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Abstract

1. The persistence of phytoplanktonic diversity in spite of competition for basic resources has

long been a source of wonder and inspiration to ecologists. To sort out, among the many

coexistence mechanisms suggested by theory and experiments, which ones actually maintain

diversity in natural ecosystems, long-term field studies are paramount.

2. We analysed a large dataset of phytoplankton abundance time series using dynamic, multivariate

autoregressive models. Phytoplankton was counted and identified down to the genus level,

every two weeks over twenty years, at ten sites along the French coastline. Multivariate

autoregressive models allowed to estimate biotic interaction networks, while also accounting

for abiotic variables that may drive part of the phytoplankton fluctuations. We then analysed

the ratio of intra- to inter-taxa interactions (a measure of niche differentiation), the frequency

of negative vs positive interactions, and how stability metrics (both at the network and genus

level) relate to network complexity and genus self-regulation or abundance.

3. We showed that a strong self-regulation, with competition strength within a taxon (genus) an

order of magnitude higher than between taxa, was present in all phytoplanktonic interaction

networks. This much stronger intragenus competition suggests that niche differentiation -

rather than neutrality - is commonplace in phytoplankton. Furthermore, interaction networks

were dominated by positive net effects between phytoplanktonic taxa (on average, more than

50% of interactions were positive). While network stability (sensu resilience) was unrelated

to complexity measures, we unveiled links between self-regulation, intergenera interaction

strengths and abundance. The less common taxa tend to be more strongly self-regulated and

can therefore maintain in spite of competition with more abundant ones.

4. Synthesis: We demonstrate that strong niche differentiation, widespread facilitation between

phytoplanktonic taxa and stabilizing covariances between interaction strengths should be

common features of coexisting phytoplankton communities in the field. These are structural

properties that we can expect to emerge from plausible mechanistic models of phytoplankton
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communities. We discuss mechanisms, such as predation or restricted microscale movement,

that are consistent with these findings, which paves the way for further research.

Keywords: phytoplankton; coexistence; facilitation; mutualism; niche theory; time series; networks
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Second language abstract

1. La persistance de la biodiversité du phytoplancton malgré la compétition pour les ressources est

depuis longtemps une source de questionnement pour les écologues. Afin d’identifier, parmi les

nombreux mécanismes de coexistence suggérés par la théorie et les expérimentations, ceux qui

maintiennent la diversité dans les écosystèmes naturels, des études à long-terme sont essentielles.

2. Nous avons analysé des séries temporelles longues de comptages de phytoplancton. Le phyto-

plancton a été identifié au niveau du genre, toutes les deux semaines pendant vingt ans sur dix

sites, le long du littoral français. Des modèles autorégressifs multivariés ont permis d’inférer des

réseaux d’interactions biotiques, tout en prenant en compte les variables abiotiques susceptibles

d’affecter les fluctuations du phytoplancton. Nous avons ensuite calculé le ratio entre les

interactions intra et inter-taxa (une mesure de la différentiation des niches), la fréquence des

interactions positives et négatives ainsi que la façon dont les métriques de stabilité (au niveau

du réseau et du genre) sont liées à la complexité du réseau et à l’autorégulation ou l’abondance

de chaque genre.

3. Nous avons montré qu’une autorégulation forte, c’est-à-dire une force de compétition au sein

d’un même taxon (ici, le genre) un ordre de grandeur supérieure aux forces d’interaction entre

taxa, était omniprésente dans les réseaux d’interactions phytoplanctoniques. Cette compétition

intragenre beaucoup plus forte suggère que la différentiation des niches, plutôt que la neutralité,

est fréquente pour le phytoplancton. En outre, les réseaux d’interactions étaient dominés par

des effets nets positifs d’un taxon sur un autre (en moyenne, plus de la moitié des interactions

étaient positives). Bien que la stabilité (au sens de la résilience des réseaux) ne soit pas liée

aux mesures de complexité, nous avons révélé des relations entre l’autorégulation, la force des

interactions entre genres et l’abondance. Les genres les moins communs tendent à être plus

fortement autorégulés et peuvent ainsi se maintenir malgré la compétition avec les genres les

plus abondants.

