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ABSTRACT: Although the fate of nanoplastics (<100 nm) in
freshwater systems is increasingly well studied, much less is known
about its potential threats to cyanobacterial blooms, the ultimate
phenomenon of eutrophication occurrence worldwide. Previous
studies have evaluated the consequences of nanoplastics increasing
the membrane permeability of microbes, however, there is no direct
evidence for interactions between nanoplastics and microcystin;
intracellular hepatotoxins are produced by some genera of
cyanobacteria. Here, we show that the amino-modified polystyrene
nanoplastics (PS-NH2) promote microcystin synthesis and release
from Microcystis aeruginosa, a dominant species causing cyanobacterial
blooms, even without the change of coloration. We demonstrate that
PS-NH2 inhibits photosystem II efficiency, reduces organic substance
synthesis, and induces oxidative stress, enhancing the synthesis of
microcystin. Furthermore, PS-NH2 promotes the extracellular release of microcystin from M. aeruginosa via transporter protein
upregulation and impaired cell membrane integrity. Our findings propose that the presence of nanoplastics in freshwater ecosystems
might enhance the threat of eutrophication to aquatic ecology and human health.

■ INTRODUCTION

Plastic debris is increasingly considered a global concern
because of its negative social and ecological impacts.1−4 The
discarded plastics can be degraded into microplastics (0.1−5
mm in size) with different charges by abiotic and biotic
factors.5 In addition, microplastics can also be directly derived
from personal care and cosmetic products or textile fibers via
wastewater discharge.6,7 Therefore, rivers are one of the
dominant pathways for plastic debris to reach the oceans.5

Fragmentation of microplastics to nanoparticles has been
performed in the laboratory using nanoparticle tracking
analysis and dynamic light scattering (DLS).8,9 Based on
mass conservation principles, it is estimated that the nano-
plastic particle concentrations are 1014 times higher than that
of the presently measured microplastic particle.10 In addition,
nanoplastics with nanospecific properties have become a
special concern in microplastic research.11,12 Because of their
ability to penetrate cells, nanoplastics could bring about growth
inhibition,13 reproductive dysfunction,14 and reduced viabil-
ity15 for marine invertebrate and vertebrate animals.16,17

However, the potential threats of nanoplastics on primary
producers, which form the base of the food chain in freshwater
systems, have not received sufficient attention.

A handful of publications elucidated that nanoplastics
reduced chlorophyll a in Scenedesmus,14 photosynthesis in
Chlorella,18 and expression of rbcL genes (responsible for
carbon fixation) in Chlamydomonas.19 In addition, the toxic
potential of nanoplastics strongly varies depending on the
properties of nanoplastics, such as the size and surface
charge.18,20 Ecotoxicity studies of the influence of nanoplastics
on aquatic organisms have exponentially increased in the last 7
years, where an unsaturated amine (−NH2) was selected as the
model for positively charged polystyrene nanoparticles.20,21

Cyanobacteria, as the main primary producers, have greatly
contributed to the richness and abundance of benthic algal
communities in freshwater systems.22 In addition, extensive
occurrence of cyanobacterial blooms is also regarded as the
ultimate phenomenon of occurrence of eutrophication world-
wide.22,23 The blooms can directly diminish drinking water
quality and pose a potential threat to humans and
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ecosystems.24 Microplastic fragments, floating in aquatic
environments and are 10−100 times larger than the unicellular
algae, possibly provide a favorable surface for colony
establishment.25 In addition, planktonic cyanobacteria may
attach to the surface of plastic debris and form biofilms on
plastic fragments by repressing expression of extracellular
components required for biofilm formation.26 Limited data for
the interactions between cyanobacteria and 200 μm micro-
plastics implied that microplastics might have a negative
influence on cyanobacteria.25 However, the interaction
between polystyrene nanoparticles and cyanobacteria may be
different from that of micro-sized ones. Polystyrene nano-
particles, 100−1000 times smaller than algal cells, may directly
cling to the algal cell.25 However, the potential ecological
effects of nanoplastics on cyanobacteria in freshwater systems
are virtually unknown.
Several cyanobacteria species can produce microcystin

(MC), with Microcystis as the predominant producer in
freshwater systems.27,28 Over 80 variants of MC have been
identified, where MC−leucine−arginine (MC-LR) is the most
common and harmful.29 MC has been associated with liver
cancer and fatality, for example, with the death of 60 patients
after renal dialysis with MC-contaminated water in Brazil.30,31

