curvilinear relationship between
SD and lake color similar to the trend in our SD-a440
data (Fig. 5C). They obtained the relationship by divid-
ing data on 470 lakes from northeastern Wisconsin into
11 groups with SD ranges of 0–0.9 m to 7.5–9.4 m and

plotting mean SD for the groups vs. mean color deter-
mined visually and reported in platinum-cobalt units
(PCU) for the lakes in each group. Differences in mea-
surement methods and reporting units between our
results and those of Juday and Birge make quantitative
comparisons difficult, but the inverse curvilinear trends
in the two data sets are similar.
Brezonik (1978) found close-fitting, straight-line rela-

tionships between 1/SD and color in experiments where
a concentrated humic color source was added to meso-
cosm enclosures in two Florida lakes. Color was deter-
mined colorimetrically and reported in PCU. The slope
of the 1/SD-color (PCU) relationship was 0.0040, which
translated to a slope of ~ 0.074 when the absorption
coefficient of chloroplatinate at 440 nm was used to con-
vert color in PCU to a440 in m�1. This is similar to the
slope (0.069) for the 1/SD vs. a440 relationship of colored
lakes (a440 > 3 m�1) in Fig. 6B but lower than that for
the three-variable model based on all UMW data (first
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equation in Table 3). As described above, the latter was
influenced by high TSS and chl-a values at low a440,
which raised the regression line at low color and
decreased the slope of the relationship.
Several previous studies also have reported regres-

sion relationships between log SD or 1/SD and optical
water quality variables. Using data from a survey on
55 lakes in north and central Florida (Shannon and
Brezonik 1972), Brezonik (1978) found a strong rela-
tionship (R2 = 0.89) between 1/SD and color and tur-
bidity: l/SD = 0.106 + 0.128(T) + 0.0025(C), where T
was laboratory-measured turbidity in standard for-
mazin (nephelometric) turbidity units and C was color
measured in PCU by colorimetry. Turbidity accounts
for light attenuation by all suspended particles, both

algal and non-algal, and color accounts for light atten-
uation for light-absorbing CDOM. A regression of
1/SD vs. color and chl-a was not as strong (R2 = 0.63).
Canfield and Hodgson (1983) reported an R2 of 0.79
for a regression of ln(SD) vs. ln(chl a) and ln(color)
based on data from 165 Florida lakes. N€urnberg
(1996) found an R2 of 0.88 for a regression of log(SD)
vs. log(chl-a) and log(color) for 33 lakes from north-
eastern North America and an R2 of 0.79 for another
data set of 91 lakes worldwide.
Although the three-term regression models (both for

log[SD] and 1/SD) explained a high proportion (~80%)
of the variance in SD for the whole database, they still
did not account for ~20% of the SD variance, and the
models had high RMSE values (1.45–1.85 m) that limit

TABLE 3. Regression equations to predict log(SD) and 1/SD†.

Data set Variables‡ AIC Adjusted R2 RMSE N Equation

Best equation based on the Akaike information criterion (AIC)
All chl-a, a440, TSS �560 0.80 0.16 718 log(SD) = 0.722 � 0.202 9 log(chl-a) � 0.240 9 log(a440) �

0.446 9 log(TSS)
All chl-a, a440, TSS 1162 0.79 0.54 719 1/SD = 0.790 + 0.0095 9 Chl-a + 0.052 9 a440 + 0.054 9 TSS
NLF chl-a, a440 �531 0.75 0.15 581 log(SD) = 0.619 � 0.283 9 log(chl-a) � 0.334 9 log(a440)
NCHF chl-a, TSS �148 0.87 0.14 150 log(SD) = 0.88 � 0.26 9 log(chl-a) � 0.334 9 log(TSS)
WCBP chl-a, TSS �47 0.73 0.17 72 log(SD) = 0.687 � 0.153 9 log(chl-a) � 0.594 9 log(TSS)§
WCBP TSS, a440 �49 0.74 0.15 58 log(SD) = 0.535 � 0.655 9 log(TSS) � 0.184 9 log(a440)§

Bivariate relationships
All chl-a �132 0.60 0.229 1081 log(SD) = 0.711 � 0.545 9 log(chl-a)
All TSS �56 0.60 0.234 925 log(SD) = 0.628 � 0.677 9 log(TSS)
All a440 457 0.27 0.305 977 log(SD) = 0.292 � 0.341 9 log(a440)
All SSNA 690 0.08 0.357 879 log(SD) = 0.231 � 0.403 9 log(SSNA)

Note: SSNA
†All regressions and coefficients significant at P < 0.0001 except as noted in footnote §.
‡All independent variables were log-transformed except in row 2 (regression vs. 1/SD).
§P = 0.009 for chl-a and 0.04 for a440 in the WCBP regression equations.
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their usefulness for SD predictions. The unexplained
variance in the models likely reflects measurement
uncertainties in the variables, especially SD, values for
which depend on such factors as sunlight intensity/angle,
wave activity, and observer biases. Uncertainties from
model assumptions also cannot be ruled out. For exam-
ple, chl-a is an imperfect measure of the effect of algae
on SD because it does not take into account differences
in “packaging”; i.e., a given chl-a concentration associ-
ated with algal cells clumped into visibly large particles
will have less effect on SD than the same concentration
associated with discrete free-floating cells. Moreover,
chl-a to cell–volume relationships differ between algal
taxa, and chl-a concentrations within algal cells vary
with environmental conditions (Reynolds 1984, Felip
and Catalan 2000). Similarly, TSS is a mass-related vari-
able, but the amount of light scattered by suspended par-
ticles depends on particle numbers, shapes, and surface
properties more than on mass itself. Thus, the multiple
regression results should be viewed as tools to under-
stand how limnological characteristics affect SD, rather
than as equations that exactly predict SD given certain
physical/optical measurements.
The PCA results (Fig. 3) support the ideas of the