4

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



4. Synthèse : Nous démontrons qu’une différentiation des niches, une facilitation fréquente parmi

les taxa de phytoplancton, et des covariances stabilisant les forces d’interaction, devraient être

des facteurs relativement communs dans les communités phytoplanctoniques qui coexistent

in situ. Ces propriétés structurelles peuvent donc être attendues de modèles mécanistes

multi-taxa pour le phytoplancton. Nous discutons des mécanismes, tels que la prédation ou

des mouvements limités à l’échelle microscopique, qui pourraient expliquer ces résultats, et

ainsi ouvrir de nouvelles pistes de recherche.
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Introduction

How species or close genera can coexist together in spite of competition is one of the main puzzles of

community ecology, especially for primary producers that seemingly share the same basic resources

(Hutchinson, 1961). Many theoretical studies of competition models have shown that competitive

exclusion is likely in those circumstances, unless mechanisms involving spatial or temporal variation

are at play (Armstrong & McGehee, 1976, 1980; Chesson & Huntly, 1997; Huisman & Weissing, 2001;

Li & Chesson, 2016; Chesson, 2018). Neutral theory models, assuming that all individuals have equal

birth and death rates and exert equal competitive pressure on conspecifics and heterospecifics alike,

produce instead a non-equilibrium coexistence maintained by dispersal from a regional pool. They

have been proposed as a solution to the puzzle presented by highly diverse communities (Hubbell,

2001; Rosindell et al., 2011).

However, the evidence gathered from terrestrial plant communities starts to suggest that, in fact,

niche rather than neutral processes may be paramount to explain coexistence, with intraspecific

competition dwarfing interspecific competition in most cases (Adler et al., 2010, 2018b); see also

Volkov et al. (2009). Whether these conclusions drawn mostly from studies of terrestrial plants

apply to other ecosystems and taxa is currently little known (but see Mutshinda et al. 2009).

Moreover, competition may not be the rule: the meta-analysis by Adler et al. (2018b) reported a

large number of facilitative interactions (30%) and several reviews (Brooker et al., 2008; McIntire

& Fajardo, 2014; Kinlock, 2019) have highlighted that facilitation may be much more widespread

than ecologists usually tend to think. Although some theoretical studies suggest that facilitative

interactions can be destabilizing (sensu resilience) and therefore undermine coexistence in Lotka-

Volterra models (Coyte et al., 2015), multiple other modelling (Gross, 2008; Qian & Akçay, 2020)

and empirical (Brooker et al., 2008; Cavieres & Badano, 2009) studies have suggested that facilitative

interactions can to a large degree benefit coexistence, especially when multiple interaction types

are considered simultaneously (Mougi & Kondoh, 2012; Garćıa-Callejas et al., 2018; Qian & Akçay,

2020).

Here, we analyse a spatially replicated, long-term community-level dataset, consisting of ten
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multivariate time series of phytoplankton abundance along the French coastline. We do so using

multivariate autoregressive (MAR) models, that allow to estimate interactions between genera.

Although many ecological studies focus on interactions between species, competition has been shown

experimentally to occur between different genera of phytoplankton (Titman, 1976; Descamps-Julien

& Gonzalez, 2005). The genus level is also a rather fine taxonomic scale for phytoplankton interaction

studies, as most studies are restricted to interactions between different classes or even phyla (Ives

et al., 2003; Hampton et al., 2008; Griffiths et al., 2015). Studying interactions between different

genera of phytoplankton therefore both makes empirical sense in light of competition experiments

and allows to estimate better-resolved networks. We focus here on genera that belong mostly to

diatoms and dinoflagellates. To put our results into a more general context, we then compare our

interaction strength estimates to previously published interaction networks produced under the same

statistical framework, both in plankton and other empirical systems.

Material and methods

Sampling methods

All phytoplankton samples were collected by Ifremer coastal laboratories as part of the National

Phytoplankton and Phycotoxin Monitoring Network (REPHY, 2017). Since 1987, this monitoring

program has required the sampling of 26 sites along the French coastline every 2 weeks within 2

hours of high tide to document both biotic (phytoplankton counts) and abiotic (water temperature,

salinity) variables. We focused on sites which had the longest time series. We also excluded time

series which had missing data for over 6 months or an average delay between sampling dates above

20 days. This reduced the number of study sites to 10 sites nested within 4 regions (Brittany, Oléron,

Arcachon and the Mediterranean Sea; Fig. S1 and Table S1 in the Supporting Information).

Abiotic variables (temperature, salinity) were measured directly from the boat during the sampling

process while water samples for biotic analyses were fixed with a Lugol’s solution and examined later.