Notably, MC accumulated in animal tissues could be
transferred to higher trophic levels through the aquatic food
web.32 Previous research suggests that nanoplastics could
induce surface reconstruction of cell membrane, resulting in
increased membrane permeability.12 Hence, nanoplastics
might accelerate the release of MC, which could make it
more likely for aquatic organisms to be exposed to high
concentrations of MC. In this study, we investigate the
interaction of Microcystis aeruginosa, a dominant species
causing cyanobacterial blooms, and amino-modified polystyr-
ene nanospheres (PS-NH2), functionalized polystyrene nano-
particles to assess nanoplastic toxicity. We investigated the
influence of PS-NH2 on the growth, MC generation, and
release from M. aeruginosa. The iTRAQ-based comparative
proteomics analysis was employed to reveal the mechanism of
nanoplastics on M. aeruginosa at the level of translation.
Physiochemical responses of chlorophyll a content, tran-
scription level of key photosynthetic genes, and antioxidant
systems to PS-NH2 verified the proteomics results. Further-
more, weighted gene coexpression network analysis
(WGCNA) was used to explore the key parameter for
intracellular generation and extracellular release of MC from
M. aeruginosa. These results may contribute to a better
understanding of the potential risks of nanoplastics on primary
producers and control of cyanobacterial bloom.

■ MATERIALS AND METHODS
Characterization of Nanoplastics. The PS-NH2 (50 nm)

particles and green fluorescently labeled 50 nm PS-NH2
particles (excitation wavelength, 475 nm; emission wavelength,
510 nm) were purchased from Bangs Laboratory (USA) and
micromod Partikeltechnologie GmbH (Germany), respec-
tively. Sulfonic acid-modified polystyrene nanoplastics (PS-
SO3H) were synthesized in the laboratory through nitrogen-
protected emulsion polymerization with styrene as a
monomer.14,33 Before the experiment, the nanoparticles were
transferred to a dialysis bag (1 kDa) for 3 days to remove
redundant monomers or initiators.34 The diameter and
morphologies of PS-NH2 were characterized by a transmission
electron microscope (JEM-2100F, JEOL, Japan). The size (Z-

average) and ζ-potential (mV) were determined using DLS
(Zetasizer Nano ZS, Malvern, UK). The structure and
composition of nanoplastics (Figure S1) were determined via
a Fourier transform infrared spectrometer (Avatar, Thermo
NicoLet, USA) at wavenumbers from 4000 to 400 cm−1.
Ultraviolet−visible (UV−vis) spectra (190−450 nm) of PS-
NH2 in the aqueous phase were recorded using an ultraviolet−
visible (UV−vis) spectrophotometer (UV-6100, Metash,
China), and the concentration of the nanoplastics in the
aqueous phase was determined by measuring the UV
absorbance at 220 nm (Figure S1).

Exposure of M. aeruginosa to Nanoplastics. M.
aeruginosa FACHB 905 (single cells), FACHB 1327 (small
colonies), and FACHB 1338 (large colonies), purchased from
the Institute of Hydrobiology, Chinese Academy of Sciences
(Wuhan, China), were cultured in an autoclaved standard blue-
green (BG-11) medium at a pH of around 7.2. PS-NH2 was
added on the 10th day of single cell strain growth with 8 × 106

cells/mL. The systems without PS-NH2 and those with PS-
NH2 at concentrations of 3.40 and 6.80 μg/mL were set as the
control, low-concentration, and high-concentration exposure
treatments, respectively. All the experiments were performed in
six replicates. After acute (2 days) and long-term (10 days)
exposure to PS-NH2, the responses of M. aeruginosa by PS-
NH2 were investigated.

Analysis of MC, Chlorophyll a, and Cell Membrane
Integrity. M. aeruginosa samples were centrifuged at 10,000g
and 4 °C for 5 min. The supernatant was used to analyze the
extracellular MC. The residues were resuspended in an original
volume of ultrapure water and then frozen in liquid nitrogen
and thawed at room temperature thrice. Then, the solution was
centrifuged at 10,000g and 4 °C for 5 min. The supernatant
was filtered through 0.22 μm acetate cellulose membranes for
the analysis of intracellular MC. The extracellular and
intracellular MC concentrations were detected using MC
enzyme-linked immunosorbent assay kits (Runyu Biotechnol-
ogy Co., China). The chlorophyll a analysis was performed
based on the previous research.35 The cell membrane integrity
was evaluated according to the protocol.36,37 The PS-NH2
distribution in M. aeruginosa was observed through confocal
microscopy. Confocal imaging was performed using a laser-
scanning confocal microscope (LSM-700, ZEISS, Japan).

