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a b s t r a c t 

Data assimilation (DA) techniques are powerful means of dynamic natural system modeling that allow 

for the use of data as soon as it appears to improve model predictions and reduce prediction uncertainty 

by correcting state variables, model parameters, and boundary and initial conditions. The objectives of 

this review are to explore existing approaches and advances in DA applications for surface water qual- 

ity modeling and to identify future research prospects. We first reviewed the DA methods used in water 

quality modeling as reported in literature. We then addressed observations and suggestions regarding 

various factors of DA performance, such as the mismatch between both lateral and vertical spatial de- 

tail of measurements and modeling, subgrid heterogeneity, presence of temporally stable spatial patterns 

in water quality parameters and related biases, evaluation of uncertainty in data and modeling results, 

mismatch between scales and schedules of data from multiple sources, selection of parameters to be 

updated along with state variables, update frequency and forecast skill. The review concludes with the 

outlook section that outlines current challenges and opportunities related to growing role of novel data 

sources, scale mismatch between model discretization and observation, structural uncertainty of models 

and conversion of measured to simulated vales, experimentation with DA prior to applications, using DA 

performance or model selection, the role of sensitivity analysis, and the expanding use of DA in water 

quality management. 

Published by Elsevier Ltd. 
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. Introduction 

A water quality model is the mathematical representation of

ollutant fate and transport within a water body that may be

oupled with a mathematical representation of the movement of

ollutants from land movement of pollutants from land -based

ources to a water body ( Kebede 2009 ). The water quality mod-

ls include description of physical, chemical and biological mech-

nisms affecting fate and transport of pollutants. Surface water

uality models are critically important tools for managing our na-

ions’ surface waters as they help local communities and environ-

ental managers better understand how surface waters change

n response to pollution and how to protect them. Water quality

pecialists use models for many purposes such as assessing water

uality conditions and causes of impairment, predicting how sur-

ace waters will respond to changes in their watersheds and the
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nvironment (e.g., future growth, climate change), and forecasting

uantitative benefits of new surface water protection policies (EPA

018 ). Streeter and Phelps (1925) firstly introduced their model as

 solution of the first-order differential equation to simulate DO

ecline by the decomposition of organic matters and DO increased

y reaeration. Water quality modeling has since advanced from

onsidering a simple first-order decomposition of organic mat-

er to a complex multiple biochemically-mediated processes, from

oint-source models to both point and nonpoint sources as well as

rom 1-dimensional steady-state models to 3-dimensional dynamic

odels ( Wang et al., 2013 ). In this regard, the number of model

arameters considerably increased, thereby increasing the predic-

ion uncertainty. It was eventually realized that the optimal esti-

ates of the evolving water quality attributes should be obtained

y jointly considering the outputs of the model with the data from

ngoing observations. This can be achieved by using mathematical

echniques of data assimilation (DA) and their computational im-

lementations ( Asch et al., 2016 ; Fletcher 2017 ). 

https://doi.org/10.1016/j.watres.2020.116307
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2020.116307&domain=pdf
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The data assimilation (DA) is the methodology whereby obser-

vational data are combined with output from a numerical model

to produce an optimal estimate of the evolving state and/or pa-

rameters of the system ( O’Neill 2003 ). As new observations of a

water quality become available the DA may include updates of

state variables (e.g., dissolved oxygen concentration or phytoplank-

ton biomass), model parameters (e.g., decomposition or reaeration

rate), and boundary conditions (e.g., tributary input to the mod-

eled water body). The DA allows us to update modeling results

and/or achieve model improvements each time new observations

become available. The update is based on the consideration of

the uncertainties in data and in model predictions. The more cer-

tain measurement data are and the less certain modeling results

are, the closer the modeling results become to measurements af-

ter updates. The status of the pollution is simulated as the spatio-

temporal variation of the pollutant concentrations and water qual-

ity attributes that affect the fate of pollutants. These concentra-

tions and attributes are the state variables of the modeled aquatic

systems. Coefficients in the surface water quality models describe

the site-specific conditions; they are known as model parameters. 

The DA has drawn much attention in surface hydrology wherein

review works and monographs analyzed the DA potential to im-

prove the hydrologic model performance ( Montzka et al., 2012 ;

Moradkhani and Sorooshian 2009 ; Park and Xu 2013 ). Its ap-

plications to water quality modeling have slower developments

than its applications in hydrology ( Robinson and Lermusiaux 20 0 0 ;

Sun et al., 2016 ), partly because it was quite challenging to carry

out real-time and high-frequency monitoring of water quality at

multiple locations. Beginning from 2005, the total annual number

of peer-reviewed publications on water quality modeling steadily

increased by about a hundred (data from the Scopus database).

This growth occurred due to multiple reasons which includes the

development of remote sensing algorithms, in situ sensors, ad-

vances in the modeling of water bodies, progress in understand-

ing processes affecting water quality, regulatory actions, and de-

velopment of pre- and post-processing capabilities. Around the

same timeframe, the DA was applied for the first time to the

three-dimensional water quality model for a large natural water

body ( Vodacek et al., 2008 ). Since then, various DA methods were

utilized in modeling various types of natural water constituents,

with the most recent focus on harmful algae blooms ( Loos et al.,

2020 ). Various DA applications in the surface water models may

include updates of state variables (e.g., dissolved oxygen concentra-

tion or phytoplankton biomass), model parameters (e.g., dissolved

organic matter decomposition rate), and boundary conditions (e.g.,

the tributary input to the main stream). 