Phytoplankton cells above 20 µm were identified at the lowest possible taxonomic level and counted

with the Utermöhl method using an optical microscope (Utermöhl, 1958). Throughout the years
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and sites, more than 600 taxa were identified at different taxonomic levels. We aggregated them at

the genus (or group of genera when not possible) level based on previous work (Table S2; Hernández

Fariñas et al. 2015; Barraquand et al. 2018), except for cryptophytes and euglenophytes in Arcachon,

which could not be identified below the family level. Although the taxonomic resolution used here

may seem coarse in comparison to land plants, it is in fact more refined than 86% of the MAR(1)

studies of phytoplankton listed in Table S4.

For each region, the MAR(1) analysis focused on the most abundant and most frequently observed

genera to avoid most of the gaps in the time series. When gaps did not exceed a month, missing

values were linearly interpolated; remaining missing values were replaced by a random number

between 0 and half of the lowest observed abundance (Hampton et al., 2006). Time series are plotted

in Fig. S2. We tested extensively this and other methods to deal with missing data in a previous

publication on a subset of this dataset (Barraquand et al., 2018). All time series were scaled and

centered before MAR analyses.

MAR(1) models

Multivariate autoregressive (MAR) models are used to determine the interspecific interactions and

abiotic effects shaping a community’s dynamics (Ives et al., 2003). MAR(1) models are based on a

stochastic, discrete-time Gompertz equation which relates the log-abundance of each of the S taxa

at time t+1 to log-abundances of the whole community at time t, with possible interactions between

taxa, and effects of V abiotic variables at time t+ 1. These assumptions are encapsulated in eq. 1:

nt+1 = Bnt +Cut+1 + et, et ∼ NS(0,Q) (1)

where nt is the 1× S vector of log-abundance of phytoplankton taxa, B is the S × S community

(interaction) matrix, C is the S×V environment matrix describing the effects of V variables (stacked

in vector ut+1) on growth rates, with V = 2 in our case (temperature and salinity). The noise

et is a 1× S noise vector, following a multivariate normal distribution with a variance-covariance

matrix Q. Q is diagonal and we have previously showed that this parsimonious choice did not affect
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qualitatively the results (Barraquand et al., 2018). We used the MARSS package v3.9 (Holmes et al.,

2012, 2014), in R v3.3.2 (R Core Team, 2016), to estimate parameters with a maximum likelihood

procedure.

Our previous analysis of the Arcachon region, for which more covariables were available (Bar-

raquand et al., 2018), revealed that hydrodynamics and hydrology had more influence on phyto-

plankton dynamics than nutrients on the two-week timescale. Because temperature and salinity, in

addition to their direct effects, sum up seasonal changes in light and hydrology (salinity is inversely

related to freshwater inflow), they represent the two key drivers needed to account for abiotic

influences (Scheef et al., 2013). They are therefore used to summarize the abiotic environment in

the remainder of the article.

The analysis of real data in Barraquand et al. (2018) was complemented by that of simulated

data mimicking the study design, which confirmed the ability of MAR(1) models to infer biotic

interactions and abiotic forcings. Fitting a more sophisticated model (threshold autoregressive model)

did not reveal extra non-linearities or a storage effect in the Arcachon subset of the data (Barraquand

et al., 2018). Other aspects of the MAR(1) modelling are likewise quite robust: using two abiotic

variables (temperature and salinity) in this study rather than the full set used in Barraquand et al.

(2018) led to almost identical covariate effects and interaction estimates for the Arcachon study

sites. Even if some departures from the true data-generating model may not always be detectable

through MAR(1) diagnostics (e.g., residuals), the analysis of nonlinear simulations has showed that

MAR(1) models are in general robust to nonlinearities if the inference focuses on interaction sign

and order of magnitude of model coefficients (Certain et al., 2018), which is how these models are

used here. For ease of interpretation of MAR(1) interaction coefficients, we also highlight how

intra- and inter-taxa interaction strengths in a MAR(1) model map to their counterparts in a

multispecies Beverton-Holt model, i.e., a discrete-time Lotka-Volterra model (Cushing et al., 2004),

in the Supporting Information.

In this study, the number of phytoplankton taxa (S) and the community composition vary

slightly between regions but sites share on average 67% of their taxa. In order to have comparable

models, we also keep the same 2 covariates, i.e., water temperature and salinity, that were measured
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at all study sites. Therefore, the dimension of the dynamical system depends on the (square of

the) number of phytoplankton taxa we study, which ranges between 7 (Mediterranean Sea) and

14 (Brittany). The smallest system still requires 63 parameters to be estimated (49 for the 7× 7

interaction matrices and 14 for the 7×2 environment matrices) if we consider all possible interactions

between taxa. To reduce this dimensionality and remove unnecessary parameters, we built different

‘interaction scenarios’ based on known phylogenetic information (as suggested in Violle et al., 2011;

