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Abstract: Climate change introduces substantial uncertainty to water resources planning, and raises 

the key question: when, or under what conditions, should adaptation occur? A number of recent 

studies aim to identify policies mapping future observations to actions—in other words, framing 

climate adaptation as an optimal control problem. This paper uses the control paradigm to review and 

classify recent dynamic planning studies according to their approaches to uncertainty characterization, 

policy structure, and solution methods. We propose a set of research gaps and opportunities in this 

area centered on the challenge of characterizing uncertainty, which prevents the unambiguous 

application of control methods to this problem. These include: exogenous uncertainty in forcing, 

model structure, and parameters propagated through a chain of climate and hydrologic models; 

endogenous uncertainty in human-environmental system dynamics across multiple scales; and 

sampling uncertainty due to the finite length of historical observations and future projections. 

Recognizing these challenges, several opportunities exist to improve the use of control methods for 

climate adaptation, namely: how problem context and understanding of climate processes might assist 

with uncertainty quantification and experimental design; out-of-sample validation and robustness of 

optimized adaptation policies; and monitoring and data assimilation, including trend detection, 

Bayesian inference, and indicator variable selection. We conclude with a summary of 

recommendations for dynamic water resources planning under climate change through the lens of 

optimal control. 

 

1. Introduction 

 

Water resources planners face the challenge of adapting to climate change with a portfolio of potential 

actions, including infrastructure, operating rules, and demand conservation to reduce vulnerability 

[Füssel, 2007; Hallegatte, 2009]. These decisions are often supported by simulation and optimization 

methods tailored to long-term projections of hydroclimate. However, these projections are clouded by 

a “cascade” of uncertainty [Wilby and Dessai, 2010], propagated through the chain of greenhouse gas 

emissions, climate models and their initial conditions, regional downscaling, hydrologic models, and 

human-environmental systems models, only a portion of which can be captured in ensemble 

projections [Stainforth et al., 2007]. This is particularly the case for the uncertain trends in flood and 

drought risk that drive infrastructure planning [Trenberth et al., 2014; Asadieh and Krakauer, 2017; 

Dottori et al., 2018].  

Under these conditions, it is difficult to apply traditional decision-making methods such as cost-

benefit analysis and expected value utility theory, which require exact probabilities and commensurate 
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values [Tol, 2003; Lempert, 2015; Dennig, 2017; Borgomeo et al., 2018]. In response, several new 

computational frameworks have emerged to support climate adaptation. Broadly, these can be 

grouped into two categories (Figure 1): robust planning, with a focus on identifying alternatives that 

perform acceptably under a wide range of future conditions, and dynamic planning, which aims to 

identify adaptation policies that respond to new observations over time. While these are not mutually 

exclusive—a dynamic policy can also be robust, though the reverse is not necessarily true [Maier et 

al., 2016; Kwakkel and Haasnoot, 2019]—they face very different challenges in experimental design 

and implementation. 

Robust planning frameworks are designed to circumvent the severe uncertainty in climate 

projections, as they aim to identify the range of scenarios leading to system vulnerabilities [Weaver et 

al., 2013]. These bottom-up approaches have rapidly gained traction, led by frameworks such as 

Robust Decision Making [Lempert, 2002; Bryant and Lempert, 2010], Info-Gap [Hipel and Ben-

Haim, 1999; Korteling et al., 2013] and Decision Scaling [Brown et al., 2012; Poff et al., 2016], 

which have been extended to incorporate multiple performance criteria [Kasprzyk et al., 2013; 

Shortridge and Guikema, 2016; Ray et al., 2018]. Because vulnerability assessment alone does not 

result in a set of recommended actions, bottom-up frameworks also often test the robustness of 

planning alternatives. However, this shift requires the vulnerability space to be reconciled with the 

likelihood of future scenarios, usually with either uniformly sampled scenarios or ensemble 

projections treated probabilistically [Taner et al., 2017, 2019; Shortridge and Zaitchik, 2018]. The 

identification of robust alternatives has been addressed both via simulation [e.g., Herman et al., 2014; 

McPhail et al., 2018] and robust optimization [Hamarat et al., 2014; Giuliani and Castelletti, 2016; 

Trindade et al., 2017; Watson and Kasprzyk, 2017; Eker and Kwakkel, 2018]. A potential limitation 

of robust planning frameworks is the tendency to favor static alternatives to be implemented in the 

near-term, which could result in costly overdesign, particularly in the case of infrastructure 

[Borgomeo et al., 2018]. Robust planning frameworks have been the subject of several prior reviews 

and will not be covered in detail here [Herman et al., 2015; Dittrich et al., 2016; Giuliani and 

Castelletti, 2016; Maier et al., 2016; McPhail et al., 2018]. 

 

Dynamic planning frameworks identify policies to select actions in response to new information over 

time [e.g., Pahl-Wostl, 2007; Haasnoot et al., 2013], recognizing that decisions decades in the future 

will be revisited as more information is collected [Walker et al., 2001; de Neufville and Scholtes, 

2011; DiFrancesco and Tullos, 2014]. This goal fundamentally aligns with that of an optimal control 

problem, though not all dynamic planning studies have been framed this way. Policy design involves 

optimizing the sequence, timing, and/or threshold values of observed variables to initiate adaptations, 

which can be supported by optimal control methods such as stochastic dynamic programming [Hui et 

al., 2018; Fletcher et al., 2019] or policy search [Kwakkel et al., 2015; Zeff et al., 2016]. Additionally, 

several hybrid frameworks that combine optimization with adaptive management have been used to 

support the policymaking process, including Dynamic Adaptive Policy Pathways [Haasnoot et al., 

2013; Walker et al., 2013] and Engineering Options Analysis, which determines whether 

infrastructure investments should be made now or deferred [de Neufville and Smet, 2019]. The latter 

has been applied in dam sizing and sequencing [Jeuland and Whittington, 2014], drought planning 

[Fletcher et al., 2017], and infrastructure expansion [Woodward et al., 2011; Hino and Hall, 2017; 

Erfani et al., 2018]. Similar to robust planning, dynamic planning effectively assigns optimal actions 

to different regions of the scenario space [Helgeson, 2018]. However, dynamic planning also provides 

a quantitative basis for assimilating new information and reacting to new observations as they occur, 

aiming to reduce regret if the future unfolds differently than expected. This enables actions that are 

differentiated not only by the current state of the system, but also by new projections generated 
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throughout the planning period. The process of designing a dynamic plan is generally more dependent 

on the characterization of uncertainty (Figure 1), because it requires specifying not only the severity 

of uncertain variables, but also the sequences of events through time. 

 

This paper reviews studies of dynamic water resources planning under climate change, organized 

under the framing of an optimal control problem (Section 2). The control framing provides a common 

structure and terminology for climate adaptation studies that include: (1) a dynamical system, (2) 

multi-stage or continuous decision making, and (3) the development of a control policy as a function 

of system states, indicator variables, and/or time. We classify recent studies in this area according to 

components of the experimental design, including policy structure, uncertainty characterization, and 

solution methods (Section 3). In the process, several key challenges are identified, primarily driven by 

the unavoidable subjectivity involved in uncertainty characterization. These gaps are then discussed in 

the context of opportunities to advance control methods to support dynamic planning under climate 

change (Section 4).   

 

2. Problem Formulation and Solution Methods 

 

 
2.1 Problem Formulation 

 

The problem of dynamic water resources planning under climate change involves designing a policy 

that maps observed and projected information to actions, i.e., a control problem. The formulation 

presented here involves continuous system states, discrete actions, and nonstationary exogenous 

forcing (Figure 2). The choice of discrete rather than continuous actions is not required, but reflects 

the common planning situation where a set of alternatives has been preselected based on economic 

and geographic constraints.  

 

Given system states 𝐱𝑡 , discrete actions 𝐚𝑡 , and stochastic forcing 𝐞𝑡, the system follows the state 

transition equation 𝐱𝑡+1 = 𝑓𝑡(𝐱𝑡 , 𝑎𝑡 , e𝑡+1) in a single realization of the stochastic disturbance with a 

single action. The function 𝑓𝑡(⋅) is assumed deterministic but time-variant to allow for changes in the 

structure or parameters of the system, for example to reflect path dependence in the choice of actions. 

The state variables might include infrastructure storage and conveyance capacity, in addition to the 

current storage volume. The decision step is typically annual or greater over a planning horizon 

spanning 30-50 years in the future. Actions could include infrastructure capacity expansions and/or 

redefining operating rules or conservation policies that act on shorter timescales. Finally, forcing 

variables are defined by either a scenario ensemble or probability distribution, which could include 

streamflow, snowpack, and water demand, among others. 

 

The system trajectory 𝜏 is the set of state, action, and forcing variables over the time history of the 

system, up to and including the current timestep: 𝜏𝑡 = (𝐱0 , … , 𝐱𝑡 , 𝑎0, … , 𝑎𝑡−1 , 𝐞1, … , 𝐞𝑡). At each 

timestep 𝑡, the decision problem is to select one action from the set of possible actions, 𝑎𝑡 ∈ 𝒜, by 

applying the policy function 𝜋 to the current information available: 𝑎𝑡 = 𝜋(𝐈𝑡), where the information 

𝐈𝑡 can include a combination of observed or forecasted states and fluxes in the system. The objectives 

include one or more cost functions computed from the trajectory at each timestep, 𝐽𝑡(𝜏𝑡), which 

allows for time-variant cost functions (e.g. involving a discount factor or other dynamic changes). 