While the water quality modeling in general was extensively re-

viewed ( Cho et al., 2016 ; Ji 2017 ; Wellen et al., 2015 ), reviews of

DA in water quality modeling have not been published. There is

a need for a systematic state-of-the-art presentation of this fast-

developing field. The currently, published research allows one to

evaluate and compare existing approaches and advances in DA ap-

plications to the surface water quality modeling as well as identify

future research prospects. In this work, we first review the appli-

cation of each DA methods, then discuss the factors of DA perfor-

mance, and finally highlight research gaps and opportunities in DA

application in surface water quality modelling. 

2. Data assimilation applications in surface water quality 

models 

Table 1 summarizes the reported DA applications for the wa-

ter quality modeling. DA applications started with batch systems

simulated with ordinary differential equations, where flow was not

considered explicitly. Dissolved oxygen, biological oxygen demand,

and chlorophyll-a concentrations were the primary (i.e., response)
ariables of interest. As the interest to managing water quality in

arge water bodies increased, DA applications have been developed

or hydrodynamic models (e.g., EFDC – the environmental fluids

ynamics code, Delft3D-WAQ, ALGE, and 3DHED) and watershed

ater quality models (e.g., HSPF – hydrologic simulation system

ORTRAN (EPA, 2018 b) and Coupled P model). EFDC and HSPF are

ost often found in literature. These two models typify the model

lasses that have been of primary interest to water quality DA. The

FDC can simulate water flow and water quality constituent trans-

ort in geometrically and dynamically complex water bodies, such

s rivers, stratified estuaries, lakes, and coastal seas. The code is

apable of simulating salinity, temperature, sediment, contaminant,

nd eutrophication variables. On the other hand, the HSPF is a con-

inuous simulation, lumped parameter, watershed-scale model. Any

ime step (minimum of 1 min) can be used, although the typical

ime step used is 1 h. The subbasin is subdivided into hydrologi-

al response units, defined as relatively homogeneous areas based

n land use and hydrologic properties of both pervious and im-

ervious land, which HSPF can simulate separately. Most of the

ecently used models are scalable, and they have been applied to

imulate streamflow and water quality at different spatial scales –

rom ponds to large complex lakes. Most modeling work using DA

oncentrated on biotic components of aquatic ecosystems In the

ast decade, DA applications in water quality modeling focused on

imulations of eutrophication and harmful algal blooms. 

.1. Data assimilation methods in surface water quality research and 

anagement 

To-date, three major methods have been utilized to assimilate

ater quality data into the water quality models ( Table 1 ): (a) the

ariational data assimilation, (b) the extended Kalman Filter (EKF),

nd (c) Ensemble Kalman Filter (EnKF). The earliest application of

ata assimilation was published by Beck and Young (1976) . They

ere the first to introduce the EKF method to explain the rela-

ionship between DO and BOD. No applications of EKF have been

ublished after 2009. Historically, the variational data assimilation

as applied in environmental science before EKF and EnKF, but its

urface water quality applications only appeared in 2013. The EnKF

as become the most popular DA method suitable in incorporat-

ng multiple source observations. Currently, the particle filter (PF)

ethod was applied to assimilate DO concentration by Wang et al.,

2019) . 

.2. Variational data assimilation 

The variational data assimilation approach was first introduced

o minimize the discrepancy between model outputs and observa-

ions in meteorology and oceanography. The methods have been

ctively used to update the state variables from the late 1980s

 Lawless 2013 ). The objective of this approach is to find the val-

es of update variables ( x 0 ) which minimizes the weighted least

quares distance to the background (non-updated modeling result)

pdate variables x b plus the weighted least squares distance to the

easurement in the assimilation window, as shown in Fig 1 a. The

ost function to minimize is: 

 ( x 0 ) = 

1 

2 

( x 0 − x b ) 
T B 

−1 ( x 0 − x b ) + ( H x 0 − y ) 
T R 

−1 
i ( H x 0 − y ) (1)

Here, x 0 is the vector of update variables which is sought as the

esult of data assimilation, x b is the background values of update

ariables which is usually the modeling result for the update time,

 is the covariance matrix of the background error, R is the covari-

nce matrix of the observation error, H is the observation opera-

or which maps the vector of update variables into the observation

pace, and y is the observation. This data assimilation scheme is
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Table 1 

DA applications in water quality modeling. 

Authors Year 

Model, spatial 

dimension a DA method b 
Total number of 

model parameters 

Selected 

parameters for DA c State variables d 
Observation 

(satellite) e Aquatic system 

Beck and Young 1976 CSTR,0D EKF 5 2 or 4 DO, BOD I and L River 

Whitehead and 

Hornberger 

1984 NN, 0D EKF 9 3 (SA) Chl-a L River 

Cosby and 

Hornberger 

1984 NN, 0D EKF 5 2 DO Synthetic data - 

Cosby et al. 1984 NN, 0D EKF 6 4 DO I River 

Ennola et al. 1998 NN, 0D EKF 4 4 Rotifera biomass L Sewage 

treatment 

pond 

Pastres et al. 2003 NN, 0D EKF 13 3 DO I Lagoon 

Voutilainen et al. 2005 NN, 0D EKF - - TSS, Chl-a , CDOM R (synthetic) Lake 

El Serafy et al. 2007 Delft3D-WAQ, 

3D 

EnKF No information IC SPM R (MERIS) Coastal water 

Vodacek et al. 2008 ALGE, 3D EnKF - IC TSS R (MODIS) Lake 

Mao et al. 2009 NN, 0D EKF 30 2 Chl-a, DO I and L Coastal waters 

Margvelashvili 

et al. 