Narwani et al., 2017). The null interaction scenario assumed no interaction between genera (diagonal

interaction matrix) and was compared to four other interaction scenarios. The first interaction

scenario assumed that interactions could only occur between phylogenetically close organisms, i.e.,

within a class (groups were then diatoms, dinoflagellates, and other phytoplanktonic organisms)

while the second interaction scenario further differentiated pennate and centric diatoms. The third

interaction scenario considered the reverse hypothesis, that only unrelated organisms could interact

(i.e., a diatom could only interact with a dinoflagellate or a cryptophyte, but not with another

diatom), and the last interaction scenario did not constrain the interactions at all (full interaction

matrix). We selected the best scenario by comparing BIC (Fig. S3), which proved to be satisfactory

in our previous analyses of both real data and similar simulated datasets (Barraquand et al., 2018,

Appendix 2). The second interaction scenario, hereafter called the pennate-centric scenario, had the

lowest BIC for all sites (Fig. S3). This parsimonious scenario was therefore chosen as the basis for

further investigations of network structure.

Analysis of interaction strengths

The interaction matrix obtained from MAR(1) analyses can be used to determine the stability

of a discrete-time dynamical system (Ives et al., 1999, 2003). To investigate stability-complexity

relationships, we compared the maximum modulus of the eigenvalues of the pennate/centric matrices

for each site to network descriptors. The maximum modulus is analogous to the real part of the

leading eigenvalue for continuous time models, and measures resilience while still accounting for

some variability properties (Ives et al., 1999). However, because most theory on stability-complexity

has been developed in continuous time (e.g., Allesina & Tang, 2015), we numerically checked that the

10

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



maximum modulus of the eigenvalues in a discrete-time interaction matrix and its continuous-time

model counterpart yield similar information in the Supporting Information. We then compared

this resilience measure to complexity metrics, such as the interaction strength distribution (sign,

mean and variance) and weighted connectance (Bersier et al., 2002). Weighted connectance is a

measure of the proportion of realized links compared to all possible links, taking into account the

shape of the flux distribution. This metric is adapted to weighted interaction matrices but cannot

accommodate for both positive and negative coefficients: we therefore chose to focus on interaction

strength only (absolute values of the coefficients), irrespective of interaction sign. In contrast, mean

and variance of the off-diagonal coefficients, which can affect the stability of a community (Allesina

& Tang, 2015), are computed on raw values of the coefficients. Interaction coefficient variance is

multiplied by the number of taxa, according to theory (Allesina & Tang, 2015).

In addition to these network-level metrics, we also computed the average vulnerability (average

effect of other taxa on a focal taxon, eq. S5) and the average impact (average effect of a focal

taxon on other taxa, eq. S6), on both raw and absolute values of the interaction coefficients. Such

vulnerability and impact scores can be related to in-strength and out-strength in the meta-analysis

of Kinlock (2019). We then compared these to the regulation a focal species exerted on itself.

Vulnerability computed on raw coefficient values indicates the average effect that can be expected

on the growth rate of a taxon from the rest of the community (i.e., is the effect of others mostly

positive or negative?), while vulnerability computed on absolute coefficient values characterises the

strength of all types of interactions on a taxon (i.e., is a taxon strongly affected by the others?). A

similar reasoning applies to the impact score.

Finally, we compared the observed ratio between mean self-regulation (intrataxon interaction

strength) and mean intertaxa interaction strength to other published studies based on a MAR(1)

model. A list of references is given in Table S4. Authors usually reported only coefficients that

were significant with a 5% significance level, thus ignoring potentially many weak effects, which we

had to set to 0. There are therefore two ways of computing the mean intertaxa interactions, i.e.,

taking the mean value of all coefficients outside of the matrix diagonal, including zeroes (which

decreases the estimated mean intertaxa interaction strength, Fig. 4), or taking the mean value of
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statistically significant intertaxa coefficients only (which increases the estimated mean intertaxa

interaction strength, Fig. S9). We considered both; a detailed description of these different ways to

compare intra- and inter-taxa interactions can be found in the Supporting Information.