These objectives could represent the cost of water supply shortage, flood risk, or environmental 
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damages, in addition to the cost of implementing adaptation actions. The optimization problem is to 

choose the policy 𝜋 that minimizes the expected sum of costs over a finite planning horizon 𝐻: 

min
 π

𝔼𝐞1,…,𝐞𝐻+1
[∑ 𝐽𝑡(𝐱𝑡 , 𝑎𝑡 , 𝐞𝑡+1) + 𝐽𝐻+1(𝐱𝐻+1)

𝐻−1

𝑡=0

] (1) 

subject to:  𝐱𝑡+1 = 𝑓𝑡(𝐱𝑡 , 𝑎𝑡 , e𝑡+1),  𝑎𝑡 = 𝜋(𝐈𝑡) 

The expectation operator over the stochastic forcing variable could be replaced with a different 

statistical operation, such as the median or maximum. Similarly, a different statistical operator could 

be used in place of the inner summation of the cost function over time. The problem can also be 

extended to multiple objectives, 𝐉 = (𝐽1, 𝐽2, . . . , 𝐽𝑀), resulting in a Pareto-optimal set of policies. 

These choices in formulating the objective function(s) are crucial to the outcome of the optimization, 

including their combined effect with the choice of scenarios [e.g., Quinn et al., 2017]. In many 

practical applications, these choices are system-specific and determined in consultation with 

stakeholders.  

 

If the forcing variables 𝐞𝑡 are deterministic or follow well-characterized probability distributions, then 

the optimal policy 𝜋 can be found subject to several modeling assumptions depending on the solution 

method. This is generally true even if 𝐞𝑡 represents a nonstationary process. Optimal control problems 

have long been studied in other areas of water resources, particularly reservoir operations [e.g., 

Yakowitz, 1982; Yeh, 1985; Labadie, 2004; Castelletti et al., 2008]. The shorter timescale of the 

operations problem (hourly to seasonal decisions) allows quantification of forcing uncertainty through 

a combination of hydrologic forecasts and climatology, and justifies neglecting endogenous 

uncertainty in the human-environmental system. However, because climate adaptation implies control 

of an open system decades into the future, it is not possible for a modeled representation of 𝐞𝑡  to fully 

encompass all sources of uncertainty. This disconnect between a mathematical formulation apparently 

well-suited to a dynamic decision problem and the intractability of satisfying its key assumptions 

drives much of the discussion in this paper.  

 

2.2 Solution Methods 

 

Numerical methods used to solve dynamic planning problems in the water resources field generally 

fall into three categories: open loop, dynamic programming, and policy search, all of which will 

identify the optimal policy subject to several modeling assumptions. The first and simplest of these, 

open loop control, directly optimizes the sequence of actions over the time horizon, 𝑎𝑡 = 𝜋(𝑡). The 

actions are based only on time, and are not updated as a function of new observations of states or 

forcing variables. Open loop problems can therefore be solved with any type of optimization method, 

including linear or nonlinear programming, heuristics, or if the action space is small enough, by 

enumeration.  

 

Both dynamic programming and policy search methods are closed loop approaches in which decisions 

are adjusted based on observed conditions. Dynamic programming approaches have been applied 

extensively in the water resources literature, especially for short-term operation problems but also for 

long-term planning and capacity expansion; Yakowitz [1982] provides an early review. The most 

common variant is stochastic dynamic programming (SDP), in which the value function 𝑄 for each 

state at time 𝑡 can be found from the recursive Bellman equation [Bellman, 1956]: 

𝑄𝑡(𝐱𝑡) = min
𝐚𝑡

𝔼𝐞𝑡+1
[𝐽(𝐱𝑡 , 𝑎𝑡 , 𝐞𝑡+1) + 𝛾𝑄𝑡+1(𝐱𝑡+1)] (2) 
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where 𝛾 is a discount factor. Then the optimal policy can be found by minimizing the Q-function:  

𝜋 = argmin
𝜋

𝑄𝑡(𝐱𝑡) (3) 

The problem is typically discretized to be solved numerically, meaning that the optimal policy is 

limited by the precision of the state, control, and forcing variables. For example, Figure 2 shows three 

discretization levels (𝑥1
1 , 𝑥1

2 , 𝑥1
3) for the state variable 𝑥1 in the action-value matrix.  

 

The dynamic programming family of methods includes a number of approximate dynamic 

programming (ADP) approaches, one of which is model predictive control (MPC) [Bertsekas, 2005]. 

In an MPC approach, the sequence of actions is optimized on a finite rolling horizon, which is 

repeated at each timestep. This implicitly results in closed loop control, because new information 

about the system state is included at time 𝑡 + 1 based on the outcome of the optimized decision and 

the realization of the stochastic forcing 𝐞𝑡 during the timestep [𝑡, 𝑡 + 1). 

 

By contrast, a policy search approach assumes a specific structure for the function 𝜋(⋅) with 

parameters 𝜃 such that 𝑎𝑡 = 𝜋(𝐈𝑡 , θ). The optimization problem then becomes: 

min
 θ

𝔼𝐞1,…,𝐞𝐻+1
[∑ 𝐽(𝐱𝑡 , 𝜋(𝐈𝑡 , 𝜃), 𝐞𝑡+1) + 𝐽𝐻+1(𝐱𝐻+1)

𝐻−1

𝑡=0

] (4) 

subject to:  𝐱𝑡+1 = 𝑓𝑡(𝐱𝑡 , 𝜋(𝐈𝑡 , 𝜃), e𝑡+1) 

The result is a parameterized function mapping observations to actions, where the parameters of the 

function are the decision variables to be optimized. In this case, the optimal policy is limited by the 

type of function chosen, and by the numerical convergence of the optimization. Figure 2 shows a 

policy structured as a neural network to represent an arbitrary function. Many function types have 

been explored in the water resources literature, largely in the context of short-term operations, ranging 

from linear decision rules [e.g., Oliveira and Loucks, 1997] to neural networks [Raman and 

Chandramouli, 1996], radial basis functions [Giuliani et al., 2014; Quinn et al., 2017a], and binary 

trees [Herman and Giuliani, 2018]. The relationship between the policy parameters and the objective 

function(s) may be multimodal or discontinuous, complicating the use of gradient-based techniques. 

As a result, heuristic methods such as evolutionary algorithms have been widely used to support 

policy search [Nicklow et al., 2010; Reed et al., 2013; Maier et al., 2014].  

 

These methods span the fields of optimal control and reinforcement learning, which share the goal of 

identifying a state-based policy by which an agent, or decision-maker, determines actions through 

time. Of the methods discussed above, DP methods are drawn from optimal control, while policy 

search aligns more with reinforcement learning [Busoniu et al., 2010; Recht, 2019], which has had 

some application in the water resources literature [e.g., Castelletti et al., 2010]. Apart from 

differences in terminology, a key distinction between the two is that DP methods search an 

approximation of the cost function to find the optimal policy, while reinforcement learning searches 

the exact cost function (e.g., a simulation model) for an approximation of the optimal policy 

[Bertsekas, 2019]. In this paper, we use the term control to refer broadly to dynamic decision 

problems, recognizing that policy search methods widely used in the water resources field may also 

be considered reinforcement learning approaches. 
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3. Dynamic Planning under Climate Change: Review & Challenges 

 

Using the control problem framing, we divide dynamic planning approaches into four components as 

shown in Figure 3: policy structure, uncertainty characterization, solution method, and validation / 

robustness testing. The policy structure includes the indicators that are observed over time, the actions 

to be implemented, and the decision variables that are being optimized to define the policy. The 

uncertainty characterization includes the sources of uncertainty that are considered and how they are 

represented in the optimization problem.   

 

Table 1 uses these categories to classify recent climate adaptation studies employing a dynamic 

planning approach. Papers were selected based on the authors’ knowledge of studies applying the 

three criteria for dynamic planning stated in the introduction: (1) a dynamical system, (2) multi-stage 

or continuous decision making, and (3) the development of a control policy as a function of system 

states, indicator variables, and/or time. We classify these studies individually rather than by 

framework to highlight differences between experimental components that may change even between 

studies employing the same framework. Several of the studies are focused on planning under deep 

uncertainty in general, rather than the specific question of climate change; however, the papers 

selected here include at least some representation of long-term climate uncertainty, even if not drawn 

directly from climate models. Finally, the references cited in this section are not restricted to the 

papers in Table 1, as a number of studies in related areas provide relevant discussion despite not 

performing dynamic planning directly. 

3.1 Problem Formulation 

 

3.1.1 Actions 

 

Among the studies in Table 1, adaptation actions are represented either as a set of discrete choices, or 

with the opportunity to optimize the magnitude of implementation as a continuous variable. While the 

climate adaptation problem is often framed in terms of infrastructure decisions, the success of these 

plans also depends on the operating rules governing any existing or new infrastructure. Operational 

changes are generally less costly and more flexible, as they can be reversed unlike most infrastructure 

investments [Raso et al., 2018]. Several studies have explored the range of scenarios over which 

operations can be adapted before new infrastructure investments would be required [Whateley et al., 

2014; Culley et al., 2016; Giuliani et al., 2016b], while others have addressed the more complex 

question of jointly optimizing infrastructure and operations [Mortazavi-Naeini et al., 2015; Bertoni et 

al., 2019]. Holding infrastructure fixed, the choice of operating rules may impact system performance 

as much as hydrologic conditions [Tian et al., 2018]. Additional non-infrastructure actions to mitigate 

climate variability include financial instruments and public policy measures such as drought 

conservation, which have been included alongside infrastructure decisions in several studies [e.g., Zeff 

et al., 2016; Trindade et al., 2017]. 

 

The irreversibility of infrastructure actions presents substantial challenges for the climate adaptation 

problem. The indicator variables used in the optimized policy must provide reliable information about 

current and future change, or else risk overfitting adaptation triggers to the forcing scenarios or 

distributions chosen. This problem can be quantified in terms of false positives (investments that 

ultimately prove unnecessary) and false negatives (failure to adapt), which relates to the choice of 

indicator variables [Rosner et al., 2014; Raso et al., 2019; Robinson and Herman, 2019]. For 

example, determining an adaptation based on the 50-year moving average of annual streamflow is 
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more likely to result in false negatives, whereas adapting based on the 10-year average will likely 

result in a higher rate of false positives. Decision maker preference along this tradeoff could be 

reflected in the objective function or through multi-objective optimization, including the costs of 

switching between actions [Haasnoot et al., 2019]. To reduce the risk of over-adaptation, large 

infrastructure options might instead be treated incrementally, accepting increased marginal cost in 

exchange for increased flexibility, a key concept in Engineering Options Analysis [Jeuland and 

Whittington, 2014; de Neufville and Smet, 2019].   