Analysis of Antioxidant Responses. M. aeruginosa
samples were centrifuged at 10,000g and 4 °C for 5 min.
The supernatant was discarded, and the residue was
resuspended in 300 μL of ultrapure water. Then, the samples
were frozen in liquid nitrogen and thawed at room temperature
thrice. After centrifugation at 10,000g and 4 °C for 5 min, the
supernatant was filtered through 0.22 μm acetate cellulose
membranes for the analysis of the antioxidant responses of M.
aeruginosa. Commercially, SOD and GSH assay kits (Nanjing
Jiancheng, China) were used to determine the activities of
antioxidant enzymes, using a programmable microplate reader
(Infinite F50, Tecan, Switzerland). The concentrations were
normalized to the cell numbers before statistical analysis.

Analysis of Gene Expression. Total RNA was extracted
according to the procedures of Bacteria Total RNA Isolation
Kit (Sangon Biotech, China). The RNA concentration and
purity were quantified by a nucleic acid analyzer. Before
reverse transcription, a Primescript RT reagent kit (TaKaRa,
China) with a gDNA Eraser was used to remove genomic
DNA contamination in RNA samples. The cDNA was then
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synthesized through reverse transcription polymerase chain
reaction and stored at −20 °C until real-time qPCR analysis.38

Analysis of Proteomic Responses. M. aeruginosa cells
were sampled in three biological replicates for the control and
experimental groups during two phases: acute exposure (2
days) and long-term exposure (10 days). Protein extraction
was performed via the trichloroacetic acid/acetone precip-
itation and the SDTLysis procedure.39 After quantification, the
protein extracts were digested according to the filter-aided
sample preparation protocol procedure.40 The iTRAQ-labeled
peptides were fractionated by strong cation exchange
chromatography using the AKTA purifier system. The
collected fractions were desalted on C18 Cartridges and
injected for nanoliquid chromatography−mass spectrometry
(LC−MS)/MS analysis. LC−MS/MS analysis was performed
on a Q-Exactive mass spectrometer coupled to an EASY-nLC.
Protein identification was performed using the MASCOT
engine embedded into Proteome Discoverer 1.4. To reduce the
probability of false peptide and protein identification, the
cutoff global false discovery rate was set to 0.01. Differentially
expressed proteins (DEPs) were defined based on fold changes
of >1.2 or <0.83 and a p value of <0.05 in all three replicates.
WGCNA was performed according to the R package of the
WGCNA.41 The protein−protein interaction (PPI) informa-
tion of DEPs was retrieved from the IntAct molecular
interaction database using the STRING software, and the
results were visualized via Cytoscape5 software (version 3.2.1).

Furthermore, the degree of each protein was calculated to
evaluate the importance of the protein in the PPI network. The
MS proteomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository with the
dataset identifier PXD011664. All other data are available from
the corresponding author on reasonable request.

Statistical Analysis. All the experiments were run at least
six independent times unless stated otherwise. For cell density
evaluation, MC assay, gene expression, and antioxidant
responses, one-way analysis of variance (ANOVA) with an
unpaired t-test were performed using GraphPad Prism. The
differences were considered significant at p < 0.05 and are
referred to as *p < 0.05, **p < 0.01.

■ RESULTS AND DISCUSSION

Promotion of MC Synthesis and Release from M.
aeruginosa by PS-NH2. M. aeruginosa was cultured in BG-11
medium containing polystyrene nanoplastics with differential
surface charges to simulate changes caused by weathering of
plastics and adsorption of natural organic matter.20 The
negative-charged sulfonic acid modified polystyrene nano-
plastics (PS-SO3H) showed no obvious inhibitory effect even
when the exposure concentration was 100 μg/mL (Figure
S2A). However, positive-charged amino-modified polystyrene
nanoplastics (PS-NH2) had a greater influence on M.
aeruginosa than negatively charged plastics (Figure 1A),
consistent with previous results.20 This could be due to