Results

Interaction estimates

Using MAR(1) autoregressive models, we produced interaction matrices (Ives et al., 2003; Hampton

et al., 2013) – i.e., Jacobian community matrices on the logarithmic abundance scale (Ives et al.,

2003). Best-fitting models corresponded to a phylogenetically-structured interaction scenario, where

interactions only occurred betwen closely related genera (Fig. S3). This led to sparse, modular

matrices that have two main features. First, we observed a strong self-regulation for all sites (Fig. 1,

diagonal elements of all matrices), a feature that we had previously highlighted in a more detailed

analysis on one of the considered study regions (Barraquand et al., 2018). The ratio of mean

intragenus to intergenera interaction coefficients varied between 6 and 10, not counting coefficients

set to 0 before the estimation process. When we included the zeroes in the interaction matrix in

the computation of the intra/inter mean interaction strength (see the Supporting Information for

details of that computation), the ratio rose to 21-43. Therefore, intragenus interactions were on

average one order of magnitude stronger than intergenera interactions.

Second, although the percentage of facilitative interactions varied among sites (between 40%

and 71% of interactions in the selected models), facilitation remained predominant in 9 sites out

of 10 (only Lazaret, in the Mediterranean Sea, has 60% negative interactions). Our observational

setup being nested, with sites within regions, we could examine whether locally positive interactions

remain positive in a regional context: the percentage of consistently positive interactions at the

regional level varied between 30% and 53%, higher than the percentage of similarly defined negative

interactions (between 15% and 40%), except for sites in the Mediterranean Sea.

We found that the percentage of true mutualism (+/+) was substantial: averaged over all sites,

32% of all interactions were (+/+) while only 12% of them were (-/-), see also Fig. S5. The sign
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Figure 1: Interaction matrices estimated at 10 sites along the French coastline. Taxon j

(in columns) has an effect on taxon i’s growth rate (in rows) proportional to the bar height, which
corresponds to the B− I matrix (community composition in Table S2, most parsimonious interaction
scenario presented). The scale for the coefficient values is given at the bottom left of panel a).
Coefficients significantly different from 0 (α = 5%) are marked by asterisks (*). The fraction of
positive interactions in each matrix is given by points in c) while the dashed (resp., dotted) line
represents the ratio of interactions remaining positive (resp., negative) for all sites of a given region.
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correspondence was not always maintained between regions: the only interaction that was non-zero

in the 10 sites (CHA/SKE) was mutualistic in Men er Roue only (Brittany) and mixed (+/-) in

all other sites. Within the same region, however, interactions measured in different sites tended to

keep the same sign. In the 3 sites of Oléron, for instance, there were 4 interactions which remained

positive for both taxa involved (CHA/GUI, DIT/GUI, LEP/THP, SKE/THP), 3 of them being also

mutualistic in some of the Brittany sites. This contradicts previous observations that mutualistic

interactions tend to be more context-dependent than competitive interactions (Chamberlain et al.,

2014).

Interaction network analysis

The stability (sensu resilience, Ives & Carpenter 2007) of all interaction matrices was not strongly

affected by the percentage of positive interactions or the mean and variance of the interactions

between taxa (Fig. 2). There was a slight increase in stability with weighted connectance, with a

drop in eigenvalue modulus for weighted connectances between 0.09 and 0.1. The maximum modulus

of the interaction matrix eigenvalues remained between 0.65 and 0.80.

Given that a direct complexity-stability (sensu resilience) link was not obvious, we investigated

whether the matrix coefficients had some particular structure that could help theoretical ecology to

make better null models of joint community dynamics and interactions (James et al., 2015). Relations

between intra- and inter-taxa interactions emerged (Fig. 3): genera that were more self-regulating

also had a higher average vulnerability score. Those two influences are likely to trade-off: a high

degree of self-regulation somehow buffers the effect of outside influences on population dynamics.

Taxa that were less self-regulating were also more likely to have a stronger effect onto other taxa.

As these genera tended to be more abundant (Fig. S7), this could be mediated by the average

density of a genus. It is important to note, however, that these trends are weak and there is

therefore a considerable amount of randomness dominating the interaction matrix: many scenarios

of self-regulation vs limitation by others are therefore possible.

Aside from the trade-offs of Fig. 3, we found no remarkable patterns of covariation between

matrix elements (Fig. S5) other than a mean-variance scaling of interaction coefficients (Fig. S6).
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Figure 2: Relation between stability and complexity of the interaction networks. The
maximum modulus of the eigenvalues of the interaction matrix B indicates stability sensu resilience.
Off-diagonal coefficient variance is multiplied by the dimension of the network, that is the number of
species in the region. Each color or shape corresponds to a given region. The formula for weighted
connectance is given in the Supporting Information.

Literature comparison

Finally, we sought to put these results in a broader context by compiling the intra vs inter taxa

estimates of previous MAR(1) studies of long-term observational count data (listed in Table S4).