 

3.1.2 Indicator Variables 

 

Indicator variables are the observations used to trigger actions, some of which will be more 

informative for adaptation than others [Groves et al., 2015; Haasnoot et al., 2015, 2018]. Broadly, 

there are many different climate and environmental indicators that might provide information about 

the trajectory of climate change and its impacts on a system [Kenney et al., 2018]. In general, an 

indicator represents a combination of a variable (precipitation, temperature) observed over a certain 

timescale (annual, monthly, daily, hourly), and aggregated over a moving window (5, 10, 30 years) 

using a statistical transformation (mean, variance, quantile). For example, a 30-year moving average 

of annual reservoir inflow may be a useful indicator for water supply adaptation; for flood risk, a 50-

year estimate of the 99th percentile daily streamflow might be more appropriate. Many of the studies 

in Table 1 use long-term hydroclimatic indicators to trigger infrastructure actions [Kwakkel et al., 

2015; Zeff et al., 2016; Trindade et al., 2017; Hui et al., 2018; Fletcher et al., 2019]. Others rely on 

short-term indicators such as reservoir storage to trigger operational actions, which may be adapted 

over time as a response to climate change [Paton et al., 2014; Mortazavi-Naeini et al., 2015].  

 

3.1.3 Implementation Decisions 

 

Control methods aim to optimize the policy mapping indicators to actions, thus determining the 

optimal magnitude, timing, and sequence of actions in response to the evolution of the system. Studies 

in Table 1 using control approaches therefore account for all of these implementation decisions [Hui 

et al., 2018; Fletcher et al., 2019]. Other studies select a subset of these aspects to optimize. When the 

sequence of actions is optimized, it is typically assumed that candidate actions are reviewed on a fixed 

timestep (e.g. every five or ten years) [Mortazavi-Naeini et al., 2014; Beh et al., 2015; Kwakkel et al., 

2015]. Other studies directly optimize the timing and magnitude of actions to be implemented 

[Borgomeo et al., 2016, 2018], while still others optimize observable threshold values to be used as 

triggers for implementation of particular actions [Mortazavi-Naeini et al., 2015; Zeff et al., 2016]. 

 

3.1.4 Limitations 

 

Distilling a control problem formulation from a real-world planning context requires several key 

simplifying assumptions. The formulation posed here assumes centralized planning, where a single 

decision-maker controls the full set of candidate actions, which is often unrealistic in a real-world 

planning process [Giuliani et al., 2015b]. The formulation may require iterative input from different 

sets of stakeholders [Wu et al., 2016; Quinn et al., 2017b], and could be revised to represent a 

decentralized process in which multiple agents optimize for their individual benefits [Jenkins et al., 

2017]. Additionally, where political realities may prevent an optimization approach—for example, 

due to lack of agreement over which objectives or scenarios to include [Hall and Borgomeo, 2013; 

Kasprzyk et al., 2015]—other approaches may prove useful, including simulation-driven scenario 
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exploration [Lempert, 2002; Brown et al., 2012; Kingsborough et al., 2016; Thacker et al., 2018], 

negotiation theory [Islam and Susskind, 2018], and game theory [Madani and Lund, 2011; Sechi et 

al., 2013]. While the optimal control framing implies that climate adaptation problems can be solved 

definitively, this is not the case in practice [Kasprzyk et al., 2018] as even the most advanced 

optimization approaches can only identify candidate solutions to be analyzed further. 

 

3.2 Uncertainty Characterization 

 

Dynamic planning methods must identify a set of possible scenarios and models (whether physical or 

statistical) to quantify uncertainty, either as a probability distribution or an ensemble of realizations. 

The majority of studies in Table 1 have represented uncertainty with an ensemble of synthetic 

scenarios describing weather and/or streamflow, using one of two approaches: 

 Using historical observations to parameterize a stationary stochastic process, which is then 

perturbed according to statistics from GCM projections (e.g., [Haasnoot et al., 2015; 

Borgomeo et al., 2016; Culley et al., 2016]); 

 Using GCM projections to directly parameterize a nonstationary stochastic process (e.g., 

[Borgomeo et al., 2018; Fletcher et al., 2019]). 

The structural and parametric uncertainties in either the stationary or nonstationary case usually focus 

on exogenous hydroclimate, but also apply to endogenous uncertainties. Synthetically generated 

scenarios provide a computationally efficient alternative to the direct use of downscaled GCMs and 

allow an arbitrarily large number of scenarios that are similar to, but not limited by, variability in the 

observed record. While this is often done without explicit probabilistic representations, it is 

worthwhile to question whether it is possible to entirely avoid the concept of probability when 

comparing planning alternatives. All characterizations of uncertainty require a distribution to be 

specified, whether implicitly or explicitly, and any comparison of alternative policies based on metrics 

computed across an ensemble requires scenario weighting. Computational methods targeting the 

challenge of deep uncertainty face the contradiction of needing to sample variables from distributions 

that are by definition unquantifiable.  

 

Here we review three primary sources of uncertainty, and the extent to which they have been included 

in the dynamic planning studies in Table 1:  

 Sampling uncertainty, which represents natural variability in forcing that may not be fully 

captured in the historical or projected record;  

 Uncertainty in exogenous hydroclimate change, which encompasses the chain of physical and 

statistical models used to create downscaled streamflow projections;  

 Uncertainty in endogenous system dynamics arising from human behavior and environmental 

processes.  

While sampling uncertainty is aleatory (i.e., occurs due to random variations in the variable of 

interest), the latter two sources of uncertainty contain both aleatory and epistemic components, which 

arise from lack of knowledge [Beven, 2016]. 

 

3.2.1 Sampling Uncertainty 

 

Even assuming a stationary climate, long-term water resources planning has always been challenged 

by sampling uncertainty (or internal variability). There are few historical observations of the extreme 

flood and drought events that drive water resources planning, and even fewer that could point to a 

long-term trend to trigger adaptation. In the context of a control problem, sampling uncertainty arises 
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in two key places: (1) inferring parameters of the stochastic process from a finite sample of either 

historical observations or GCM projections, and (2) training and testing an adaptation policy on a 

finite record (observed or synthetic), where the combination of the number of scenarios and the 

planning horizon represents the sample size. In the first case, an insufficient sample size will result in 

a poorly characterized distribution of scenarios, which no amount of sampling can overcome, 

although parameter uncertainty can be estimated and included in the stochastic generation process 

[Stedinger and Taylor, 1982]. In the second case, an insufficient sample size will result in overfitting 

policies to the events in the observed or synthetic record and an inability of the policy to generalize to 

other scenarios.  

 

These issues are especially of concern when performance metrics are driven by extreme events, such 

as a high or low percentile of the output distribution [e.g., Herman et al., 2014a; Quinn et al., 2018] 

which are difficult to estimate from a small sample. The majority of studies in Table 1 aim to reduce 

the effects of sampling uncertainty using ensembles of synthetically generated streamflow scenarios 

in the optimization and/or the validation step. Notably, the sample sizes vary significantly between 

studies, which is partly a function of different application contexts, but also suggests a lack of 

consensus on experimental design.  

3.2.2 Uncertainty in Exogenous Hydroclimate Change 

 

A cascade of structural and parametric uncertainties propagates through the modeling chain used to 

develop climate change scenario projections for water resources systems [Wilby and Dessai, 2010; 

Kundzewicz et al., 2018]. This includes uncertainty from the GCMs themselves, but also: 

 Emissions scenarios used to drive the GCMs [Lamontagne et al., 2018]; 

 Downscaling approaches used to tailor GCM output for local/regional assessment [Chen et 

al., 2011; Pielke and Wilby, 2012; Pierce et al., 2014]; 

 Hydrologic models used to convert precipitation and temperature projections into streamflow 

[Steinschneider et al., 2012; Prudhomme et al., 2014; Mendoza et al., 2016; Fowler et al., 

2018; Broderick et al., 2019].  

We consider these elements exogenous to the basin-scale water resources planning problem, though 

some feedback to the regional hydrologic system may occur. Given that GCM projections are, at 

present, the best available source of dynamically evolving future scenarios to support water resources 

planning, any or all of these uncertain factors may need to be represented in an optimal control 

problem. 

 

Among these factors, climate models and downscaling approaches consistently contribute the largest 

uncertainty in hydrologic projections due to the high variance in projected precipitation [Wilby and 

Harris, 2006; Steinschneider et al., 2015b; Vetter et al., 2017a]. One major source of climate model 

uncertainty arises because the processes that govern precipitation (e.g., local convection, cloud 

formation) occur at spatial scales that are substantially smaller than a GCM grid cell [Randall et al., 

2003]. Very high-resolution models (< 5 km) can improve some aspects of modeled precipitation 

[Prein et al., 2015], but with increased computational cost, which limits ensemble simulations needed 

for water resources studies. Model errors also have a large impact on projections of future large-scale 

atmospheric dynamics [Sigmond et al., 2010; Simpson et al., 2016], which interact with parameterized 

sub-grid processes and orographic effects [Stevens and Bony, 2013; Davini et al., 2017]. This 

dynamical error structure severely complicates efforts to bias correct and downscale GCM output 

based on simulations under a baseline period, as is commonly done for water resources impact studies 

[Ehret et al., 2012]. Further, the suite of GCMs available across global institutions are not 
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independent, as sub-modules are often shared across models [Knutti et al., 2013], resulting in 

clustered projections of regional climate change that do not reflect added confidence [Steinschneider 

et al., 2015a; Shortridge and Zaitchik, 2018]. 