nutrient–color paradigm (Williamson et al. 1999, Web-
ster et al. 2008, Fergus et al. 2016), which views trophic
(food web) processes in lakes as defined by two orthog-
onal drivers: CDOM and TP. The former promotes
heterotrophy and the latter autotrophy with attendant
effects on algal (chl-a) production. Although the influ-
ence of CDOM on algal biomass and production is less
clear at large (continental) scales (Havens and Nurn-
berg 2004, Yuan and Pollard 2014), more consistent
negative impacts have been observed at local to regional
scales (e.g., Karlsson et al. 2009, Fergus et al. 2016),
mediated by the strong reduction of light availability.
Recent research shows that despite modest positive
impacts on nutrient availability, CDOM suppresses pri-
mary production and food web production in colored
lakes (Karlsson et al. 2009, Thrane et al. 2014, Creed
et al. 2018).

Implications for SD trophic state standards for
CDOM-rich lakes

We used our results to evaluate the influence of
CDOM on SD and specifically the levels of CDOM that
interfere with interpreting SD as a measure of algal
abundance and lake trophic state. The State of Min-
nesota has adopted eutrophication standards for warm-
and cold- (i.e., trout) water NLF lakes. For example, the
standards for warm-water NLF lakes include water
quality criteria of 30 lg/L for total phosphorus (TP),
9 lg/L for chl-a, and 2.0 m for SD as June–September
averages (Heiskary and Wilson 2005). Nonattainment of
this standard occurs when the TP criterion is exceeded
and either or both chl-a and SD are in non-attainment.
In evaluating whether warm-water NLF lakes satisfy

water quality conditions for their designated beneficial
uses, use of the SD criterion is based on the assumption
that SD is controlled by algal abundance. Inspection of
the SD vs. a440 plots in Fig. 5C, D shows that no site
with a440 > 8 m�1 had an SD > 2.0 m. Of the 128 sites
having a440 > 8.0 m�1 and also having chl a data, chl a
was < 10 lg/L in 100 cases; 20 had chl-a of 10–20 lg/L,
and only 8 had chl-a > 20 lg/L. It thus is apparent that
SD is limited to values < 2.0 m primarily by CDOM for
sites with a440 > 8 m�1 and that an SD limit of 2.0 m is
unlikely to be a realistic trophic state criterion for such
waters.
The above result can be considered an “upper limit,”

however, insofar as it is highly likely that a440 values
< 8 m�1 also affect SD. To evaluate the a440 level at
which this begins to occur (relative to the 2-m SD crite-
rion), we used the regression results described above.
Insertion of the MPCA’s chl-a criterion of 9 lg/L for
NLF lakes and SD = 2 m into the 1/SD predictive equa-
tion (Table 3) led to a negative a440, even at SSNA = 0,
however, and clearly that is not possible. As described
above, high chlorophyll and/or TSS concentrations and
associated low SD that occurred at some low-CDOM
sites distorted the 1/SD vs. a440 relationship (Fig. 6A).
The plot of 1/SD vs. a440 for sites with chl-a < 10 lg/L
and a440 > 3 m�1 (Fig. 6B), however, eliminated sites
affected by high SSNA. The best-fit line for this data set
yielded a440 = 4.2 m�1 for an SD of 2 m. We suggest
that this is a reasonable value for limiting use of the 2-m
SD water quality standard as an indicator of eutrophica-
tion impairment in NLF lakes. As a minimum, it should
serve as a threshold where additional response data (e.g.,
chl-a) are needed to assess lake eutrophication. Because
SD standards vary by state and ecoregion, the specific
CDOM threshold value may be different in other set-
tings.
The above analysis is not to suggest that lakes with

high CDOM (a440 > ~ 4 m�1) cannot have eutrophica-
tion problems, although high levels of CDOM tend to
promote heterotrophy rather than autotrophy and may
suppress algal growth, thus counteracting some effects
of eutrophication (e.g., Williamson et al. 1999, Webster
et al. 2008). Instead, these results indicate that SD is not
an effective predictor of such problems in lakes with
color higher than a440 ~ 4 m�1.
Restricting the use of SD as a water quality standard

based on a threshold level of CDOM indicates that
greater reliance on indicators such as TP and chl-a is
needed to assess impacts of eutrophication in the NLF.
TP, TN, and chl-a are commonly used trophic state
parameters that are linked to key ecosystem services
(Keeler et al. 2012) and water quality standards (Heisk-
ary and Wilson 2008). Colored dissolved organic matter
has been shown to influence all of these parameters in
oligotrophic lakes (e.g., Karlsson et al. 2009). Increasing
CDOM levels in many lakes across northern Europe and
parts of North America (Monteith et al. 2007, Wil-
liamson et al. 2015, Corman et al. 2018) also may be
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increasing the effects of CDOM on trophic state metrics
in these regions. Although these influences may be some-
what subtle compared to human influences on nutrients,
they may require further modification of trophic state
standards in moderate-to-high CDOM lakes, where
availability and cycling of nutrients contrast strongly
with those of low-CDOM waters.
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