We found that the order of magnitude of intra/inter interaction strengths considered here is not
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Figure 3: Relation between vulnerability/impact and self-regulation. Average vulnerability
(effects of others on the focal taxon growth rate, a-b) and impact (effects of the focal taxon on others’
growth rates, c-d), as well as self-regulation, are computed for untransformed (a-c) or absolute
(b-d) values of the coefficients of the interaction matrix (B− I) for the 10 study sites. Each color
corresponds to a given region (Fig S1). Linear regressions are shown as black lines.

particularly above those found for most planktonic systems to which MAR(1) models have been

fitted, considering that our systems are relatively high-dimensional and that the higher the number
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interactions were set to 0 when they were not specified in the articles (in most cases, authors removed
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significant interactions).

of taxa, the larger the intraspecific regulation (Barabás et al., 2017). We included in Fig. 4 not only

plankton studies but also a couple of vertebrate or insect studies on less diverse communities, where

interactions are stronger, in order to provide lower bounds for the intra/inter ratio. The conclusion

from this comparison seems to be that, unlike small communities that can be tight-knit, any diverse

field system of competitors and facilitators has evolved large niche differences making on average

intrataxon competition much larger in magnitude than intertaxa interactions.
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Discussion

Strong self-regulation and facilitation

We found very large niche differences between genera, translating into much higher intragenus than

intergenera effects on growth rates, together with a high degree of facilitative net interactions.

The intra/intertaxa interaction strength ratio (Levine & HilleRisLambers, 2009) that we found,

from 6–10 to above 20, depending on whether one includes interactions set to zero before the

estimation process, could appear very high in light of previous intra/interspecific competition

strength estimates of 4 to 5 by Adler et al. (2018b). Additional estimates using the unconstrained

interaction matrix yielded ratios between 8 and 11 depending on the site (Table S3 and Fig. S8 in

the Supporting Information), but weak intertaxa effects are likely to be inflated in the full model.

Therefore, a intra/inter ratio of 10 seems like a conservative estimate. It is twice that of Adler et al.

(2018b) who use a different model, i.e., a Lotka-Volterra competition model. We outline how to relate

a MAR(1) model to a discrete-time Lotka-Volterra equivalent in the Supporting Information; even

though there is a relationship between intra/inter ratios in both models, the relationship is not trivial

when abundances vary greatly between species. Hence, to some degree, intra/inter ratios can differ

between model frameworks or ways of measuring density-dependencies (e.g., a high measurement

error due to using proxies of densities for plants can result in bias in interaction coefficient estimates,

Detto et al., 2019). However, a ratio intra/inter at least twice larger than the ones previously found

may call for other explanations. One could also argue that our high intra/inter ratio arises because

we consider the genus as our baseline taxonomic unit, rather than the species. It is logical that

niche differentiation increases as one gets up the phylogenetic tree, and that getting down to the

species level could slightly decrease that ratio (but see Narwani et al., 2017, in which phylogenetic

closeness decreases competition strength). However, taxonomic resolution is unlikely to be the sole

explanation for the high intra/inter ratio of interaction strength found here, for two reasons. First,

phytoplankton species belonging to different genera are often found to compete in experiments

(Titman, 1976; Tilman et al., 1982; Descamps-Julien & Gonzalez, 2005). In the field-based dataset

studied here, the same genera that are considered in experiments are found not to compete (or only
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weakly), hence there must be some niche differentiation occurring in the field but not in the lab.

Second, the only other study that managed to provide MAR(1) estimates down to the species level

for phytoplankton, that of Huber & Gaedke (2006), provides an intra/interspecific strength ratio

similar to ours (point 7a in Fig. 4). Strong self-regulation seems therefore a genuine feature of field

phytoplanktonic communities. We discuss below possible mechanistic interpretations.

Another main finding of our study is the large frequency of positive interactions, with 30% truly

mutualistic (+/+) interactions and between 40 and 70% facilitative effects. Although a seasonal

environment can generate some positive covariation between taxa, those effects have already been

filtered out by the inclusion of our 2 abiotic covariates (Fig. S4). The facilitative effects shown

here are therefore residual effects, once abiotic trends are accounted for. Between 40 and 70%

facilitation can be compared to the meta-analysis by Adler et al. (2018b) who also found facilitative

interactions, but less than here (≈30%). However, Adler et al. (2018b)’s review contains many

experiments while the plant literature is replete with field examples of facilitation (Brooker et al.,

2008; McIntire & Fajardo, 2014), so that plant facilitation could be higher in the field. At the

moment, it is therefore unknown how the predominance of facilitative interactions that we found

in phytoplankton compares to facilitation in terrestrial plants. We note that several authors using

MAR(1) models previously forbade positive interactions within the same trophic level, so that the

fraction of facilitative interactions in plankton cannot be computed from literature-derived MAR(1)

estimates.