 

To illustrate the exogenous uncertainty in hydroclimate projections, Figure 4 shows ensemble and 

sampling uncertainty for statistics of annual streamflow (5th and 50th percentiles) using example data 

for the Sacramento River, California. The choice of an annual timescale and lower percentile reflects 

a focus on water supply risk rather than floods. These plots compare the paleo record [Meko and 

Woodhouse, 2005], observed data, and downscaled CMIP5 projections containing multiple emissions 

scenarios [Reclamation, 2014]. Comparison of Figure 4a-b suggests a few points. First, these statistics 

have always shown some variability, subject to the choice of a 50-year rolling window. The 

confidence intervals tend to be relatively larger for the lower percentiles (5th) than for the median, 

reflecting uncertainty in estimates of extremes. Finally, sampling uncertainty makes up a nontrivial 

portion of the exogenous uncertainty in future projections, reflected by the light red shaded area. This 

data includes multiple GCMs and emissions scenarios, but only one hydrologic model and 

downscaling procedure, both of which may introduce additional biases in certain aspects of the flow 

regime.  

 

 

3.2.3 Uncertainty in Endogenous Human-Environmental Dynamics 

 

Another significant source of uncertainty is the endogenous dynamics of the human-environmental 

system under consideration, particularly given the long planning horizons involved in climate 

adaptation problems [Haddeland et al., 2014]. In the context of the control problem shown in Figure 

2, this uncertainty primarily appears in the state transition equation. It therefore adds another layer of 

model structural and parametric uncertainty beyond those contributed by climate and hydrologic 

models, and introduces the need to test multiple plausible assumptions for the system simulation 

model. Uncertainty in human behavior has been identified as one of the major knowledge gaps in the 

field [Brown et al., 2015; Vogel et al., 2015], and has been found to exceed the impact of climate 

uncertainty in a majority of studies that have compared their relative influence [Alcamo et al., 2007; 

Vogel et al., 2011; Droogers et al., 2012; Fant et al., 2016; Anghileri et al., 2018]. Uncertainty in 

human-environmental systems is not limited to the climate adaptation problem; even under a 

stationary climate, the dynamics and long-term outcomes of social and economic behavior are 

indeterminate [Ben-Haim, 2012].  

 

Several of the studies in Table 1 include some consideration of uncertainty in the human system, such 

as water demand [Jeuland and Whittington, 2014; Erfani et al., 2018], population [Beh et al., 2015; 

Fletcher et al., 2017; Trindade et al., 2017], or land use [Kwakkel et al., 2015, 2016a]. Unlike the 

streamflow scenarios described above, these are generally implemented as scalar parameters to be 

sampled rather than timeseries; none of the studies reviewed here considered structural uncertainty in 

the state transition equation (or simulation model). Several endogenous feedbacks could be relevant 

for a water resources planning problem, including, but not limited to, the following: 

 

Indirect impacts of climate change: Elements of the system may respond to nonstationary 

precipitation and temperature in ways not directly linked to the choice of adaptation policy, but which 

create second-order effects on the objectives. For example, agricultural yields and water demands will 

respond to rising temperatures, which may trigger land use changes [Wada et al., 2013; Jafino et al., 
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2019]; energy supply and demand are also likely to change, which further influences water demand 

[Carleton and Hsiang, 2016]. Additionally, changes in hydroclimatic forcing may alter the risk 

attitudes of decision makers, such as actions taken to mitigate extreme events [Aghakouchak et al., 

2014; Viglione et al., 2014].  

 

Institutional uncertainties: A planning organization may not be able to achieve its intended 

implementation even once a decision has been made, for example through delays or cost overruns 

[Grimsey and Lewis, 2002]. Adaptation actions may therefore only be effective when the planning 

agency has the necessary institutional capacity [Tompkins and Adger, 2004; Rist et al., 2013]. The 

model may also need to include adaptations to climate change occurring at other institutional scales 

that are outside the scope of the control problem under consideration [Adger et al., 2005; Gonzales 

and Ajami, 2017].  

 

System response to policy actions: The model may need to consider unintended consequences of the 

adaptation policy [Anderies et al., 2019]. For example, reservoir capacity expansion may lead to an 

increase in water demand and over-reliance on the new infrastructure, increasing vulnerability to 

droughts if the new demands are not flexible [Di Baldassarre et al., 2018].  

 

Response to non-climate drivers: The system may respond to other social drivers which may or may 

not be linked to climate change, such as migration, urbanization [Zhao, 2018], population growth, 

land use, and technology changes.  

 

Feedbacks to the hydrologic system: Any of the above changes might also influence the regional 

hydrologic system though land use, water withdrawals, and infrastructure impacts on the streamflow 

regime [Shin et al., 2019], particularly on evapotranspiration and peak flow events. 

 

Environmental dynamics: Long-term environmental changes in water quality, geomorphology, and 

ecological regimes have not received much consideration in dynamic planning studies, despite their 

susceptibility to change on decadal timescales as a result of either cumulative “slow” processes or 

tipping points [Walker et al., 2004; Scheffer et al., 2009]. For example, a warmer climate will directly 

affect water quality and species habitat [Moyle et al., 2013], as will many of the infrastructure and 

operational adaptations undertaken by human institutions at different scales. On longer timescales, 

hydroclimatic change and human adaptations alter geomorphic processes [Kondolf and Podolak, 

2014], further influencing habitat. All of this could lead to ecological regime shifts, with the caveat 

that severe environmental degradation may change human attitudes toward water management 

[Elshafei et al., 2014].  

 

 

3.3 Solution Methods 

 

A range of solution methods have been used to identify dynamic adaptation plans under climate 

change. SDP has been used for infrastructure planning in several studies, including levee height 

optimization with Bayesian updates of the flood risk distribution [Hui et al., 2018], as well as 

planning reservoir capacity expansion and investment in desalination plants [Fletcher et al., 2019]. 

Several studies optimize the timing of actions directly, either using an open loop approach [Borgomeo 

et al., 2016, 2018] or model predictive control in which the short-term plan is updated periodically 

[Beh et al., 2015, 2017b]. Finally, a common policy search formulation involves optimizing 
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thresholds of observed or projected variables to trigger actions within a predefined rule structure 

[Kwakkel et al., 2015; Zeff et al., 2016]. 

 

While the choice among solution methods is problem-specific, there are a few general advantages and 

disadvantages of each approach. If a well-characterized model of the stochastic forcing variable(s) can 

be specified, SDP identifies the exact solution, subject to the discretization scheme, and often the 

assumption of forcing variables being uncorrelated in time. Given the difficulty of identifying 

probability distributions for forcing variables in the climate adaptation problem, this advantage may 

be limited—the ability to find exact (or even approximate) optimal solutions is less relevant when the 

problem formulation itself is uncertain [Jeuland and Whittington, 2014]. Furthermore, the practical 

implementation of SDP faces limitations from the curse of dimensionality and the requirement of a 

mathematical model rather than numerical simulation [Bertsekas, 2019]. 

 

Open loop methods are computationally efficient, but present a high risk of overfitting to the 

scenarios or distributions of forcing used in the optimization if not coupled with a validation scheme. 

These shortcomings could be abated by repeating the open loop optimization as new information 

becomes available, as in MPC. However, this approach does not identify adaptation rules in response 

to evolving conditions as in policy search and SDP. Policy search has the additional advantage of 

flexibly incorporating multiple objectives and multiple indicator variables, which can be included as 

state variables in SDP but at the cost of significant added computational complexity [Giuliani et al., 

2018]. However, policy search methods also introduce additional assumptions and challenges in the 

subjective choice of function type and number of parameters—a poor choice risks either insufficient 

flexibility in approximating the optimal policy if the function is too simple, or overfitting to the 

training data if the function is too complex. Importantly, none of these approaches avoid the challenge 

of characterizing uncertainty in forcing variables and system dynamics. 

 

3.4 Validation / Robustness 

 

Finally, many of the studies in Table 1 conclude with some form of robustness assessment by 

simulating the performance of the optimized policy in a new set of scenarios. This idea borrows from 

robust planning methods in which alternatives generated through optimization are subjected to a wider 

range of uncertainty [Kasprzyk et al., 2013]. Here we distinguish between testing the robustness of an 

adaptive policy to (1) more realizations from the same uncertainty characterization used in the 

optimization, versus (2) scenarios in which new uncertain variables are sampled, or the same variables 

are sampled from different distributions. The former only tests against sampling uncertainty, and can 

be used to determine whether a policy is overfit to a particular set of scenario realizations. The latter 

approach could test robustness to other forms of uncertainty, provided the sampling is informed by 

some knowledge of the ensemble or endogenous uncertainties. In either case, the ideal outcome is 

either minimal degradation relative to optimized performance, or maintaining acceptable performance 

in a wide range of scenarios, as discussed in prior studies [Lempert and Collins, 2007].  

 
4. Perspectives: Research Gaps & Opportunities 

 

Based on the concepts reviewed in the previous section, we propose several research gaps and 

opportunities to improve the use of control methods for dynamic planning under climate change. 

These research gaps align with the subsections that follow: 
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(1) Process-based insight for synthetic generation: Many studies characterize uncertainty in 

future scenarios based on coarse-timescale GCM statistics, such as annual precipitation. There 

are opportunities to leverage insight into climate processes and model errors to inform finer-

scale uncertainty characterization in synthetic scenarios. 

(2) Uncertainty classification: Depending on the nature, level, and potential for learning of the 

uncertainties included, they may be treated differently in the experimental design. 

(3) Endogenous uncertainty: Relatively few planning studies have considered endogenous 

uncertainty; those that do typically only consider parametric rather than structural uncertainty. 

These uncertainties should be considered when relevant, especially feedbacks in response to 

adaptation actions. 

(4) Policy validation: There is currently not a unified approach to policy validation and 

robustness testing, such as whether this step should include more realizations or a different 

uncertainty characterization altogether, and what sample size is adequate. 

(5) Computational complexity: More rigorous comparisons of solution methods could consider 

their efficiency and effectiveness, scalability as a function of the number of state or indicator 

variables, and tendency to overfit to training scenarios.  

