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A B S T R A C T

Ecoregional nutrient criteria are widely used but their validity has rarely been verified competed with site-
specific criteria. In this study, we introduced ecological fallacy, which describes phenomenon that site-specific
stressor-response relationships cannot be deducted from ecoregional relationship and vice versa, to explore the
spatial scale of nutrient criteria. A long-term and nationwide water quality dataset of lakes and reservoirs was
used to determine if ecological fallacy existed or not. Ecoregional and site-specific nutrient-Chlorophyll a re-
lationships were built employing Bayesian linear model and hierarchical model, respectively. By comparing
ecoregional and site-specific relationships, we found that ecological fallacy existed in each ecoregion.
Ecoregional relationship may misidentify limiting nutrient or miscalculate the nutrient effect direction or
magnitude. We found huge differences between estimated Chlorophyll a concentrations deduced from regional
and site-specific relationships conditioning average TN or TP concentrations. Based on these results, we de-
termined that lake nutrient criteria should be site-specific, primarily to avoid ecological fallacy rather than to
improve their accuracy. These findings could guide the future nutrient criteria development. We further re-
commended partial pooling of data to develop stressor-response relationship facing with intensive environ-
mental and ecological data.

1. Introduction

Nutrient criteria provide foundations for lake water quality man-
agement (USEPA, 1998). Proper spatial scale is essential to make sure
the effectiveness of nutrient criteria (Soranno et al., 2008). In the past
two decades, ecoregional scale is the most widely used (Huo et al.,
2014, USEPA, 1998). An ecoregional nutrient criterion is applicable for
all the lakes within the ecoregion and one implicit assumption is the
homogeneity within the ecoregion. Under that assumption, space-for-
time substitution, which has been comprehensively applied in data-
poor ecosystems (Celentano and Defeo, 2016, Lester et al., 2014), is
applicable for ecoregional nutrient criteria development. That is, data
from lakes within the same ecoregion are aggregated together to de-
velop the unique ecoregional nutrient criterion, solving the data-poor
problem. Stressor-response model is one of the most widely used
methods to develop nutrient criteria (USEPA, 2010). Nutrient is treated
as the stressor and nutrient criteria are deduced based on the stressor-
response relationship by keeping the response (management endpoint,

e.g. Chlorophyll a (Chla) concentration) at a certain level.
Recently, some ecological researches revealed that there might be a

big bias between regional and site-specific stressor-response relation-
ship. For example, Cha et al. (2016) found that in Nakdong River, while
Chla and flow were positively correlated at each site, the aggregated
data showed negative correlations between them. Results in Martay
et al. (2016) indicated that aggregating data spatially overestimated the
regression slope of temperature on butterfly Community Temperature
Index.

Above cases could be explained by ecological fallacy (Robinson,
1950), an item describing the phenomenon that individual-level re-
lationships cannot be deducted from the group-level relationship and
vice versa (Genser et al., 2015, Maas-Hebner et al., 2015). Ecological
fallacy happens when some site-specific characters significantly impact
the stressor-response relationship. Typically, ecological fallacy includes
the misidentification of limiting factor and the miscalculation of re-
lationship direction or magnitude (Hamil et al., 2016). If ecological
fallacy exists in developing nutrient criteria, then ecoregional nutrient
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criteria are not applicable anymore and nutrient criteria should be site-
specific. Therefore, determining whether ecological fallacy exists or not
is critically important to set a proper spatial scale of nutrient criteria.
However, whether ecological fallacy exists or not in nutrient criteria
development has been neglected and remains unexploited and unclear.

Previously, water quality data were too rare to build site-specific
stressor-response relationships, which had further hindered related
explorations. Recently, with the accumulation of monitoring data, en-
vironmental and ecological data are becoming intensive (Hampton
et al., 2017). Long-term and spatial water quality data are available
(Soranno et al., 2017, Zhou et al., 2017). Under the data-intensive era,
determining if ecological fallacy exists in nutrient criteria development
becomes possible.