The large niche differences and facilitative interactions that arise when considering a single

trophic level are an emergent property, resulting from hidden effects of resource or predator

partitioning/sharing (Chesson, 2018). In our previous publication investigating in detail the Arcachon

study sites (Barraquand et al., 2018), we have argued that for phytoplankton, the strong intrataxon

density-dependence could arise from effects of natural enemies (Haydon, 1994). Natural enemies

could also very well create apparent mutualism between prey species (Abrams et al., 1998; de Ruiter

& Gaedke, 2017). We believe this to be likely for the present study, given that the study regions

(Arcachon, Oléron, Brittany, Mediterranean) have similar predators (zooplankton, e.g., Jamet et al.,

2001; Modéran et al., 2010; Tortajada et al., 2012) and parasites (viruses, e.g., Ory et al., 2010;
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fungi). Though natural enemies are good candidates to explain the observed niche differences and

emerging facilitation, one must bear in mind that other known drivers of phytoplankton dynamics

such as allelopathy (Felpeto et al., 2018), auxotrophy (Tang et al., 2010) or hydrodynamics (Lévy

et al., 2018) can all, in theory, help create different niches and an emerging facilitation (see last

subsection of the Discussion). Finally, resources that are usually considered limiting for all species

might in fact not always be: Burson et al. (2018) show that phytoplanktonic taxa specialize on

different components of the light spectrum. This constitutes an example of fine-scale resource

partitioning of one resource, light, that all species and genera are usually thought to compete for.

No complexity-stability relationship but connections between self-regulation

and interactions between taxa

There was no relation between the complexity of the communities (measured as either the weighted

connectance or the interaction coefficient variance) and their stability (measured by the largest

modulus of the eigenvalues, which quantifies the return time to a point equilibrium, i.e., resilience).

This result is conditional upon our model being a good approximate description of the system

(i.e., no multiyear limit cycles or chaotic attractors as the mapping between eigenvalues and actual

stability is distorted in that case, Certain et al., 2018). However, we already showed on a subset of

this data that a fixed point in a MAR(1) model, perturbed by seasonality and abiotic variables, is an

accurate description of the system (Barraquand et al., 2018). Therefore, we are confident that the

absence of complexity-resilience relationship found here is not a mere artefact of an inadequate model.

This absence of direct link between complexity and stability could be an actual feature of empirical

systems, as shown previously by Jacquet et al. (2016) using a different technique. This result seems to

contradict theory based on random matrices, especially for competitive and/or mutualistic networks

(Allesina & Tang, 2012). However, one must bear in mind that such result could also be generated

by the limited size of our networks, as random matrix theory relies on asymptotics (Allesina &

Tang, 2015). We should also mention that our interaction matrices (based on a discrete-time model)

are not strictly analogous to the ones used most frequently in theoretical ecology (continuous-time

model), though the spectral radius (largest modulus) is here tightly related to the real part of the
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lead eigenvalue in equivalent continuous-time models (see Supporting Information). Thus while

the jury is still out regarding the absence of complexity-resilience relation found here, it may well

be a genuine absence. In addition to complexity metrics, we also found that the percentage of

mutualistic interactions, that is thought to affect the stability of a network, either positively or

negatively (Mougi & Kondoh, 2012; Coyte et al., 2015; Garćıa-Callejas et al., 2018), does not in fact

have a major impact on our networks’ resilience.

In addition to weighted connectance and interaction variance, indices at the genus level (vulnera-

bility and impact) approximate the average effects exerted and sustained by any given taxa in the

different study sites. While, at the network level, network structure (either complexity measures

or the percentage of mutualistic interactions) did not affect resilience, a relation emerged between

self-regulation, necessary for coexistence, and genus-level indices. We found that the more a genus is

self-regulated, the more it tends to be vulnerable to other genera’s impacts and the less it impacts

other genera. We examined whether vulnerability and impact could be affected by phylogenetic

correlations; they were not, as on Fig. 3, points were not clustered according to genus, family or

phylum. High self-regulation usually indicates large niche differences with the rest of the community,

and it makes therefore sense that a species/genus whose needs strongly differ from the others only

marginally impacts the resources of the other coexisting species. This is what we expect under strong

niche partitioning. A low self-regulation was also correlated with high average abundance, which

echoes findings by Yenni et al. (2017) who demonstrated that rare species usually show stronger

self-regulation. This correlation between relative rarity and self-regulation could explain the lesser

impact of highly self-regulated species/genus: a taxon which dominates the community composition

can have a major effect on the others, especially as they usually cover more space, while it is harder

for the less common taxa to have large impacts. In contrast, it was more difficult to explain the

relationship between self-regulation and vulnerability: a genus that is more self-regulated and less

common was found here to be on average more vulnerable to other genera’s increases in densities.