(6) Indicator variables: Finally, there are significant opportunities to include more observed and 

projected information as indicator variables for the adaptation policy; only a few of the 

studies in Table 1 consider more than one indicator variable. This choice can be informed by 

several monitoring and data assimilation methods. 

 

4.1 Process-Based Insight to Improve Uncertainty Characterization 

 

The characterization of uncertainty in the dynamic planning problem can be informed by the physical 

causes of uncertainties in ensemble projections, for example whether the projected changes are 

thermodynamic or dynamic in nature [Emori and Brown, 2005; Seager et al., 2010]. Thermodynamic 

changes relate directly to the increased surface warming of the Earth under anthropogenic forcing, and 

cause more frequent and intense temperature extremes, glacial retreat, reduced snowpack and earlier 

snowmelt, sea level rise, and the increased moisture holding capacity of the atmosphere (i.e., 

Clausius-Clapeyron scaling). These trends are consistent with theory and robust in both observations 

and model projections [IPCC, 2013; Fischer and Knutti, 2016], leading to high confidence in their 

future direction, albeit with residual uncertainty in their magnitude. By contrast, dynamic climate 

change relates to changes in atmospheric circulation (e.g., jet stream dynamics, storm tracks, seasonal 

monsoon progression), which play a large role in determining regional precipitation. Dynamic 

changes are significantly more uncertain than thermodynamic change [Woollings, 2010; Shepherd, 

2014; Pfahl et al., 2017] and are difficult to distinguish from internal atmospheric variability 

especially on timescales (10-30 years) relevant to water resource investment decisions [Knutti and 

Sedláček, 2013]. To illustrate the relative uncertainty in dynamic processes, Figure 5 shows example 

projections of differences in temperature (thermodynamic) and streamflow (both thermodynamic and 

dynamic change). 

 

 

Leveraging such process-based insights, there is an opportunity for new synthetic scenario generation 

methods to create plausible dynamic projections of climate change for water resources planning 

studies. The key questions in generating nonstationary scenarios are: what variables should be 

perturbed, according to what distributions, and along what transient trajectories? In principle, any 

parameter of a stochastic generator can be perturbed based on climate information, for example: 



 
©2019 American Geophysical Union. All rights reserved. 

 

streamflow seasonality [Prudhomme et al., 2010; Nazemi et al., 2013], inter-annual variance and 

persistence [Borgomeo et al., 2015; Quinn et al., 2018], or the frequency and severity of drought 

events [Herman et al., 2016]. By contrast, stochastic weather generators are commonly used to alter 

daily weather characteristics, including the likelihood and persistence of wet and dry days, the 

intensity and seasonality of precipitation, its inter-annual persistence, and the magnitude and range of 

minimum and maximum temperature [Steinschneider and Brown, 2013; Guo et al., 2018]. These 

approaches must maintain realistic persistence and covariance structures across space and time, and 

potentially between multiple variables (e.g. precipitation, temperature, wind speed, etc.), [Kwon et al., 

2009; Steinschneider and Brown, 2013; Allard and Bourotte, 2015; Verdin et al., 2018], which can be 

supported by GCM output. 

 

The distribution of perturbations to apply is as important as the choice of variables to perturb. The 

range of stochastic scenarios can be informed by a process-level understanding of different types of 

climate change. For instance, hypothesized thermodynamic change can be tested by adjusting the tails 

of the distribution of local precipitation via a temperature-dependent Clausius-Clapeyron scaling. 

There are well-documented constraints on the thermodynamically-driven increase in extreme 

precipitation, which is expected to mirror the increase in atmospheric moisture holding capacity (~7% 

C-1) [Trenberth, 2011; Fischer and Knutti, 2016], but at hourly timescales could increase faster due to 

latent heat release during intense precipitation that further enhances convection and precipitation rates 

[Bao et al., 2017; Guerreiro et al., 2018]. Dynamic changes can be imposed by altering the frequency 

of different types of storm events [Knighton et al., 2017; Steinschneider et al., 2019], although these 

perturbations could be conditioned on climate model experiments designed to explore the consistency 

of such (inherently uncertain) signals against the backdrop of model and parameter uncertainty (e.g., 

multi-model and perturbed physics ensembles; see Glenis et al., [2015]). This type of approach 

provides a promising avenue to better link stochastic scenario development with process-level insights 

inferred from GCM ensembles, which is especially important in the case of extreme events [e.g., 

Serinaldi and Kilsby, 2015]. 

 

These insights can be used in a variety of ways to generate plausible scenarios of future change, and 

to distinguish these from implausible ones. Broadly, we propose the following recommendations: 

 A large variance in projected climate (particularly precipitation) should not immediately 

mark the ensemble as uninformative, as it likely represents the combination of internal 

variability and different thermodynamic and dynamical signals; 

 Conversely, in the case of climate model agreement—which does add some confidence of the 

direction of change—it may indicate a shared bias rather than an accurate prediction. That is, 

outlier projections cannot be disregarded either, as they may represent plausible future 

outcomes. 

 Closer coordination is needed with the climate science community, which dedicates 

significant effort to assessing the regionally-specific suitability of different climate models to 

support local adaptation based on the fidelity of large-scale dynamics. If conducted carefully, 

expert elicitation of future likelihoods can help with these challenges [Refsgaard et al., 2006; 

Morgan, 2014; Dessai et al., 2018]. 

 Relevant uncertainties can be qualitatively identified from the context of the planning 

problem. Table 2 shows an example, based on a handful of key studies that have examined 

the relative impacts of one or more of the uncertainties described above [Hawkins and Sutton, 

2011; Deser et al., 2012; Haddeland et al., 2014; Greve et al., 2018]. By contrast, only a few 
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water resources planning studies have attempted to decompose the sources of uncertainty 

influencing decisions [e.g., Paton et al., 2013; Schlef et al., 2018b]. 

 

 

4.2 Uncertainty Classification to Inform Experimental Design 

 

If the problem context yields physically-based insights to help identify relevant uncertainties, it may 

also inform how they are treated in a dynamic planning study. This may point to appropriate 

optimization methods, indicator variables, and monitoring efforts to support planning, as well as 

sources of uncertainty that do not need to be considered. The dominant sources of uncertainty vary 

widely between studies, regions, and scales, and are thus highly specific to the context of the planning 

problem. An important first step is therefore to identify the sources of uncertainty that most strongly 

influence the choice and timing of actions, possibly using some form of sensitivity analysis [Saltelli et 

al., 2004], and to devise methods to either reduce these uncertainties, select actions that are robust to a 

wide range of outcomes, and/or prioritize responses to impacts of climate change that are currently 

better understood.  

 

Uncertainties may be treated differently in the experimental design depending on their nature, level, 

and potential for learning [Kwakkel et al., 2010; Döll and Romero-Lankao, 2017; Fletcher et al., 

2017]. The nature of each uncertainty is either aleatory—irreducible uncertainty due to random 

variations in the variable of interest—or epistemic, arising from a lack of knowledge about the nature 

of the process of interest and how it should be modeled [Beven, 2016]. The level of uncertainty refers 

to whether a variable can be well-characterized by probability distributions or not [Döll and Romero-

Lankao, 2017]. Many uncertainties in projections of regional climate change can be considered deep, 

where an exact quantification is not possible [Spence and Brown, 2018]. Table 3 shows an example 

classification, recognizing that this type of classification in practice is specific to individual case 

studies. Relative contributions to total uncertainty in climate change assessments vary widely across 

space and time [Vetter et al., 2017b; Greve et al., 2018], and the columns in Table 3 add another layer 

of subjectivity that prevent a generalizable classification. However, if this exercise can be performed 

as part of a planning study, it can provide a foundation for the experimental design. 

 

 

Different signals of climate change might then be treated differently in the control framework. For 

instance, certain impacts of thermodynamic climate change have already been observed and are 

projected with high confidence to continue (e.g., reduced snowpack, rising sea level, more intense 

storms), though with some uncertainty in their magnitude. Because emissions uncertainty has a high 

potential for learning over time, infrastructure expansion can be staged in response via endogenous 

learning, potentially using emissions observations as an indicator variable. Adaptation of water supply 

and flood control systems to dynamic climate change (and associated shifts in regional precipitation) 

is more difficult, since the direction and plausible magnitudes of change are often poorly understood. 

In addition, the large degree of internal, multidecadal climate variability poses a significant barrier to 

endogenous learning of emergent trends [Doss‐Gollin et al., 2019]. This emphasizes the need for a 

solution that is either robust or reversible, acknowledging the significant potential to have an incorrect 

uncertainty characterization in the optimization problem and/or in the post-optimization test set. 

Recognizing that some probabilistic assumptions are inevitable, they should be made explicit and 

justified in the problem formulation [Beven et al., 2018a,b]. It may be more informative to determine 

the sensitivity of the optimized policies to the choice of uncertainty characterization, rather than only 
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validating against more realizations of the same uncertainty characterization. This partially depends 

on the decision framework being used [Brekke et al., 2009; Refsgaard et al., 2013], but in general 

may reveal weaknesses or sensitivities of the decision-making framework to new or surprising 

information that would not be apparent otherwise.  

 

4.3 Uncertainty in Endogenous Human-Environmental Model Structure 

 

Unlike some forms of parametric or exogenous uncertainty, the uncertainty in endogenous model 

structure is not easily sampled or characterized. However, the sensitivity of optimized policies to 

alternative structural assumptions about how humans respond to climate change can be assessed, 

similar to their sensitivity to alternative distributions of climate forcing. For example, different 

structures and feedbacks can be tested as discrete hypotheses to determine if they are influential 

relative to the many other uncertainties discussed previously, in terms of one or more system 

performance metrics.  

 

Capturing all of these multi-scale dynamics in a simulation model remains difficult, but sensitivity 

testing can help prioritize their inclusion. Global-scale earth system models have made significant 

advances in this direction [Pokhrel et al., 2016; Wada et al., 2017], as have local-to-regional scale 

models in recent years [Konar et al., 2019]. In practice, however, regional socioeconomic scenarios 

are often considered exogenous factors in planning studies, which may inadequately capture dynamic 

relationships between these and climate forcing [Verburg et al., 2016]. Accounting for these 

feedbacks and dynamic preferences is key to any retrospective assessment of human behaviors, or 

descriptive modeling of future system evolution [Di Baldassarre et al., 2017; Mason et al., 2018]. 