In this study, a long-term and nationwide water quality dataset is
used to explore the existence of ecological fallacy in lake nutrient cri-
teria development. Because of increasing attentions of lake eu-
trophication (Vinçon-Leite and Casenave, 2019), Chla was selected as
the response variable and both total nitrogen (TN) and total phosphorus
(TP) were selected as stressors (Malve and Qian, 2006). Bayesian linear
model (BLM) (Mostafa, 2010) and Bayesian hierarchical model (BHM)
(Cha et al., 2016) were employed to build ecoregional and site-specific
nutrient-Chla relationships, respectively. Then, we compared differ-
ences between ecoregional and site-specific stressor-response relation-
ships to determine if ecological fallacy exists or not.

2. Materials and methods

2.1. Types of ecological fallacy

The definition of ecological fallacy is narrative and has rarely been
discussed in nutrient criteria development. To understand the meaning
of ecological fallacy visually, we showed some examples of different
types of ecological fallacy in Fig. 1. Ideally, when the ecological fallacy
does not exist, ecoregional and site-specific relationships would be
identical (Fig. 1a). In practice, some factors might influence the re-
lationship minimally and ecoregional relationship may be slightly dif-
ferent from site-specific relationships (Fig. 1b), which will not impact
the applicability of ecoregional nutrient criteria.

In contrast, ecological fallacy includes the misidentification of
limiting factor, the miscalculation of relationship direction, and the
miscalculation of relationship magnitude. The misidentification of

limiting factor can be false determination of non-significance (Fig. 1c)
or significance (Fig. 1d). The miscalculation of relationship direction is
typically shown in Fig. 1d, in which the positive relationships are fal-
sely determined as an overall negative relationship. The miscalculation
of relationship magnitude can be the entire overestimation (the slope,
Fig. 1f), entire underestimation (Fig. 1g), and partial misestimation of
nutrient effect (Fig. 1h). Relatively large differences among site-specific
relationships in Fig. 1c–h represent effects of some site-specific factors
on the stressor-response relationship.

2.2. Data description

Monthly water quality data from 93 key monitoring lakes and re-
servoirs in China was collected by National Environmental Centre of
China. Note that lakes and reservoirs are recognized as the same wa-
terbody type to develop nutrient criteria (Huo et al., 2018, USEPA,
2000). The monitoring period ranges among 2010 and 2016. Besides,
Environmental Monitoring Centre of Yunnan Province collected data of
nine key monitoring lakes in Yunnan Province between 2006 and 2016.
We removed observations with concentration values under method
detection limits (TN ≤ 0.1 mg/L, TP ≤ 5 μg/L, and Chla ≤ 1 μg/L).
Next, outliers were identified and removed, following a combination of
discordancy tests and visual examination of probability plots (Qian and
Lyons, 2006). Finally, the nationwide dataset includes 102 lakes or
reservoirs with a total sample size of 4,448 (see Fig. S1 & Table S1 for
details). Locations of these lakes and reservoirs cover all the eight
ecoregions in China (Huo et al., 2014). The sites are not evenly dis-
tributed among ecoregions and about three-fourths of them are located
at ecoregion V, VI, and VII (Table 1).

2.3. Model development

The model development process was shown is Fig. 2. To determine
if ecological fallacy exists or not, we compared the ecoregional re-
lationship and site-specific relationships by three aspects: (1) the sign or
magnitude of regression slope, (2) the linear nutrient-Chla relationship
on the log-log scale, and (3) the median of predicted Chla concentration
conditioning average TN or TP concentration in some sites. Regression
slope represents the effect of nutrient on Chla. More precisely, it re-
presents the percent change in Chla concentration with per 1% change
in nutrient concentration (Qian, 2016). Regression slopes and re-
lationships give qualitative evidence, and medians of predicted Chla
concentration will quantitatively show differences between the ecor-
egional and site-specific relationships.

Observed data of nutrients and Chla were firstly loge transformed to
accommodate the normality and homoscedasticity assumption (Malve
and Qian, 2006, Oliver et al., 2017). Although lake-year mean (aver-
aging data from the same lake in the same year) or lake mean (aver-
aging data from the same lake) are always used to develop ecoregional
relationship (Phillips et al., 2008), it has been recognized that aver-
aging data may narrow the range of variables and mislead the cross-

Fig. 1. Examples of patterns of ecoregional and site-specific relationships. The
x-axis and y-axis are the stressor and response variable, respectively. Modified
from Genser et al. (2015).