Figure 1. Response of M. aeruginosa to acute and long-term exposure of PS-NH2. Effects of PS-NH2 on cell density after different exposure times
(A), growth inhibition rate (B), phenotype change (C), chlorophyll a content (D), synthesis of total microcystin (E), and release rate of
microcystin (F). “C” refers to the control group. “L” and “H” refer to low and high concentrations of PS-NH2, respectively. The statistical
significance was estimated by one-way analysis of variance (ANOVA) with an unpaired t-test. The differences were considered significant at p <
0.05 and are referred to as *p < 0.05, **p < 0.01.
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electrostatic repulsion, where positively charged nanoparticles
interact easily with negatively charged membrane residuals.
During the acute 48 h exposure, growth inhibition of M.
aeruginosa by low (3.40 μg/mL) and high (6.80 μg/mL)
concentrations of PS-NH2 was 23.57 and 46.10%, respectively,
with the normally green M. aeruginosa turning yellow (Figure
1B,C), in parallel with a significant reduction in the chlorophyll
a content (Figure 1D). This inhibition was significantly
reduced upon long-term exposure (10 days), with M.
aeruginosa regaining its green coloration (Figure 1C),
indicating that the interaction of nanoplastics and cyanobac-
teria was dynamic and without persistence within the
experimental period. However, the synthesis of MC in per
cell increased significantly both under acute and long-term
exposure of PS-NH2, compared to the control group (Figure
1E). In addition, MC−leucine−arginine (MC-LR), the most
common and harmful MC in freshwater environments, also
increased significantly (Figure S3A). Furthermore, both
exposures of PS-NH2 significantly stimulated the extracellular
release of MC and MC-LR from M. aeruginosa (Figures 1F;
S3B). Conversely, the negatively charged PS-SO3H was less
likely to attach the negative-charged cell membrane with the

effect of electrostatic repulsion, and the acute exposure of 100
μg/mL PS-SO3H negligibly affected the extracellular release of
MC and MC-LR from M. aeruginosa (Figure S4B). Although
PS-NH2 inhibited the growth ofM. aeruginosa, during the long-
term exposure of PS-NH2, the concentration of total MC in
medium of low concentration group (900.73 μg/L) was
significantly higher than the control group with 851.85 μg/L (p
< 0.01, Figure S5). M. aeruginosa normally forms colonies
instead of single cells under natural conditions.42 In order to
simulate the effects of PS-NH2 on M. aeruginosa in natural
freshwater environments, M. aeruginosa FACHB 1327 and
1338 were selected as a supplementary study. M. aeruginosa
FACHB 1327 and 1338 present small and large colonial
morphology and grow on the water surface during laboratory
culture (Figure S2B). After a 48 h exposure of PS-NH2, the
chlorophyll a content in both FACHB 1327 and 1338 was
significantly inhibited even in low-concentration group (p <
0.01, Figure S2C). Although colonial M. aeruginosa can adapt
to the bad environment, exposure of PS-NH2 still affects their
growth.

Biological Pathways Impacted by PS-NH2. To identify
the molecular mechanisms responsible for the effects described

Figure 2. Proteomics analysis of M. aeruginosa under acute and long-term exposure of PS-NH2. Proteomics analysis of Venn diagram (A),
significantly enriched KEGG pathways (p < 0.05) of DEPs in M. aeruginosa exposed to low-concentration PS-NH2 for short- (B,a) and long-term
(B,b), and high-concentration PS-NH2 for short- (B,c) and long-term (B,d).
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above, the proteomics combining phenotypic verification
experiments of M. aeruginosa under PS-NH2 were performed.
The proteomics results revealed that PS-NH2 had a substantial
influence on cyanobacterial protein expression (Supporting
Information; Figure S6). The proteins that were significantly
downregulated in both low- and high-concentration treatments
suggested that PS-NH2 may inhibit the photosynthetic activity,
weaken the photosynthetic electron transport chain, and
reduce carbohydrate metabolism (Figure 2; Table S1). In
addition, the acute exposure of low-concentration PS-NH2

only influenced the light reaction of photosynthesis compared
with both the light and dark reactions of photosynthesis
impaired by high-concentration PS-NH2 treatment (Figure
S7A). The main proteins (PsbB, PsbC, and PsbD) involved in
photosystem II were all downregulated (Table S1), indicating
that the photosynthetic efficiency of photosystem II was
significantly inhibited by PS-NH2. To verify the above
proteomics results, we performed a qRT-PCR assay on psbD,
a key gene associated with photosynthesis II. Pearson’s
correlation coefficient between the qRT-PCR data (Figure
3A) and the proteomics data was 0.80, which indicates the
accuracy of the proteomics data. The downregulation of PsbD
protein is known to interfere with electron transport, leading to
the accumulation of surplus electrons and oxidative stress.43,44