 

Reducing this uncertainty requires better scientific understanding of human-environment interactions, 

including the representative feedbacks described in Section 3.2.3. While the consideration of human 

and ecological water needs has always been a part of the systems analysis field, focus has only 

recently shifted to the question of how to model endogenous system dynamics that are driven by the 

coevolution of hydroclimatic forcing and human behavior [Thompson et al., 2013; Sivapalan and 

Blöschl, 2015]. This coupled modeling has been addressed in several ways: 

 Hydroeconomic models: water demand is a function of availability, assuming rationality 

[Draper et al., 2003; Kahil et al., 2018]  

 Descriptive models: infer behavioral rules from observational data or theory, originating in 

cognitive psychology and the social sciences [Camerer et al., 2004; Sanderson et al., 2017] or 

directly from observational data [Giuliani and Herman, 2018; Turner et al., 2019] 

 Dynamical systems models: a set of differential equations, including socio-ecological systems 

(SES) [Anderies et al., 2004] and socio-hydrology [Sivapalan et al., 2014; Di Baldassarre et 

al., 2016].  

 Agent-based models: rule-based individual actions, e.g., in response to short- and long-term 

water scarcity conditions [Schlüter and Pahl-Wostl, 2007; Giuliani et al., 2016a].  

 

Opportunities exist to incorporate findings from recent studies that empirically measure human 

responses to climate change into simulation models using similar methods [e.g., Carleton and Hsiang, 

2016]. Moreover, the increasing availability of large observational datasets describing human 

activities [Sanderson et al., 2002] creates new possibilities for advancing data-driven behavioral 

modeling [Cominola et al., 2018, 2019]. The extent to which dynamic simulation models can provide 
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a reliable and unbiased representation of human behavior remains an important research question 

[Melsen et al., 2018]. 

 

4.4 Policy Validation and Robustness 

 

One strategy to address the impacts of deep uncertainty in the control problem is testing optimized 

policies on scenarios or probability distributions other than those used in the optimization. The key 

question is not whether an adaptive policy can be optimized to a nonstationary climate scenario (it 

can), but whether the sequence, timing, and magnitude of actions in this optimized policy can 

generalize to other plausible realizations of climate and other uncertainties. The concept of testing 

optimized decisions has been explored extensively in the robust decision making literature [e.g., 

Kasprzyk et al., 2013], as well as several of the dynamic planning studies in Table 1. 

 

Here we distinguish two related goals of such testing (Figure 6a): (1) robustness to sampling 

uncertainty, represented by more realizations using the same uncertainty characterization—which we 

refer to as validation, in the machine learning sense— and (2) robustness to other uncertain variables 

or probability distributions not considered in the optimization. The first goal investigates whether the 

adaptation policy is overfit to the particular scenarios used in the optimization, especially given the 

strong dependence of control methods to the sampling of uncertainties over time. The second goal 

tests whether the adaptation policy is sensitive to key assumptions in the uncertainty characterization. 

The choice of which uncertainties to include in the optimization versus testing is highly subjective, 

but it is generally difficult to optimize to all possible sources of deep uncertainty, which would risk 

overdesign unless the uncertainties are included as indicator variables in the policy optimization. 

 

 

As shown in Figure 6b, a few benchmarks in the validation step can help provide context for the 

optimization results and suggest improvements in the experimental design. Specifically, each 

validation scenario or set of scenarios can be evaluated with a few measures of system performance: 

(1) the optimized policy re-evaluated in this scenario (validation); (2) a policy specifically optimized 

to this scenario, to establish an ideal outcome (perfect foresight); and (3) a “no-action” scenario, to 

establish baseline system performance if no adaptations are implemented. All of these are compared 

to a target level of performance, or possibly multi-objective targets, determined in consultation with 

stakeholders and decision-makers. The possible outcomes are then: 

 Meets requirement: the performance in validation exceeds the target performance. 

 Overfit: performance in optimization exceeds the target, but validation does not. The 

optimization should include a larger sample size of scenarios, with attention paid to extreme 

events. 

 Action-constrained: even with perfect foresight, the target cannot be met. This suggests that 

the set of actions is too limited to adapt to future change. 

 Information-constrained: optimized performance does not meet the target, but perfect 

foresight does, suggesting that better indicator variables could improve the policy. 

 No adaptation needed: The target is met even if no action is taken, which might be the case if 

the current system is already robust to the range of projected future changes. 

 

The outcomes shown in Figure 6b assume that the policy performs better in optimization and 

validation than no action, which is not guaranteed in practice. Additionally, comparing the actions 

taken by the optimized policies to those obtained from the perfect foresight optimization would show 
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whether the actions chosen (sequence, timing, and magnitude) remain roughly the same, which could 

serve as a diagnostic step for policies performing poorly in validation. These experiments can be 

repeated on several types of scenarios (e.g. wet vs. dry) to investigate whether a similar series of 

optimal actions, or conditions to trigger them, might be reasonable even without exact knowledge of 

the future climate. Performing these comparisons in the decision space and objective space could also 

provide a basis to distinguish policies which show similar performance yet very different actions, i.e. 

the case of equifinality in the optimization results.  

 

Finally, in the robustness step a number of additional uncertainties can be considered, including 

model structure, variables, and distributions that were not modified in the validation step. The focus is 

not necessarily choosing the most robust policy, which likely comes at high cost. Instead, as with 

robust planning methods, the goal is to understand the sensitivity of the optimized policy to the key 

assumptions regarding deeply uncertain variables. In the dynamic planning problem this challenge is 

exacerbated by the need to represent deeply uncertain variables as timeseries, which contain nearly 

infinite possible sequences of events over a decades-long planning horizon and are therefore unlikely 

to be fully represented by an ensemble of any size. Still, this process can identify key assumptions for 

refinement, iteratively informing the optimization step if policies are found to be overly sensitive. 

 

4.5 Computational Complexity 

 

The choice of solution method is arguably not the most pressing issue in dynamic planning studies 

under climate change, because all methods face a number of other challenges discussed previously. 

However, several important research questions remain related to the computational complexity of 

using these methods to design and test optimal adaptation policies. The concepts presented in Figure 7 

draw some inspiration from prior diagnostic studies of optimization algorithms [e.g., Reed et al., 

2013; Zatarain Salazar et al., 2016], here with a specific focus on the dynamic planning problem: 

 Efficiency / effectiveness: For a given level of performance (possibly multi-objective), which 

method has the best runtime, and vice versa? These experiments assume a fixed problem 

formulation, and possibly a benchmark level of performance determined with perfect 

foresight. Heuristic methods will require multiple random trials. 

 Scalability with problem complexity: How does the runtime needed to converge (e.g. to a 

predefined acceptable level of performance) increase with the number of indicator variables? 

This type of analysis would reflect the curse of dimensionality in the dynamic programming 

family of methods, and would confirm whether policy search methods can flexibly include 

more indicator variables at the cost of an approximate policy. Here the number of indicator 

variables is assumed to be a proxy for the complexity of the problem, since it will increase the 

size of the search space roughly exponentially depending on the policy structure. There may 

be opportunities to reduce the computational effort through aggregate proxy indicators that 

combine multiple sources of information while maintaining key dynamic signals [Zaniolo et 

al., 2018]. 

 Overfitting to training scenarios: As the problem complexity increases, the resulting policy 

should improve in validation, to a point. After that, the more complex policy will not 

generalize well to other scenarios. This is not so much a comparison between methods as an 

important threshold to identify within each method. The point at which overfitting occurs also 

depends on the number (or length) of scenarios used in training, because more complex 
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policies will require more training data to avoid overfitting. If policy interpretability is a 

concern, it is possible that the level of desired complexity will occur well before overfitting. 

 

These experiments could be performed on a single case study, but would be stronger if devised within 

a generalizable testing framework where the properties of the problem can be modified along with the 

properties of the solution methods. The results would then indicate which solution methods are most 

applicable to certain problem contexts, and/or the extent to which the problem formulation would 

need to be modified in order to use each method. 

 

4.6 Monitoring and Data Assimilation 

 

Finally, the studies in Table 1 suggest significant potential to expand the set of indicator variables 

used to trigger adaptation, particularly using policy search approaches. Indicators must be chosen to 

ensure they are indicative of emerging trends and not merely noise [Haasnoot et al., 2018]. We 

discuss three statistical approaches that might improve the use of information in dynamic adaptation 

to climate change: trend detection, Bayesian data assimilation, and formal approaches to indicator 

variable selection. While these approaches apply equally to hydroclimatic variables and endogenous 

variables, such as water demand and land use, most of the water resources literature focuses on the 

former. 

 

4.6.1 Trend Detection 

 

In the context of climate change, trend detection typically refers to the challenge of distinguishing 

nonstationarity from natural variability in an observation of interest [Hegerl and Zwiers, 2011]. While 

a statistically significant trend is not a requirement for adaptation to occur, it is one of many possible 

indicator variables that could be used to trigger adaptation, including future values predicted by 

extrapolating a trend. Detecting trends in the impacts of thermodynamic climate change, such as 

snowpack decline and sea level rise [Ceres et al., 2017; Thorarinsdottir et al., 2017], is often more 

feasible than for dynamic climate changes and extreme events such as floods. In this case, a key 

question is how much information will need to be observed before a significant trend can be detected, 

which for precipitation may exceed relevant planning timescales of 50 years or more [Pielke et al., 

2012]. The length of observations needed to detect a trend could inform the choice of moving window 

over which an indicator variable is aggregated. Several related studies have focused on the 

development of nonstationary hazard functions to characterize the frequency and severity of extreme 

events, particularly floods [Read and Vogel, 2015; Luke et al., 2017], estimates of which are updated 

through time based on observed precipitation trends. These methods are primarily concerned with 

failure to detect change (Type II error) [Rosner et al., 2014; Yu et al., 2015], which relates to false 

negatives for infrastructure adaptation.  