Such relation implies greater stability (sensu resilience, Ives et al. 2003, and also invariability, Arnoldi

et al. 2019) for the network as a whole, because the taxa that are the more vulnerable to other

taxa’s impacts are also those whose dynamics are intrinsically more buffered. By which mechanisms
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this could happen is so far unclear. As a final note on relationships between interaction matrix

coefficients, we caution that the trends evidenced are all relatively weak: considerable stochasticity

still dominates the distribution of interaction matrix coefficients.

Ghosts of competition past and present

Overall, the dominance of niche differentiation in observational plankton studies – based on our

analysis of the REPHY dataset and re-analysis of the MAR(1) literature – is similar to what has

been recently found in plant community studies (Adler et al., 2018b) or empirically parameterized

food webs including horizontal diversity (Barabás et al., 2017). Large niche differences might be

due to the ghost of competition past, i.e., competition has occurred in the past, leading to strong

selection and subsequent evolution, and then to progressive niche separation. In this scenario,

species have evolved niches that allow them not to compete or to interact only weakly (very strong

facilitative effects might be likewise destabilizing, Coyte et al., 2015). The likely predator effects that

we highlighted above could be comprised within such niche differentiation sensu largo: specialized

predators can make strong conspecific density-dependence emerge (Bagchi et al., 2014; Comita et al.,

2014), while switching generalists can also promote diversity (Vallina et al., 2014). Both predators

and resources have often symmetrical effects and can therefore contribute almost equally to such

past niche differentiation (Chesson, 2018).

An intriguing new possibility, dubbed the “ghost of competition present” (Tuck et al., 2018),

suggests by contrast that spatial distributions in relation to abiotic factors might have a large

impact on the interaction strengths inferred from temporal interaction models such as ours. Recent

combinations of model fitting and removal experiments have shown that model fitting usually

underestimates the effect of competitors that are uncovered by removal experiments (Tuck et al.,

2018; Adler et al., 2018a). This could occur for instance if species are spatially segregated (at a small

scale) because each species only exists within a domain where it is relatively competitive (Pacala’s

spatial segregation hypothesis, chapter 15 in Pacala & Levin 1997), while a focal species could

spread out if competitors were removed. This means that a species can be limited by competitors,

but act so as to minimize competition (a little like avoidance behaviour in animals) and maximize
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opportunities for positive interactions, which implies that competition is in effect hard to detect

when all species are present. This mechanism would require some spatial segregation between

phytoplankton species at the scale of interactions, i.e., at the microscale. At the moment, while it

is known that fine-scale hydrodynamics generate inhomogeneities at the microscale (Barton et al.,

2014; Breier et al., 2018) it is yet quite unclear how they might affect multivariate spatial patterns

of species distributions (sensu Bolker & Pacala 1999 or Murrell & Law 2003). Moreover, even with

some microscale spatial segregation between species, a “ghost of competition present” mechanism

might not work in phytoplankton as in terrestrial plants, because the turbulent, ever-changing

aquatic environment imposes additional constraints on the spatial distribution of organisms.
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Vincent, D., Sautour, B. & Montanié, H. (2010). Pelagic food web patterns: do they modulate

virus and nanoflagellate effects on picoplankton during the phytoplankton spring bloom? Effects

of viruses and nanoflagellates on picoplankton. Environmental Microbiology, pp. 2755–2772.

29

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



Pacala, S. & Levin, S. (1997). Spatial ecology: the role of space in population dynamics and

interspecific interactions. Princeton University Press, Princeton, NJ.
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Johnson, G., Marquis, E., Del Amo, Y., Dubois, S., Vincent, D., Dupuy, C., Jude, F., Hartmann,

30

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



H. & Sautour, B. (2012). Network analysis of the planktonic food web during the spring bloom in

a semi enclosed lagoon (Arcachon, SW France). Acta Oecologica, 40, 40–50.

Tuck, S., Porter, J., Rees, M. & Turnbull, L. (2018). Strong responses from weakly interacting

species. Ecology Letters, 21, 1845–1852.
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