2010 SHOCK-EMS, 

3D 

EnKF Numerous 3 TSS Not clear Coastal waters 

Babbar-Sebens 

et al. 

2013 EFDC, 3D 3DVAR 6 IC Water Temperature R 

(Landsat-5TM) 

Reservoir 

Huang et al. 2013 NN, 2D EnKF - 1 Chl-a L Lake 

Kim et al. a 2014 EFDC EnKF Numerous BC Streamflow, Chl-a , 

Phosphate-ion 

L River 

Kim et al. b 2014 HSPF, 1D MLEF Numerous BC Streamflow, BOD, 

DO, Chl-a , NO3, 

phosphate-ion, water 

temperature 

L River basin 

Shao et al. 2016 NN, 1D EnKF No information BC Sucrose L River 

Javaheri et al. 2016 NN, 3D EnKF 6 IC Water Temperature R 

(Landsat-5TM) 

Reservoir 

Riazi et al. 2016 HSPF, 1D MLEF Numerous IC Chl-a L River Basin 

Huang and Gao 2017 Coupled P, 0D EnKF - 2 Phosphorus L Lake Basin 

Page et al. 2018 PROTECH, 0D EnKF - 12 Chl-a L Lake 

Javaheri et al. 2019 EFDC, 3D EnKF 6 IC Water Temperature R (Landsat 7) River 

Chen et al. 2019 3DHED, 3D EnKF 120 IC Cyanobacteria 

biomass 

R (MERIS) Lake 

Wang et al 2019 PROSE PF - 12 DO 

a NN – no name, 0D – batch system without spatial dimension, EFDC – Environmental Fluid Dynamics Code, HSPF – Hydrological Simulation Proram – Fortran, 3DHED 

- hydro-ecological dynamics model, PROTECH - Phytoplankton RespOnses To Environmental Change; 
b EKF – extended Kalman filter, EnKF- ensemble Kalman filter, 3DVAR – three dimensional variational data assimilation, MLEF - maximum likelihood ensemble filter, 
c SA – based on the Sensitivity Analysis ranking, IC – initial conditions, BC – boundary conditions, 
d DO – dissolved oxygen, BOD biological oxygen demand, Chl-a – chlorophyl l A, TSS – total suspended solids, CDOM – colored dissolved organic matter, SPM – suspended 

particulate matter, 
e I – in situ, L – laboratory, R remote sensing, MODIS - moderate resolution imaging spectroradiometer, MERIS - the medium resolution imaging spectrometer. 
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efined as the 3-dimensional variational data assimilation (3DVAR)

s introduced by Sasaki (1958) . It is illustrated in Fig 1 a. 

The 3DVAR data assimilation was only recently applied in wa-

er quality modeling, and was used for updating boundary or ini-

ial conditions. Shao et al. (2016) studied DA for a one-dimensional

onvective-dispersive transport model of the tracer in a river reach

ith four sampling stations. The authors demonstrated that the

erformance of a water quality model on the fate and transport

f contaminants can be improved by introducing the 3DVAR data

ssimilation which resulted in a decrease of almost three-times

he root-mean-squared error (RMSE). The DA in three-dimensional

patial setup was first applied by Babbar-Sebens et al. (2013) who

sed the 3DVAR approach for incorporating spatially continuous

emote sensing temperature observations from the multi-spectral

andsat-5 TM band and spatially discrete in situ observations to

hange initial conditions of the EFDC model applied at a eutrophic

agle Creek Reservoir in Central Indiana. The vector of initial con-

itions had 300 elements corresponding to different locations at

he reservoir water surface, and the genetic algorithm was used

or minimization of the cost function. 

Some features of the 3DVAR method require caution in its ap-

lications to water quality problems. It remains challenging to ap-

ly 3DVAR in updating both the state variable and the parameters

f the water quality models which consist of many different bio-
 x
hemical parameters. It has been shown that the 3DVAR data as-

imilation can be inherently unstable if the observation operator

s unbounded ( Marx and Potthast 2012 ). High computational cost

ay impose limitation of the variational assimilation applicability. 

If the observation operator is strongly nonlinear, the 4D varia-

ional algorithms ( Rabier and Liu 2003 ) that use more observation

ata within the observation window time, are more appropriate.

pplication of such algorithms require integration of the additional

djoint model equations. So far, no applications of these algorithms

o water quality modeling were attempted. 

.3. The extended Kalman Filter (EKF) 

The extended Kalman Filter (EKF), was obtained by modify-

ng the original Kalman filter method using empirical assumptions

 Beck and Young 1976 ; Young 1974 ). The original Kalman filter lin-

arizes the estimation of mean and covariance while the EKF is

he nonlinear version of Kalman filter. The EKF includes two steps,

orecast and analysis, that are carried out for each time interval

etween two updates. As illustrated in Fig. 1 b, the EKF creates the

ackground vector of update variables x 
f 
j 

at a time j from the pre-

ious time step x a 
j−1 

: 

 

f 
j 

= f 
(
x a j−1 

)
(2) 
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Fig. 1. Schematic diagrams for three different DA techniques; (A) 3DVAR, (B) EKF, and (C) EnKF (Modified from Reichle et al., 2002 ). 
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where f (.) is the nonlinear water quality model. It also quantifies

the uncertainty of the estimate (i.e., the system error, or model er-

ror covariance, P j ) from the previous time step. During the analysis

step, the EKF obtains the vector of update variables ( x a 
j 
) from x 

f 
j 

using the observation y j as follows: 

x a j = x f 
j 

+ K j 

[
y j − − Hx f 

j 

]
(3)

Here H is the observation operator which maps the vector of

update variables into the observation space, and K j is the Kalman

filter matrix defined as 

K j = P j H 

T 
j 

[
H j P 

b 
j H 

T 
j + R j 

]−1 
(4)

Here P j is the error covariance matrix for update variables at

time j, and R j is the covariance matrix of the measurement error. 