 

Trend detection could support the development of indicator variables for dynamic planning in several 

ways. First, a trend could serve as a binary indicator variable for the policy, to trigger an action when 

statistical significance is detected. This would implicitly try to minimize false positives for 

infrastructure planning, or to trigger action based on the expected costs of a false negative [Rosner et 

al., 2014]. These methods could also be used to detect when the current or projected future scenario is 

trending outside the range of the scenario(s) against which the current policy was trained. 

Additionally, stochastic scenario generation enables controlled experiments to test adaptive policies 

based on trend detection methods. For instance, transient scenarios can be generated to combine 
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physically-based trends using parameterized representations of thermodynamic and dynamic climate 

change alongside spurious trends using high autocorrelation to test if a policy over- or under-adapts to 

multidecadal internal climate variability and secular climate change. Such efforts provide a promising 

avenue to further advance adaptive control policies with an enhanced process-level understanding of 

regional climate variability and change. 

 

4.6.2 Bayesian Inference  

 

Observations of hydroclimatic and other variables that occur during the planning horizon can 

condition the characterization of stochastic forcing used in the control problem. For example, new 

observations might eliminate some emissions trajectories, refine estimates of climate sensitivity, or 

assimilate new GCM ensembles. An adaptive policy can be designed to incorporate these updates; for 

studies using formal probabilistic approaches, this could be done with Bayesian methods. As 

discussed previously, many of the uncertainties in long-term planning are not readily described by 

probability distributions. Bayesian methods still require probabilistic formulations just as scenario-

based methods require scenario selection. However, the choice of prior distribution can be tailored to 

the information available, ranging from precise, data-driven priors to uninformative priors chosen to 

allow data collected over time to be the primary driver of the resulting posterior. Further, the extent to 

which priors are truly uninformative can be tested via sensitivity on the priors [Gelman et al., 2013]. 

In either case, prior estimates can be updated dynamically with observations, reducing uncertainty as 

more information becomes available and informing adaptive planning. 

 

In the climate science field, Bayesian methods have been employed to reconcile simulation model 

output with observed data [e.g., Tebaldi and Knutti, 2007; Smith et al., 2009] , building on a 

foundation of applications in water resources and environmental sciences [Hobbs, 1997; Bates et al., 

2003; Hong et al., 2005]. For optimal control problems, the formal probabilistic treatment of Bayesian 

methods lends itself to SDP approaches [Hui et al., 2018; Fletcher et al., 2019], but can also be 

accommodated within policy search methods by probabilistically weighting performance under 

different scenarios, or by conditioning probabilistic indicator variables. In addition to forcing 

variables, such approaches can also be used to infer system parameter values and tipping points 

[Singh et al., 2018] to reduce endogenous uncertainty.  

 

The idea of characterizing stochastic forcing based on dynamic future observations suggests that one 

could instead describe the nonstationary scenarios by means of stochastic models with state dependent 

parameters [Priestley, 1988], as long as the parameters are changing slowly relative to the dynamics 

of the system under study [Young et al., 2001]. Following this approach, the parameters of the 

stochastic forcing models would be defined as a function of other observable variables in the system 

that can be sampled over time [Young, 2000]. The parameters can then be recursively estimated using 

the Kalman filter or associated algorithms [Kalman, 1960]. Thus, as changes in the state are observed, 

changes in the parameters in the stochastic process change in response. The state space representation 

of the parameters of the stochastic forcing models makes this approach particularly suitable for the 

design of closed loop control policies [Taylor et al., 2000]. 

 

 

4.6.3 Indicator Variable Selection  
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Indicator variables should be a parsimonious subset of forcing and state variables that can effectively 

inform policy actions. To some extent, this choice can be initialized by analyst judgment. However, 

since the set of candidate indicator variables and their statistical transformations is technically infinite, 

comprising many redundant variables and their transformations, the process may benefit from formal 

techniques for Input Variable Selection (IVS) [Guyon and Elisseeff, 2003; Galelli et al., 2014]. These 

methods provide flexibility to capture nonlinear interactions between input variables, and the 

computational efficiency to handle potentially many candidate variables over long timeseries. 

Generally, IVS problems arise every time a variable of interest is modeled as a function of a subset of 

potential explanatory variables, or predictors, but there is uncertainty about which subset to use 

[George and Foster, 2000].  

 

To the authors’ knowledge, IVS methods to support the optimization of climate adaptation policies 

are still unexplored, but they can draw inspiration from studies of short-term reservoir operations that 

have dealt with the topic in more detail. For example, extending the framework proposed by Giuliani 

et al. [2015a], an IVS procedure for climate adaptation might involve the following steps: 

 Assume a single future scenario as truth, and solve a deterministic optimization problem with 

perfect foresight, yielding an ideal reference solution; 

 Find the minimum subset of indicator variables that, when used to optimize a policy, best 

approximates the sequence of optimal adaptive decisions from the perfect foresight solution.  

 Once the best subset of indicator variables is identified, they can be used in the optimization 

of the adaptive policy.  

 Iterate multiple times using different reference scenarios to avoid overfitting, ideally 

identifying a common set of indicator variables selected across a wide range of scenarios. 
 

The effectiveness of such an approach for a long-term climate adaptation problem remains an open 

question, along with several more general questions. For example, it is not clear whether there is an 

advantage to choosing a climate indicator or a second-order variable that is strongly correlated but 

may be easier to measure, such as reservoir storage. Indicator variables may need to be adjusted 

dynamically after an infrastructure adaptation is triggered by the policy, and therefore the system 

behavior is changed. Also, nonstationary indicator variables may undergo different types of change, 

such as a step change rather than a gradual transient signal. The choice of indicators is strongly linked 

to the objective function; in multi-objective problems, a complex combination of information may be 

needed, a challenge that applies to both operations and planning [Quinn et al., 2019].  

 

5. Conclusions 

 

While optimal control methods cannot directly solve the climate adaptation problem any more than 

other public policy problems [Rittel and Webber, 1973; Kwakkel et al., 2016b], they are still a 

valuable component in decision support. It remains the primary approach to frame a dynamic planning 

problem in which actions are taken in response to observed and projected states and fluxes, and 

provides a useful way to define and classify recent studies in this area. The past decade of research 

suggests that dynamic planning has become a candidate successor to the stationary paradigm of water 

management [Milly et al., 2008] because of its ability to identify and adapt to nonstationary trends, 

and also to navigate the numerous and interacting sources of uncertainty in long-term climate 

projections.  
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Going forward, we propose the following summary points to support the evolving science and 

practice of dynamic water resources planning under climate change:  

 

Water Resources Systems Sciences: 

 

 The purpose of optimal control for long-term planning is not necessarily to implement the 

policy directly (unlike short-term operations), but rather to provide decision support by 

identifying near-term plans that can best prepare the system for the long-term future. Policies 

will eventually be updated as new observations and projections become available. 

 Uncertainty in endogenous system dynamics may equal or exceed that contributed by climate 

change on long planning horizons. Dynamic planning would therefore benefit from an 

improved understanding of the nonlinear dynamics linking climate and hydrology with human 

behavior, including land use and water demand across multiple scales. As noted by Brown et 

al. [2015], the traditional prescriptive focus of the field cannot be separated from these 

descriptive questions of how water resources systems will evolve in the presence or absence 

of policy interventions. 

 No uncertainty characterization can be proven correct, but can be justified according to the 

timescale, variable, and time horizon of the problem. An optimized adaptation policy 

implicitly reflects the probabilities of events that it was trained against, and how the objective 

function is aggregated, whether or not explicit probability distributions are defined.  

 Given that any future projection will not occur exactly, optimal control methods should 

employ sensitivity analyses to identify: (1) the sensitivity of the system to structural and 

parametric uncertainties throughout the modeling chain, and (2) the sensitivity of an 

optimized policy to the approach used for uncertainty characterization.  

 

Climate and Hydrologic Sciences: 

 

 The control problem requires dynamic sequences of hydroclimatic inputs which are 

physically plausible across timescales. GCM projections can inform these dynamic 

sequences, despite their known limitations in resolving precipitation processes. Stochastic 

weather and streamflow generators are rapidly improving and may be able to leverage 

physically-based insights from the climate modeling field. 

 Ideally, ensemble projections made available to planners could include a broader set of 

uncertainties beyond GCM and emissions scenarios, such as perturbation of initial conditions, 

uncertainty in downscaling methods, and hydrologic models, in order to better validate the 

robustness of solutions from dynamic planning models. 

 A particularly valuable opportunity for collaboration is the identification of planning 

signposts from internal climate states and processes, rather than inferring these from 

streamflow alone. This can support the selection of indicator variables for policy search 

approaches, which remains underexplored. 

 

Water Resources Agencies and Practitioners: 
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 Dynamic planning methods are an important tool to design climate adaptation policies that 

adapt as uncertainties in both the climate and human system unfold over time. 

 Long-term planning studies cannot be expected to encompass all sources of uncertainty in 

climate forcing, human behavior, and natural variability. This underscores the need for careful 

problem formulation, framing, and interpretation of results. 

 Different impacts of climate change can be more accurately represented in scenarios or 

probability distributions than others. Some impacts are sufficiently well-understood, as the 

direct consequence of rising temperatures, to begin planning adaptations in the near term. 

 When the uncertainty in climate impacts is difficult to quantify (e.g. extreme events), 

dynamic planning can still add value by asking: what future observations of precipitation and 

streamflow would necessitate action—either because the system is vulnerable, or expected to 

become vulnerable—and what actions should be taken under those conditions? 

 Deep uncertainty regarding human responses to climate change can be studied according to 

how optimal planning decisions differ under alternative model assumptions defining these 

feedbacks. 

 

In many ways, climate change only exacerbates uncertainties that have always been present in water 

resources planning, owing to the difficulty of enumerating all possible futures on decadal timescales. 