Table 1
Summary of nutrient limitation conditions in eight ecoregions.

Ecoregion Number of Sites Limiting Nutrient

TN TP

I 8 0 3
II 4 3 0
III 7 0 0
IV 2 0 0
V 20 2 3
VI 13 5 5
VII 41 6 5
VIII 7 0 2
Total 102 16 18
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sectional pattern (Dimberg, 2014, Jones et al., 1998). Therefore, data
were not averaged in this study.

Figuring out the limiting nutrient is essential to nutrient criteria
development (Dodds and Welch, 2000). We then determined the lim-
iting nutrient in each site based on the partial correlation analysis
(Liang et al., 2018b). Partial correlation analysis can eliminate the ef-
fect of other independent variables and reflect the relationship veritably
(Wang et al., 2016). A t-statistic was established to test the significance
of partial correlation coefficients (Kim, 2015). If a nutrient is positively
significant correlated with Chla, it is selected as a limiting nutrient.

Next, we built stressor-response models to simulate TN-Chla and TP-
Chla relationships, separately. BLM and BHM are employed to build the
ecoregional and site-specific stressor-response relationships, respec-
tively. Both of two methods have been widely used to build nutrient-
Chla relationships (Lamon and Qian, 2008, Liang et al., 2018a, Liang
et al., 2019). The ecoregional relationship was expressed as

+y N α βx τ~ ( , )k k
2 (1)

where y and x are the natural log of observed Chla and nutrient (TN or
TP) concentration, k is the index of observed data in the same ecor-
egion, α and β are the regression intercept and slope, and τ2 is the re-
sidual variance, respectively.

While it is hard to list all the site-specific factors influencing the
relationship, BHM accounts for site-specific heterogeneity by latent
variables (Hamil et al., 2016). In addition, BHM also improves the
overall estimation accuracy by partially pooling of data (Qian et al.,
2015). Therefore, BHM is employed to obtain site-specific relationships.
Within each ecoregion, data from sites with the same limiting nutrient
were partially pooled to obtain site-specific relationships (Cha et al.,
2016):

+y N a b x σ~ ( , )ij i i ij
2 (2)

a N a σ~ ( , )i a0
2 (3)

b N b σ~ ( , )i b0
2 (4)

where i is the index of site, j is the index of observed data in each site, ai
and bi represent the regression intercept and slope for each site-specific
relationship, and σ2 is the residual variance, respectively. Each group of
site-specific parameters shares a common normal prior distribution
waiting for estimation, which leads to the partial pooling of data (Eqs.
(3) and (4)).

All the computations were conducted in R software (Version 3.4.2).
Non-informative prior distributions were used for all the parameters.
Posterior distributions of parameters for the ecoregional relationship
and site-specific relationships were obtained via Hamiltonian Monte
Carlo (HMC) algorithm implemented in the rstan package (Stan
Development Team, 2016). Four HMC chains were set with random
initials. Each chain ran 100,000 iterations, with the first half for burn-in

period and the last half to obtain posterior distributions. Convergences
were assured by R-hat statistic (Gelman and Hill, 2007).

3. Results

3.1. Nutrient limitation conditions

At the national scale, correlation coefficients between TN or TP and
Chla are all significantly positive using data without averaging, lake-
year mean data, and lake mean data (Fig. S2), which is also the case at
the ecoregional scale, e.g. in ecoregion VI (Fig. 3). However, at the site-
specific scale, only in a few sites TN or TP is determined as the limiting
nutrient (Table 1). More precisely, only 16% and 18% of sites are
limited by TN and TP, respectively. Sites with TN or TP limitation are
not evenly distributed among ecoregions, potentially caused by the
uneven distribution of monitoring sites. Obviously, data aggregation
either from national or ecoregional scale misleads the determination of
limiting nutrient in most sites. That is a typical type of ecological fal-
lacy, under which condition the limiting factor is misidentified (refer to
Fig. 1d).