The EKF had been applied during the 1970s and 1980s with

simple water quality models to estimate the model parameters and

elucidate the performance of the models. In 1976, Beck and Young
nitiated the application of EKF to the interaction of dissolved oxy-

en and biochemical oxygen demand in a river. They compared the

erformance of three relevant models and their kinetic parame-

ers, including reaeration and decay rate. This study was the first

o demonstrate the ability of EKF to provide valuable insight on

odel structure identification. Also, it underscored the EKF lim-

tations in terms of statistically ineffective estimation of param-

ters. The usefulness of the EKF for evaluating model adequacy

as further investigated by Cosby and Hornberger (1984) who es-

imated DO-associated parameters in photosynthesis-light models

or aquatic systems. Five different models generated synthetic data,

he random error was applied to modeling results and to param-

ters. EKF application led to the absence of errors of Type I (i.e.,

ailing to identify the correct model) and errors of Type II (i.e., pre-

erring the incorrect model). 

The effect of the inherent variability of water quality attribute

chlorophyll-a, chl-a ) on the efficiency of EKF was investigated by

hitehead and Hornberger (1984) with data on algae populations
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n the river Thames. The EKF method was applied to estimate nine

lgae-related parameters resulting in either an incorrect estima-

ion or a collinearity among parameters. The generalized sensitiv-

ty analysis selected three of the most significant parameters (e.g.,

lgal growth rate, a power term on the self-shading factor, and

he optimal solar radiation) before applying the EKF for the pa-

ameter estimation. This approach effectively resolved the issues

nd was recommended to make reliable forecasts on algae behav-

or. Further research on the use of EKF to update parameters in a

O-chlorophyll model from the high frequency field measurements

as reported by Pastres et al. (2003) for the lagoon of Venice.

hese authors concluded that EKF has proved to be a useful tool

or the updating of the estimates of the parameters of a simple

O-chlorophyll model, which can be used for linking the high fre-

uency data to meteorological forcings, such as solar radiation and

ind, and to other low frequency measurements of water quality

arameters, such as the concentrations of chl-a and nutrients. In

articular, by applying EKF, they found that the DO dynamic was

ot very sensitive to the tidal effect in the lagoon. 

The reduced-order iterated EKF (ROIEKF), the dimension-

educed form of EKF proposed by Cane et al. (1996) , was first in-

roduced to include remote sensing observations in the simulation

f water quality in a Finnish Lake ( Voutilainen et al., 2007 ). The fil-

ering approach combined prior information of water quality from

n evolution model with TSS, Chl, and CDOM from remote sens-

ng instruments, attempting better estimation of water quality. In

he data processing, they simply assumed the Gaussian distribu-

ion of the system and the observation error of three water quality

arameters in the evolution model, but did not include the model

arameters as the source of uncertainty. The better performance of

he filtering approach than the conventional least-square method

as demonstrated in this work. 

The first EKF application with simultaneous state and pa-

ameter estimation in water quality modeling was reported by

nnola et al. (1998) for modeling the zooplankton population ( Fil-

nia longiseta ). The authors used bootstrap to resample the data

rom the original measurement dataset and made model runs with

he resampled data in an attempt to test the reliability of the

ethod. The EKF appeared to be effective in handling the mea-

urement errors by being relatively insensitive to the level of these

rrors in the study. However, the authors found two unexpected

imitations in applying the EKF to their problem: the time delay

n the response to the change of parameters and the overcorrec-

ion of parameters after a time delay. These two limitations, which

ere also observed by Argentesi et al. (1987) , were strongly depen-

ent on the errors. Ennola et al. (1998) recommended that in their

ase the method needed relatively good data. The noise of single

amples should be at most 25% to 40%, and the sampling interval

hould also be short enough for the changes in population dynam-

cs to be detected. Another example of EKF application with joint

pdate of state and model parameters is provided in the work of

ao et al. (2009) who used the advanced ecosystem model to ex-

lain the algal bloom events in a marine fish culture zone in Hong

ong. They found that the performance of EKF for chl-a was highly

nfluenced by sampling intervals and prediction lead times. Mea-

urement frequencies could be unequal for different water quality

ttributes; e. g., the more frequent DO data could compensate for

maller frequency of algal biomass measurements. 

Overall, the EKF has been successfully applied to update the

tate vector and the model parameters of various water quality-

elated models, with aquatic systems spanning the complexity

ange from relatively simple DO dynamics to zooplankton behavior

 Table 1 ). The primary advantages of the method are that it allows

he estimation of the temporal trajectory of model parameters and

llows one to directly see the influence of forcings on the model

utputs. The Gaussianity assumption for model and measurement
rrors can be unrealistic. The linearization in the EKF can intro-

uce uncontrollable errors when strong nonlinearities exist. In ad-

ition, if the initial estimate of the state is wrong, or if the process

s modeled incorrectly, the filter may quickly diverge, owing this

o its linearization. Another problem with the EKF is that the es-

imated covariance matrix tends to underestimate the true covari-

nce matrix and therefore risks become inconsistent in the statis-

ical sense without the addition of "stabilizing noise” ( Huang et al.,

008 ). Maintaining the covariance matrix of the model errors may

e computationally expensive in cases of many assimilation loca-

ions, and can be subject to errors related to the nonlinearity of

he model. 