The weakening of the photosynthetic electron transport
chain under short-term exposure for low- and high-
concentration PS-NH2 leads to the accumulation of surplus
electrons and induced oxidative stress (Figure S7B; Table S1).
In addition, oxidative stress of M. aeruginosa caused by low-
concentration PS-NH2 could be gradually alleviated by
detoxification enzymes. However, for high-concentration
exposure, this oxidative stress of M. aeruginosa continued in
the later period (Figure S7B; Table S1). Meanwhile, upon
acute exposure of PS-NH2, we observed a significant increase
in the levels of reactive oxygen species (ROS) (Figure 3B) and
superoxide dismutase (SOD) (Figure 3C), a part of the cell’s
antioxidant defense system. The induction of oxidative stress
was consistent with the proteomics data. Glutathione (GSH)
plays a critical role in protection from multiple ROS species in
cyanobacteria. The level of reduced GSH decreased signifi-
cantly compared with the untreated control (Figure 3D),
which was due to the oxidization of a large amount of GSH to
glutathione disulfide (GSSG) in the cells. During oxidation,
large amounts of ROS (H2O2) were eliminated to reduce
oxidative stress, alkyl and lipid hydroperoxides.45

The reduction of carbohydrate metabolism was consistent
with decreased growth after treatment with PS-NH2 (Figure
S7C). Furthermore, the downregulation of lipopolysaccharide
biosynthetic process-related proteins (Table S1), involved in

Figure 3. Oxidative stress and cell membrane permeability in M. aeruginosa to acute and long-term exposure of PS-NH2. Effects of PS-NH2 after
different exposure times on transcriptional level of photosynthesis genes (A), ROS concentration (B), SOD concentration (C), GSH concentration
(D), location of PS-NH2 in the cells [(E), left image: control group; right image: experimental group], and cell membrane permeability (F). “C”
refers to the control group. “L” and “H” refer to low and high concentrations of PS-NH2, respectively. The statistical significance was estimated by
one-way analysis of variance (ANOVA) with an unpaired t-test. The differences were considered significant at p < 0.05 and are referred to as *p <
0.05, **p < 0.01.
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synthesizing the integral components of the membrane,
indicated damage to cell membrane integrity after PS-NH2

exposure. The exposure to both concentrations of PS-NH2 led
to the upregulation of proteins involved in the biological
transport process (Figure S7D; Table S1), such as ABC
transporters, which are transmembrane complexes that span
both the plasma membrane and the outer membrane of M.
aeruginosa and actively export substrates, such as macrolide
antibiotics, peptides, virulence factors, and cell envelope

precursors.46 For validation of proteomics analysis for
cyanobacterial membrane transport, we used green-fluorescent
PS-NH2 to determine whether PS-NH2 entered and accumu-
lated in M. aeruginosa. The behavior of the fluorescently
labeled PS-NH2 was similar to that of PS-NH2, both in the
culture medium and in deionized water (Figure S8). The
fluorescently labeled PS-NH2 penetrated the cell membrane
and accumulated inside the cells (Figures 3E; S8). The process
of the nanoparticles entering the cell appeared to rupture the

Figure 4. Identification of the top hub proteins by WGCNA. Clustering dendrograms of proteins, with dissimilarity based on topological overlap,
together with assigned module colors (A). Identification of protein modules associated with microcystin phenotypic traits (B). Each row
corresponds to a module eigengene, while each column corresponds to a trait. Each cell contains the corresponding correlation and p value. The
table is color-coded by correlation according to the color legend. The eigengene dendrogram and heat map identify groups of correlated eigengenes
(C). The dendrogram (C,a) indicates that the magenta modules are significantly positively related to intracellular microcystin. The dendrogram
(C,b) indicates that the turquoise modules are significantly positively related to extracellular microcystin. The dendrogram (C,c) indicates that no
modules are significantly positively related to microcystin release. Heat map of proteins in the module and eigengene expression in 18 samples (D).
A scatterplot of gene significance for different traits vs module membership in the brown, turquoise, and blue modules (E). The visualization of
modules in the brown, turquoise, and blue module (F). The top hub proteins in the modules have been indicated in bold with a yellow color.