3.2. Relationship comparisons

If an ecoregion only has one lake limited by a certain nutrient, the
ecoregional and site-specific stressor-response relationship would be
identical. However, that could not be treated as the evidence supporting
the ecoregional nutrient criteria. For ecoregions with more than one
sites limited by a certain nutrient, we can build both the ecoregional
and site-specific stressor-response relationships. We took the ecor-
egional and site-specific nutrient (TN or TP)-Chla relationships in the
same ecoregion as a pair of relationship. Therefore, in total nine pairs of
relationship are built (Table 1), namely, the TN-Chla relationship in
ecoregion II, V, VI, and VII, and the TP-Chla relationship in ecoregion I,
V, VI, VII, and VIII. Posterior distributions of parameters are summar-
ized in supporting materials.

We found that each pair of relationship showed a certain type of
ecological fallacy. Nine pairs of relationship could be clustered into

Fig. 2. Flowchart of the model development process.

Fig. 3. Ecoregional nutrient-Chla relationships in ecoregion VI. Plots in the left
panel show relationships between log (TN) and log (Chla) based on (a) all the
data, (b) lake-year mean, and (c) lake mean. Plots in the right panel show re-
lationships between log (TP) and log (Chla) based on (d) all the data, (e) lake-
year mean, and (f) lake mean. Black points are observed data. Blue lines are
linear regression curves. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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three types. The first type is the miscalculation of regression slope di-
rection, as showed by the TN-Chla relationship in ecoregion II (Fig. 4).
Based on the aggregated data, a negative regression slope was obtained,
while all the site-specific relationships had positive regression slopes.

The second type is the miscalculation of all the site-specific nutrient
effects, including five pairs of relationship. For example, for the TN-
Chla relationships in ecoregion VII, the regression slope of ecoregional
relationship is much smaller than all the slopes of site-specific re-
lationships (Fig. 5), indicating entire underestimations of site-specific
nutrient effects. There are huge differences between the ecoregional
and site-specific relationships and the median of predicted Chla con-
centrations in some sites, e.g. in TuoLinHu and HuangDaHu. This type
of ecological fallacy also exists for the TN-Chla relationship in

ecoregion V (Fig. S3), and the TP-Chla relationship in ecoregion V, VII,
and VIII (Fig. S4–S6).

The third type is the miscalculation of nutrient effect in some sites,
including three pairs of relationship. A typical example is the TP-Chla
relationship in ecoregion VI (Fig. 6). Regression slope of ecoregional
relationship is close to the overall slope of all the site-specific re-
lationships. However, the ecoregional relationship dramatically un-
derestimates the nutrient effect in YiLongHu and overestimates the
nutrient effect in XingYunHu. Differences of median Chla concentration
predicted by the ecoregional relationship and the site-specific re-
lationships are also apparent in these two sites. While the first two types
were impressive and had been well-recognized in other ecological fields
(Hamil et al., 2016), the third type was easily overlooked, in which
ecoregional relationship might also lead to huge biases for some certain
sites. This type of ecological fallacy also exists for the rest two pairs of
relationship (Figs. S7 and S8).

4. Discussion

4.1. Spatial scale of nutrient criteria

Results of nutrient limitation conditions showed that the limiting
nutrient in some lakes were misidentified by aggregating data from the
ecoregion. In many lakes, we did not identify any limiting nutrient.
Actually, except for nutrient, many other variables, such as water
temperature, Secchi depth, and wind, could be influencing factors in-
stead of nutrients for the long-term variation of Chla concentrations
(Liu et al., 2016, Mcquatters-Gollop et al., 2007). The significant po-
sitive correlation coefficient (Fig. 3, Fig. S2) might be caused by the
data aggregation or data averaging. A large sample size always easily
brings a statistically significant regression slope (Bryhn and Dimberg,
2011). Besides, it has been proved that averaging data could eliminate
information on data variability and therefore strengthen the relevance

Fig. 4. Ecoregional and site-specific TN-Chla relationships in ecoregion II.
Circle dots, thick lines, fine lines, and dashed vertical line in (a) represent
average values, 50% credible intervals, 90% credible intervals of regression
slopes and the overall mean of all the site-specific slopes. Grey points in (b) are
observed data from the ecoregion or a certain site, the same below. The left plot
shows regression slopes of the ecoregional relationship and site-specific re-
lationships. The right plot shows regression curves of relationships. This pair of
relationship shows a pattern of ecological fallacy (Fig. 1e) by miscalculating the
relationship direction at the ecoregional scale.