However, the increased uncertainty driven by climate change has pushed traditional planning methods 

beyond their limits—and also illuminated their limitations even in the absence of climate change. The 

challenge of dynamically mapping new observations and uncertain projections to actions will remain 

at the core of climate adaptation studies for the foreseeable future. 
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Appendix 

 
Table A1: Modeling groups and CMIP5 models used for runoff projections [Reclamation, 2014]. 
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Table 1: Classification of recent studies focused on dynamic water resources planning under climate change, selected based on the authors’ knowledge of studies applying (1) 

a dynamical system, (2) multi-stage or continuous decision making, and (3) the development of a control policy as a function of system states, indicator variables, and/or time. 
 

Reference Horizon Actions Indicator 

Variables 

Implementation 

Decisions 

Uncertainty Sources (representation) Solution 

Method 

Validation/Robustness 

Jeuland and 
Whittington 
[2014] 

100 
years 

Infrastructure, 
operations 

Time Sequence, 
timing, 
magnitude 

Streamflow (5000 synthetic scenarios) 
Withdrawals (3 discrete scenarios) 

Enumeration N/A 

Paton et al. 

[2014] 

30 years Infrastructure, 

conservation 

Reservoir 

storage 
(monthly) 

Magnitude, 

thresholds  

Precipitation (10 synthetic scenarios, based 

on historical + scaled by 1 GCM) 

Policy search 

(MOEA) 

Broader uncertainties (252 climate + 

demand scenarios) 

Beh et al. 
[2014] 

40 years Infrastructure Time Sequence, 
magnitude 

Precipitation (1000 synthetic scenarios), 
socioeconomic scenarios (6) 

Sequencing 
algorithm 

N/A 

Woodward 
et al. [2014] 

100 
years 

Infrastructure Time, sea level 
rise 

Sequence, 
timing 

Sea level rise (3 emissions scenarios, with a 
normal distribution estimated for each) 

Policy search 
(MOEA) 

N/A 

Beh et al. 

[2015, 
2017a] 

50 years Infrastructure, 

conservation 

Time Magnitude, 

timing 

Population, temperature, rainfall (14 

synthetic scenarios based on GCM 
properties) 

MPC (MOEA) N/A (robustness included in 

optimization) 

Haasnoot et 
al. [2015] 
(Ex. 3) 

100 
years 

Not specified Streamflow 
(multiple 
statistical 
transformations) 

Thresholds Streamflow, precipitation, potential 
evaporation, sea levels (60 synthetic 
scenarios with linear trends based on GCMs) 

Enumeration Thresholds developed relative to 
reference scenarios without climate 
change 

Kwakkel et 
al. [2015, 
2016a] 

100 
years 

Infrastructure, 
public policy 

Flood event 
levels (5-year 
maximum) 

Sequence, 
thresholds 

Streamflow/precipitation (30 synthetic 
scenarios based on GCMs) 
Land Use (7 discrete scenarios) 
Endogenous parameters (synthetic)  

Policy search 
(MOEA) 

N/A (robustness included in 
optimization) 

Mortazavi-
Naeini et al. 
[2015] 

50 years Infrastructure, 
operations, 
public policy 

Reservoir 
storage 
(monthly) 

Magnitude, 
thresholds 

Streamflow (10,000 synthetic scenarios 
based on GCM properties) 

Policy search 
(MOEA) 

Broader uncertainties (more severe 
GCM scenarios) 

Borgomeo 
et al. [2016] 

25 years Infrastructure, 
public policy 

Time Magnitude, 
timing  

Streamflow (10,000 synthetic scenarios 
based on GCM properties) 

Open Loop 
(MOEA) 

N/A 

Zeff et al. 
[2016] 

50 years Infrastructure, 
conservation, 
financial 

Risk-of-failure 
metric (50-year 
window) 

Magnitude, 
sequence, 
thresholds 

Streamflow (100 synthetic dry scenarios) Policy search 
(MOEA) 

More scenarios (1,000), same 
characterization 

Culley et al. 
[2016] 

100 
years 

Operations Annual 
precipitation, 

average 
temperature 

Magnitude, 
timing 

Precipitation, temperature (861 synthetic 
scenarios and 22 physically-based scenarios 

from combinations of GCM-RCM) 

Enumeration Scenarios in local neighborhood of 
the one used for optimization 

Fletcher et 
al. [2017] 

30 years Infrastructure Reservoir 
storage (annual) 

Sequence, 
timing 

Streamflow and population growth (100,000 
synthetic scenarios) 

Enumeration Broader uncertainties (100,000 
endogenous parameter samples) 
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Trindade et 
al. [2017] 

50 years Infrastructure, 
conservation, 
financial 

Risk-of-failure 
metric (50-year 
window) 

Magnitude, 
sequence, 
thresholds 

Streamflow and endogenous parameters 
(1,000 synthetic scenarios) 

Policy search 
(MOEA) 

More scenarios (10,000), same 
characterization 

Borgomeo 
et al. [2018] 

30 years Infrastructure, 
public policy 

Time Timing Streamflow (physically-based RCM) and 
demand scenarios, 600 total 

Open loop 
(MOEA) 

N/A (robustness included in 
optimization) 

Erfani et al. 
[2018] 

45 years Infrastructure, 
design 

Supply-demand 
gap 

Magnitude, 
timing 

Supply and demand (synthetic ensemble 
used to create scenario tree) 

Multistage 
Stochastic NLP 

N/A 

Hui et al. 
[2018] 

200 
years 

Infrastructure Levee height Magnitude, 
thresholds, 
timing 

Flood risk distribution (6 synthetic PDFs) SDP with 
Bayesian 
updates 

N/A 

Fletcher et 
al. [2019] 

100 
years 

Infrastructure, 
design 

Precipitation, 
temperature (20-
year average) 

Magnitude, 
thresholds, 
timing 

Precipitation, temperature (500 synthetic 
scenarios based on GCM properties) 

SDP with 
Bayesian 
updates 

More scenarios (regret analysis), 
same characterization 
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Table 2: Combination of uncertainties involved in designing control policies for climate adaptation. Several of these 
classifications are subjective choices; in general, all of these uncertainties apply to any climate adaptation planning problem. 
Here we highlight those that likely dominate the total uncertainty in different planning contexts. The addition symbol indicates 
only that the uncertainty should be considered; it does not imply that the uncertainties or their effects are additive. 

Planning horizon Type of climate change Timescale of impact Statistic of 

interest 
Short (10-20 years) 

+Sampling 

uncertainty (internal 

variability) 

Thermodynamic 

(temperature, snowpack, sea 

level rise) 

+Emissions uncertainty 

Coarse (seasonal-annual, e.g. 

droughts, snowpack decline) 

 

Central 

tendency 

 

Long (30+ years) 

+Endogenous 

Uncertainty 

Dynamic (precipitation, 

streamflow, storm tracks) 

+Climate model uncertainty 

Fine (daily-weekly, e.g. floods, 

heat waves) 

+Sampling uncertainty 

+Hydrologic model 

uncertainty 

Extreme events 

+Sampling 

uncertainty 
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Table 3: An example classification of uncertainties according to their nature, level, and potential for learning, following 
Kwakkel et al. [2010], Döll and Romero-Lankao [2017], and Fletcher et al. [2017]. This classification is only an example and 
would vary substantially between case studies. 

Type Level Nature Potential for 

Learning 

Sampling Shallow Aleatory Low 

Climate Model Deep Both Medium 

Emissions Medium Epistemic High 

Hydrologic 

(exogenous) 

Medium Both Medium 

Human-Env. System Deep / Ignorance Epistemic Medium 
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Figure 1: Broad classification of decision support frameworks for water resources planning under climate change. This paper 
reviews dynamic planning studies (highlighted) under the framing of an optimal control problem. Dynamic plans may also 
be robust, though the reverse is not necessarily true. 
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Figure 2: Overview of dynamic water resources planning under climate change, structured as a control problem. Policies are 

optimized to one or more performance metrics evaluated by the system model according to the state transition equation. The 

system receives a combination of climate and non-climate forcing inputs. We assume a watershed-scale planning problem and 

therefore omit the feedback from the system to global emissions. 
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Figure 3: Components of a dynamic planning study, following the control problem framing. 
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Figure 4: Estimated statistics of annual streamflow for the Sacramento River at Bend Bridge using a 50-year rolling window: 
(a) 5th percentile and (b) median, normalized to the observed values in year 2000. Paleo and observed data are taken from 
TreeFlow [Meko and Woodhouse, 2005], along with CMIP5 projections from the U.S. Bureau of Reclamation [Reclamation, 
2014]. 95% confidence intervals in all subplots are found from 100 bootstrap resamples of each 50-year window to estimate 
the standard error. Confidence intervals for paleo data include the standard deviation of residuals. 
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Figure 5: Percent changes in streamflow and temperature from the historical period to end-of-century for the Sacramento River 
at Bend Bridge (CMIP5 projections from the U.S. Bureau of Reclamation [2014]), to highlight the differences in projections 
of thermodynamic versus dynamic change. Streamflow across the ensemble typically shows a wider spread of projected 
changes relative to temperature. Distributions are shown for different timescales and quantiles, indicating that streamflow 
projections tend to be most variable for droughts (annual, 1%) and floods (daily, 99%), which presents the most difficulty for 
adaptation planning.  
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Figure 6: (a) Experimental setup for dynamic planning using control methods. The validation step tests the performance of an 

optimized policy against more realizations of the same uncertainty characterization, while the robustness step tests the 
performance over samples generated under other key assumptions, such as model structures and distributions not included in 
the optimization. (b) Outcomes of validation experiments, and how the experimental setup might be modified in each case. 
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Figure 7: Open research questions in comparing the computational complexity of solution methods for control 

methods applied to climate adaptation problems. The illustrative performance metric assumes maximization. 
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Figure 8: Statistical approaches to improve the use of information in dynamic adaptation to climate change.  

 
 