.4. Ensemble Kalman filter (EnKF) 

The ensemble Kalman filter was introduced to alleviate concep-

ual and computational problems related to the determination of

he model error covariance matrix P in Eq. (4) . EnKF approximates

he model error covariance matrix with the sample covariance ma-

rix obtained from the ensemble of model runs ( Evensen 1994 ;

outekamer and Mitchell 1998 ). Fig. 1 c shows the schematics of

nKF operation; each ensemble includes a set of possible model

rajectories and their distribution serves as the source of informa-

ion to find the covariance matrix of update the state variable P

hat is used in the Kalman filter Eq. (4) . Fig. 2 illustrates the typ-

cal procedure of EnKF application with the water quality model

 Chen et al., 2019 ). Here, the model was initialized and then run

ith each ensemble member to estimate the covariance matrix

entioned above. This procedure is applied until the end of the

imulation period is reached. 

The EnKF is currently the most popular technique of data

ssimilation in water quality studies, especially when the data

ources are remote sensing platforms. In the first application of

nKF, MERIS sensor data on suspended particulate matter was as-

imilated in the sediment transport model Delft3D-WAQ ( El Serafy

t al., 2007 ). It was applied to assimilate the Landsat 7 TM sur-

ace water temperature data in the EFDC model ( Javaheri et al.,

016 ). MODIS imagery data on TSS was assimilated in the sediment

ransport module of the ALGE hydrodynamic model ( Vodacek et al.,

008 ). Assimilating data from multiple sources with EnKF was

ound beneficial. Page et al. (2018) used buoy and water quality ob-

ervations to assimilate them into the phytoplankton community

odel (PROTECH). Chen et al. (2019) assimilated multiple-source

ata (in situ and remote sensing measurements) into the three-

imensional hydro-ecological dynamics (3DHED) model targeting

he cyanobacterial blooms in Lake Taihu. Kim et al. (2014a) ex-

anded application of the EnKF to the assimilation of observations

f the multiple water quality parameters (PO 4 -P and chl-a) in the

FDC model coupled with the HSPF model. 

The number of ensemble members affects results of the EnKF

pplications. Too small ensembles can cause underestimation of

rror variances and overestimation of error cross-covariance for

he variable update, i.e. analysis of states, in the model. To

ddress these problems, various techniques are used to per-

orm the variance inflation, i.e. increase of variance of the up-

ate variables obtained from the ensemble members, and vari-

nce localization, i.e. reduction of the Kalman gain matrix in (4).

avaheri et al. (2016) applied covariance inflation and covariance

ocalization in EnKF to assimilate the multi-spectral Landsat-5 TM

and temperature data in 300 locations. Experimentation is re-

uired to choose parameters of the covariance adjustment proce-

ures. 

The large size of the covariance matrices may make results

f minimization of the cost function sensitive to noise. The max-

mum likelihood ensemble filter (MLEF) method addresses this

roblem by preconditioning, i.e. transformation that replaces the
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Fig. 2. Typical flowchart of the ensemble Kalman filter applications (adapted from Chen et al., 2019 ). 
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minimization of traditional cost function by the minimization pro-

cedure that is less sensitive to noise. Kim et al. (2014b) and

Riazi et al. (2016) used the MLEF to forecast multiple water quality

variables and flow using the HSPF and demonstrated that this DA

method can effectively deal with highly nonlinear hydrological and

biochemical observation equations. 

2.5. Particle filter (PF) 

The 3DVAR, EKF, and EnKF assume the Gaussianity of the er-

ror statistics for both a priori estimate i.e., background field x b and

observation. The Gaussianity assumption, however, is not necessar-

ily correct because it is not adequate for inherently nonnegative

variables in environmental fields. This assumption can be unre-

alistic for a highly nonlinear feature of water quality (e.g., non-

linear algal responses from various environments) in an aquatic

system. One way to address this problem is to use the parti-

cle filter (PF) method, which is based on the Sequential Monte

Carlo (SMC) simulations and is proposed as an alternative of the

Kalman filter-based method. The PF uses the full prior proba-

bility function (PDF) without any assumptions on the form of

prior PDF. The PF represents the posterior density function us-

ing several independent random samples. This method has been

broadly used in hydrological modeling studies for a long time

( Moradkhani et al., 2005 ; Weerts and El Serafy 2006 ), and discus-

sion in water quality modeling about its applicability has started

( Huang et al., 2013 ; Margvelashvili et al., 2010 ). Franssen and

Neuweiler (2015) noted that the future hybrid approaches of EnKF
nd PF method will be increasingly applied and further developed.

urrently, Wang et al. (2019) demonstrated that the PF method is

n effective method for assimilation of a 15-min DO observation

ata in the Seine River system. In addition, it was able to identify

he temporal variation of phytoplankton communities by estimat-

ng the optimal temperature for the growth of phytoplankton. 

. The timeline of DA applications in water quality modeling 

Fig. 3 presents the timeline of changes in water quality model

ypes and data assimilation methods. The milestones were the

hange in the dimensions of the flow model, introduction of the

xtended Kalman filter applications, start of using DA to support

perational decisions in water quality management, use of re-

ote sensing data, demonstration of the applicability of the 3DVAR

A method, introduction of the MLEF technique and beginning to

se DA in watershed scale modeling, current application of the

F method. Evolution of the DA-supported modeling followed the

vailability of new types of data and quantifying their uncertainty. 