Fig. 5. Ecoregional and site-specific TN-Chla relationships in ecoregion VII.
Grey points in (c) & (d) are observed data from the ecoregion or a certain site,
the same below. Plots in the top panel show a pattern of ecological fallacy by
underestimating the nutrient effect (regression slope) at the ecoregional scale
(refer to Fig. 1g). Plots in the middle panel compare the ecoregional relation-
ship and site-specific relationships in TuoLinHu and HuangDaHu. Plots in the
bottom panel show posterior distributions of predicted median Chla con-
centration in TuoLinHu and HuangDaHu, conditioning the average TN con-
centrations (431 μg/L and 634 μg/L, respectively).

Fig. 6. Ecoregional and site-specific TP-Chla relationships in ecoregion VI. Plots
in the top panel show a pattern of the ecological fallacy by misestimating the
nutrient effect (regression slope) at the ecoregional scale (refer to Fig. 1h). Plots
in the middle panel compare the ecoregional relationship and site-specific re-
lationships in XingYunHu and YiLongHu. Plots in the bottom panel show pos-
terior distributions of predicted median Chla concentration in XingYunHu and
YiLongHu, conditioning the average TP concentrations (319 μg/L and 103 μg/L,
respectively).
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(Jones et al., 1998). Therefore, a national or ecoregional relationship
would always have a significant regression slope but might fail to
correctly identify the limiting nutrient. Note that for sites without any
limiting nutrient, it is impossible to develop nutrient criteria based on
the nutrient-Chla relationship. For the purpose of nutrient criteria de-
velopment, other management endpoints, e.g. the macroinvertebrate or
fish community metrics (Evans-White et al., 2013) could be selected.

Results of relationship comparisons showed that ecological fallacy
existed in each pair of relationship. There are large variations among
site-specific relationships within the same ecoregion, which might be
caused by the heterogeneity of site-specific factors. Many site-specific
factors, such as the catchment area (Lohman and Jones, 1999), lake
mean depth, and the percentage of wooded wetlands (Wagner et al.,
2011), have been determined to impact the nutrient-Chla relationship.
Exploring the exact drivers is expected to be of great importance
(Soranno et al., 2016). However, it is beyond the scope of this study for
the limitation of relatively small numbers of valid sites (sites with the
same limiting nutrient) within ecoregions. Apparently, the hetero-
geneity of site-specific factors was ignored in the ecoregional nutrient
criteria when developing ecoregional stressor-response relationship
using the ecoregion-aggregated data.

While many studies focus on approaches to determine ecoregional
nutrient criteria values (Evans-White et al., 2013), we here explored the
spatial scale of nutrient criteria, which is a more fundamental and easily
neglected issue. Based on the above analysis, different types of ecolo-
gical fallacy, including the misidentification of limiting nutrient, and
miscalculation of nutrient effect direction, could happen when devel-
oping ecoregional stressor-response relationship, which limits the ap-
plicability of ecoregional nutrient criteria. Therefore, we determine that
the ecoregional nutrient criteria is not applicable for all the lakes within
the ecoregion. The spatial scale of lake nutrient criteria should be the
site-specific scale.

We emphasize that the primary reason for developing site-specific
instead of ecoregional nutrient criteria is to avoid ecological fallacy
rather than to improve accuracy. Site-specific nutrient criteria are ex-
pected to be a naturally better way with data accumulation for its
higher accuracy (Mclaughlin, 2014). However, when considering the
existence of ecological fallacy, we recognize that the ecoregional
stressor-response relationship might be wrong for many sites. To avoid
the ecological fallacy, site-specific stressor-response relationship is re-
quired, and site-specific nutrient criteria should be used. Ecoregional
nutrient criteria even cannot be used as a rough estimation of site-
specific criteria for any site (including any data-poor site). The proper
thing to do for data-poor site is to collect enough data rather than
taking the ecoregional nutrient criteria as a replacement, because such
a replacement takes a risk of wrong deduction when the ecological
fallacy exists.