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.9b06085
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b06085/suppl_file/es9b06085_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b06085/suppl_file/es9b06085_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b06085/suppl_file/es9b06085_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b06085/suppl_file/es9b06085_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b06085?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b06085?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b06085?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b06085?fig=fig4&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b06085?ref=pdf


cell membrane, an effect seen under both acute and long-term
exposure to PS-NH2, which was confirmed by cell membrane
permeability experiments (Figure 3F). Such a membrane
rupture and transporter protein upregulation could enhance
the release of intracellular materials such as MC.
Top Hub Proteins Related to Promote MC Synthesis

and Release. MC is synthesized by the thiotemplate function
of a large, modular enzyme complex encoded within the 55 kb
MC synthetase (mcy) gene cluster. As shown in Table S2, both
McyB and McyG proteins were upregulated under different
PS-NH2 concentrations for short- and long-term exposure.
Especially, McyG protein was significantly upregulated under
high PS-NH2 concentration for long-term exposure. In order to
gain a better understanding of the proteomics and functional
foundation of tolerance to environmental stressors, we built
coexpression modules from our proteomic data using weighted
gene correlation network analysis (WGCNA). We identified
18 coexpression modules from the data regarding the 2413
proteins from the 18 samples (Figure 4A,B) and effectively
identified three groups of hub proteins (Figures 4C−E; S9),
which were placed in the middle of PPI networks (Figure 4F).
The top hub proteins marked with yellow in the brown
module, with a negative correlation to the synthesis of
intracellular MC, are tryptophan synthase C (involved in
organic substance metabolic pathways). The decrease in the
synthesis of organic substances caused a disadvantage for
growth of M. aeruginosa. For protecting the cell from ROS-
induced damage and enhancing the fitness of bloom
populations under PS-NH2 exposure, quotas of MC synthesis
would increase.29 The top hub proteins in the turquoise
module (PyrG) and blue module (ApcB1 and N44_03141)
are positively and negatively correlated with extracellular MC,
respectively (Table S3). The proteins of PyrG and ApcB1 are
related to the regulation of phospholipid synthesis47 and
thylakoid membrane by module GO enrichment, respectively.
Additionally, N44_03141 is an alkaline phosphatase-like
protein that is associated with the integral components of
the membrane. The upregulation of PyrG protein may be a
defense response against cell membrane damage. Down-
regulation of apcB1 and N44_03141 was in accordance with
the self-protection of thylakoid membrane and damage of cell
membrane integrity, respectively. Hence, the increased syn-
thesis of MC was a defense response to protect cells from
oxidative damage and enhance the fitness of M. aeruginosa to
the stresses caused by nanoplastics,29,48 which was observed
under exposure to antibiotic,49 iron-limiting conditions29 and
herbicide.50 The damage to membrane integrity and the
upregulation of biological transport proteins were the main
explanation for the stimulated release of MC.
Environmental Significance. Although previously re-

ported nanoplastics could induce surface reconstruction of
cell membrane, less is known about the potential threats of
nanoplastics to cyanobacterial blooms underlying. The extent
to which the environment is contaminated with nanoplastics
remains to be quantified, given the technical challenge of
detecting such small and carbon-based particles in complex
natural environment. However, in the controlled laboratory,
0.3% (w/w) of a polymeric latex film formed nanoparticles
with an average diameter of 196.52 nm (±89.48) after a 200
day exposure to the freshwater environment.51 Based on the
limited reports on microplastics abundance in Three Gorges
Reservoir (1597−12,611 items/m3)52 and midstream of the
Los Angeles River (12,000 items/m3),53 the concentration of

nanoplastics in freshwater systems might be in the level of μg/
mL, not to mention the meso- or macro-plastics.
In this study, the exposure to nanoplastics in the level of μg/

mL concentration promoted MC synthesis and release fromM.
aeruginosa, even without the change of coloration. In detail, PS-
NH2 may enhance the synthesis of MC by inhibiting
photosystem II efficiency, reducing organic substance syn-
thesis, and inducing oxidative stress. Furthermore, PS-NH2
promotes the extracellular release of MC from M. aeruginosa
via transporter protein upregulation and impaired cell
membrane integrity. Cyanobacterial blooms have negative
consequences for both human health and aquatic ecology.
Cyanobacteria form the base of many food chains;
furthermore, the accumulation of nanoplastics in cyanobacteria
might have effects on other trophic levels, which could pose a
potential risk to food safety.
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