. Influence of data and model uncertainty on DA process 

Water sampling, in situ measurements with sensors and remote

ensing data have been employed in projects that included water

uality data assimilation. Both analytical errors and environmen-

al variability contribute to the uncertainty in observations per se

nd to the uncertainty of the conversion of measurements to the

pdate variables. 
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Fig. 3. Development of DA applications in the water quality modeling. 
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The mismatch between spatial and temporal domains of

easurement and modeling presents the major difficulty

n data assimilation for water quality modeling. Babbar-

ebens et al. (2013) assimilated satellite and sensor temperature

ata in a water quality model and commented that since the

patial resolution is smaller for TM images than the model grid

ystem, the unit pixel for each data set would be mismatched in

patial scale. For example, when two data sets were overlapped

ith each other, there would be more than one pixel laid over the

ingle model grid cell. When the random locations were picked,

he corresponding value extracted from the TM images would not

ecessarily be the dominant pixel value located within its model

rid size. Similarly, when identifying the in situ measurement

ocations, the corresponding values would not necessarily be dom-

nant pixel values located within its model grid size. Also, there

re substantially inaccurate representations of remote sensing

bservations on water bodies which are smaller than the pixel size

f the satellite image. High uncertainty can also be encountered

t the edge of the physical boundaries of water bodies since each

ell in the observation includes the composite information from

and and water. 

The subgrid heterogeneity can complicate imagery data assimi-

ation ( Balsamo et al., 2018 ). An example of such heterogeneity is

hown in Fig. 4 with drone-based imagery data for phycocyanin

istribution in the Deachung reservoir, Korea ( Kwon et al., 2020 ).

omogeneity of scenes in boxes of 1 and 2 is reflected in sym-

etrical distributions and the average is expected to give a good

epresentation of the aggregated information for the whole grid

ell (pixel). The heterogeneous scene 3 has the distribution of the

ubgrid reflectance that is far from symmetrical, and no univocal

udgement can be made about the aggregation rule for further as-

imilation. 

The mismatch of model and measurement scale in the verti-

al direction presents another issue that needs to be researched

or assimilation of the remote sensing data in water quality mod-

ls. Vertical gradients in top 20-25 cm layer in fresh water sources

an be very high due to steep changes in water absorbance
ith depth (e. g., Maraccini et al. (2016) ). The layer depth re-

ected in remote sensing-based estimates of water quality pa-

ameters differs depending on the type of parameter and proper-

ies of the water body. Giardino et al. (2015) used airborne imag-

ng spectrometry and bio-optical algorithms to retrieve concentra-

ions of suspended particulate matter, chlorophyll-a and colored

issolved organic matter. They validated retrievals with data ac-

uired from the top 1 m layer in the study lake. On the other

and, Javaheri et al. (2019) found substantial biases in remotely

ensed observations of temperature in surface water with Land-

at 7, and removed these biases before the actual data assimilation

teps were conducted. El Serafy et al. (2007) emphasized the need

o account for the optical depth of the remote sensing products to

emove the discrepancies between the remote sensing observations

nd the model output. 

Temporal stability, i.e. presence of a persistent spatial pat-

ern in deviations from average, was observed for various

ater quality parameters. Examples for concentrations of the

ecal indicator organism ( Escherichia coli ) can be found in

achepsky et al. (2017) and Stocker et al. (2019) . This creates the

patially dependent bias that must be removed before the covari-

nce matrix of errors are built. If this bias is not removed, the

aïve computation of the covariance matrix for DA purposes will

esult in overly high values ( Feng et al., 2011 ). The bias needs to

e removed because all DA methods usually assume a zero-mean

hite noise error ( Javaheri et al. 2016 ). 

The bias correction may need to be applied to modeling re-

ults, too. The bias caused by structural deficiencies of the model

an result in physically meaningless update variable values of a

ater quality model after data assimilation update ( Eyre, 2016 ).

iazi et al. (2016) used the MLEF data assimilation algorithm with

he HSPF water quality model, and employed the statistical bias

orrection procedure to account for systematic errors so that the

A solution may be found within the dynamic range of the model.

he linear relationship between the truth and model prediction

as used for the correction. The determination of the slope and

he intercept of those equation was independent on the DA up-
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Fig. 4. Phycocyanin distribution retrieved from drone-borne hyperspectral image (Left panel, Kwon et al., 2020 ) and histograms of phycocyanin (PC) concentrations (Right 

panels) in three grid cells of a water quality model; 1) high concentration region, 2) low concentration region, and 3) heterogeneous region. 
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date, and DA was applied with and without bias correction to an-

alyze the effect of this correction. Both spatial bias and model bias

were removed in surface water temperature values in the work of

Javaheri et al. (2019) before the remote sensing data assimilation

update was applied. 

It is notoriously difficult to evaluate the uncertainty of mod-

eling results, if system uncertainty that arises from the struc-

tural errors in the model ( Lawless 2013 ). In an application of

the 3DVAR method, Shao et al. (2016) suggested the use of the

applied National Meteorological Center (NMC) method to esti-

mate the background error covariance, referring to the work of

Parrish and Derber (1992) . The method consists in approximation

of the background variances by the variance of simulation results

for consecutive update times. In EKF applications, Cosby and Horn-

berger (1984) assumed that the covariance matrix of system error

can be obtained from either the variance of the innovations or the

gain for a given R matrix. Pastres et al. (2003) estimated the con-

stant Q using a preliminary two-step analysis which utilized the

time series of the residuals and measurements. 