Our results also emphasize the important impact of site-specific
factors in nutrient criteria development. As did in a few ecological re-
searches recently (Huang et al., 2017, Mimet et al., 2016), for example,
Roitberg and Shoshany (2017) found that space-for-time substitution
overestimates consequences of rainfall decline on properties of vege-
tation patterns between semi-arid and arid rainfall regions, the space-
for-time substitution was challenged here. The underlying mechanism
is that the spatial heterogeneity of site-specific factors makes the re-
sponse variable vary unequally with the stressor in space (Mimet et al.,
2016). The space-for-time substitution should not be used in nutrient
criteria development.

By recognizing the importance of site-specific factors, a few studies
provided evidence supporting site-specific nutrient criteria based on the
reference conditions method. Read et al. (2015) found that lake-specific
characters were more important for explaining water quality (56% and
60% variance explained for TP and TN respectively) than regional scale
drivers. Olson and Hawkins (2013) revealed that the site-specific nu-
trient criteria accounted for natural variation among sites better than
criteria based on regional average conditions. Therefore, site-specific

nutrient criteria were supported both by the stressor-response model in
this study and by the reference conditions method from other studies.

Previously, environmental and ecological data were rare. Testifying
the existence of ecological fallacy in nutrient criteria is hardly possible.
In the current study, using the spatio-temporal dataset we explored the
existence of ecological fallacy and determine the proper spatial scale of
nutrient criteria. Obviously, this provides essential evidence to guide
the future nutrient criteria development in the new era with intensive
environmental and ecological data.

Moreover, our study is also instructive for other researches in en-
vironmental and ecological fields, where stressor-response relationship
should be built. Our results remind researchers to pay attentions to the
possibility of ecological fallacy when aggregating data to develop
ecoregional stressor-response relationship and further to extend the
ecoregional relationship to sites. Researchers should be aware of the
risk of deduction based on the ecoregional stressor-response relation-
ship. We encourage that researchers should always build site-specific
stressor-response relationship.

4.2. Partial pooling of data in data-intensive era

Definitely, in the data-intensive era, data is becoming adequate to
developing reliable site-specific stressor-response relationship.
However, does that mean we should develop site-specific stressor-re-
sponse relationship based solely on the data of a certain site and
abandon the constrain of ecoregion? Our answer might be NO!

We recommend the partial pooling of data strategy in data-intensive
era to develop site-specific stressor-response relationships. Reasons are
generally from two aspects. Firstly, the delineation of ecoregions is
always based on the similarity and contiguity of many indicators of
climate and landscape (Cheruvelil et al., 2017, Omernik, 1987). Al-
though that cannot guarantee the consistency of stressor-response re-
lationship within the ecoregion as showed in our study, the homo-
geneity of drivers at the regional scale would always make the site-
specific relationships within the ecoregion closely related (Wagner
et al., 2011) and the rationality of ecoregions as a good tool for eco-
system management has been verified (Smith et al., 2018). Secondly,
developing site-specific stressor-response relationship based solely on
the data of a certain site is a no pooling of data strategy (aggregating all
the ecoregional data to build an ecoregional stressor-response re-
lationship is a complete pooling of data strategy). Researches have
showed that the partial pooling of data could improve the overall
prediction accuracy and reduce the uncertainty (Cha et al., 2016, Qian
et al., 2015). Therefore, the partial pooling of data is a better strategy
than no pooling strategy. As an typical partial pooling method, BHM is
an effective tool to build site-specific stressor-response relationship and
in the meanwhile to use ecoregional information (Genser et al., 2015).
Another similar method is the multilevel model (Qian et al., 2010).
Note that such a recommendation is certainly applicable for the nu-
trient criteria development in data-intensive era.

5. Conclusions

Our study focused on determining a proper spatial scale of lake
nutrient criteria, which is essential to guarantee the applicability of
nutrient criteria. Benefitting from long-term and nationwide dataset,
we found that ecological fallacy commonly existed when developing
nutrient criteria and thus determined that lake nutrient criteria should
be site-specific. The findings provide important information to inform
the future nutrient criteria development. Inspired by our results, we
recommended the partial pooling strategy to build stressor-response
relationship in data-intensive era in the environmental and ecological
researches.
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