Reports on assimilating data from multiple sources appear to

be contradictory. Babbar-Sebens et al. (2013) assimilated temper-

ature data from satellite observations and from in situ measure-

ments, and found that improvements with respect to data from

one data source occurred in parallel with worsening results with

respect to another source. The authors explain it by spatial and

temporal mismatch between the two sources. On other hand,

Chen et al. (2019) assimilated in situ and satellite data relevant

to modeling of harmful algal blooms and found that multi-source

data was helpful in improving the model performance. 

The EnKF method is designed to obtain the uncertainty

of modeling results explicitly from the ensemble simulations.

The number of ensemble members can be limited due to

the heavy computational load of the 3-dimensional modeling.

Javaheri et al. (2019) proposed to create small ensembles by per-

turbing the inputs and model initial conditions via the Latin hy-

percube sampling method. In such case the covariance matrix of

modeling results can be inaccurate. Kim et al. (2014b) demon-

strated that the information about the usefulness of DA can

be obtained even with limited knowledge about the model re-

sult uncertainty. However, small ensembles in some cases have

caused divergence and spurious correlations ( Javaheri et al., 2016 ).

Kim et al. (2014b) indicated that the application of the maximum

likelihood ensemble filter includes the computation of the infor-

mation matrix that allows the ensemble size to be judged. Overall,

the effect of the ensemble size on the assimilation results must be
researched for the task in hands. a  
. Updating state variables and/or parameters and its influence 

n DA performance 

The subsequent studies with EKF have generated the state-

arameter vectors to simultaneously update the state variable and

he associated parameters; Whitehead and Hornberger (1984) and

osby and Hornberger (1984) explored the uncertainty of algae-

ssociated parameters to determine the state variable (i.e., DO con-

entrations); they choose three significant parameters selected by

he sensitivity analysis. Pastres et al. (2003) also applied a sensitiv-

ty analysis to select important parameters and included one state

ariable (DO) into the state-parameter vector. Mao et al. (2009) up-

ated eight water quality variables and two most important pa-

ameters, algal growth rate and settling velocity, which were iden-

ified by a sensitivity analysis. Huang et al. (2013) used the,

ydrodynamic-phytoplankton model that included a total of 15 pa-

ameters, with the most sensitive parameter being the maximum

rowth rate of phytoplankton. Considering the heavy computa-

ional burden due to the high spatial resolution (250 m × 250 m)

nd a relatively large ensemble size (100) of EnKF, only the most

ensitive parameter was updated in this EnKF application. How-

ver, updating the model parameters did not always produce the

mprovement of DA performance. Fig. 5 illustrates the absolute er-

or of chl-a generated from three different DA strategies, showing

hat updating the parameter does not improve the modeling result

nd the parameter uncertainty is relatively insignificant to other

ncertainties (e.g., model structure and forcing input). Huang and

ao (2017) divided the year of 2014 into 24 sub-periods and then

nvestigated the two sensitive parameters for each sub-period to be

ssimilated in the EnKF of the coupled phosphorus (P) model. They

ound much improved DA results with the parameter dynamic than

A results without the parameter dynamic. 

Some researchers reported results of updating water quality

ariables that have not been measured along with other variables

hat were measured. Kim et al. (2014a) simulated river hydrody-

amics and water quality. Although only chl-a data was involved

n the assimilation, phosphate was selected among other water

uality variables for update to evaluate the effect of chl-a assim-

lation on those variables. It turned out that the phosphate sim-

lation was not improved by the chl-a data, which was due to

eak correlation between the two variables in the model ensem-

le. Mao et al. (2009) applied data assimilation in modeling of al-

al bloom and observed that more frequent DO data can compen-

ate for less frequent algal biomass measurements. 

Estimating uncertainty of model parameters, as well as bound-

ry conditions, is much more difficult than that of state variables.
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Fig. 5. Absolute errors of the water quality model estimating chlorophyll-a ( chl-a )with EnKF application; UpPV3.5 updated both the initial chl-a and parameter updated twice 

a week. UpV3.5 and UpV7 updated only the initial chl-a at twice a week and once a week, respectively ( Huang et al., 2013 ). 
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uang et al. (2013) noted that such estimates are mostly deter-

ined empirically (e.g., with a certain percent of the initial value);

–35% of the initial value was generally used as the relative stan-

ard deviation of the observational error. Considering that phyto-

lankton varies significantly even in the short term in Lake Taihu,

he authors used 35% of the initial value as the standard devia-

ion of the observational error. The standard deviation of maxi-

um growth rate of phytoplankton was empirically set as 0.1 that

s large enough to account for its uncertainty. The noise added to

he forcing data was proportional to their magnitudes. The propor-

ionality factor was set to 0.1, that was assumed to be reasonable

o describe uncertainty from forcing data. 

. Influence of frequency of updates and forecast skill on DA 

rocess 

The DA performance is very sensitive to the update time in-

erval. Kim et al. (2014b) performed the sensitivity analysis to de-

ermine the optimal assimilation window and found 7 days to

e sufficient for the watershed scale modeling. In simulations of

he algal bloom dynamics, Mao et al. (2009) assimilated environ-

ental data from multiple sources which had different observa-

ions frequency; chlorophyll (1-day interval), DO (2 hour), hydro-

eteorological data (1 hour), and nutrient data (bi-weekly). The

KF performance was evaluated for lower frequency of chl-a (1-, 2-,
nd 3-day) and frequency of DO (6-, 12-, and 24-hour). In general,

onger update time interval resulted in lower accuracy of predic-

ion on chl-a . The authors observed that the DO update time inter-

al became very influential in model performance with the 3-day

hl-a update time interval. Shorter DO sampling time still showed

 high correlation, but longer DO sampling interval resulted in dra-

atic deterioration of the model performance. 

The update time interval has not necessarily been constant.

avaheri et al. (2019) assimilated multiple-sensor water tempera-

ure data in the EFDC model, and applied an adaptive EnKF to de-

ermine the optimal time to assimilate in situ measurement into

he model by introducing the threshold error. Whenever the error

f the model for in situ measurements is greater than the thresh-

ld value, new in situ measurements were assimilated into the

odel. 

The deterioration of forecast skills with the forecast time in-

rease was noted by several authors. Javaheri et al. (2019) re-

orted that error in the water temperature predicted by the up-

ated model reverted in less than two days to the same level

s that of an un-updated model. Page et al. (2018) determined

hat there was a general reduction in forecast skill with increas-

ng forecasting period but forecasts for up to four or five days

howed noticeably greater promise than those for longer peri-

ds. Mao et al. (2009) found that predictions with 1 to2 dsay

ead-time were highly correlated with the observations (r = 0.7–
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Fig. 6. Ground sampling distance and Flying height (m) for different camera/sensor type (adopted from Kislik et al., 2018 ). 
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0.9); the correlation stayed at a high level for a lead-time of

3 days (r = 0.6–0.7). Hydrodynamic modeling may affect the

suitability of update intervals for the water quality assessment.

Kim et al. (2014a) found that the influence of DA applied to the

EFDC simulating river water quality did not last for a long time in

the upper reaches of the river where the flow velocity is relatively

high. 

7. Outlook: challenges and opportunities 

Data assimilation is becoming a staple in water quality man-

agement ( Riazi et al., 2016 ; Romas et al., 2018 ). Table 1 shows that

DA is applied to different target variables of water quality control.

The availability of monitoring data defines the usability of the DA.

For example, the DA can be especially efficient in modeling of the

spread of waterborne pathogenic organisms because the extensive

monitoring data become available in case of outbreaks. Success-

ful applications of data assimilation in water quality modeling can

stimulate research directed towards further improvements. 

The number of possible data sources for data assimilation in

water quality modeling is steadily growing. Currently, unmanned

aerial vehicles (UAVs) with optical sensors became popular for

environmental monitoring due to their high spatial resolutions

( Kislik et al., 2018 ). The drone-borne hyperspectral imagery has

sub-meter spatial resolution ( Fig. 6 ) and optical resolutions on wa-

ter quality that satellite and airborne imagery cannot provide. The

UAV with optical sensors have been recently adopted for moni-

toring algal blooms in surface water bodies and demonstrated its

ability to quantify algal species using various indexes including

Normalized Difference Vegetation Index (NDVI), Green Leaf Index

(GLI), and Algal Bloom Detection Index (AI) ( Goldberg et al., 2016 ;

Honkavaara et al., 2013 ; Jang et al., 2016 ; Kim et al., 2016 ; Su and

Chou 2015 ; Xu et al., 2018 ). Images from UAVs promise to be ex-

cellent resources of data that can be assimilated into water quality

models. 

Data uncertainty topics are critical for the efficiency of the data

assimilation, and research is required. Not only spatial but also

temporal mismatch between observations and models may need

to be resolved. Availability of high frequency measurements may

result in time steps of model encompassing several measurement

time steps. It is not obvious what statistic of the measurement

dataset obtained during the model time step should be used in

comparisons of modeling results obtained during this time step.

Both temporal and spatial scales may be different for different

types of data when multiple data sources are used in DA. 
The data assimilation algorithms have many modifications that

ccount for the specifics of the problem at hand. Off-the-shelf ver-

ions will not necessarily work in a satisfactory manner. The con-

ersion of update variables to observations (reflected by the ob-

ervation operator H in Eqs. (1) and (4) ) may have an uncertainty

trongly dependent on the range of the update variable values as

ontrolled by the sensitivity of the sensor. The influence of miss-

ng data on data assimilation results is not known and needs to

e clarified. The structural uncertainty of the model can be caused

y its hydrology/hydrodynamics module, that limits the efficiency

f the data assimilation applied to chemical and biological param-

ters (i.e. Riazi et al. (2016) ). Another limitation may arise due

o the effect of the update frequency on the improvement of the

odel performance after DA. Preliminary experimentation with DA

efore application presents a worthy research topic. 

Most of DA applications were developed using the HSPF model

or watersheds and the EFDC for water bodies ( Table 1 ). Other

odels that are perfect candidates for DA applications are as fol-

ows: DRAINMOD ( Skaggs et al., 2012 ), ProSe ( Even et al., 1998 ;

lipo et al., 2004 ; Vilmin et al., 2015 ), AGNPS ( Young et al., 1989 ),

WAT+ ( SWAT+, 2020 ) in watershed water quality modeling and

YRESM ( Hamilton and Schladow 1997 ), PROTECH ( Reynolds et al.,

001 ) or HYPE ( Lindström et al., 2010 ) for modeling water bodies.

esides, as the frameworks supporting modularity in water quality

odeling are being developed ( Whelan et al., 2014 ), the opportu-

ities for DA applications will increase. The uncertainty in model

redictions are in part dependent on model structure, and it is

ossible that the efficiency of the DA may be one of the criteria

or the model selection. 

The sensitivity analysis is expected play an influential role in

ontrolling the DA efficiency if the joint state and parameter up-

ates are undertaken. Selecting parameters to update may lead to

ore robust DA results. We did not find published examples of ap-

lying the sensitivity analysis in conjunction with DA. There ap-

ears to be a need in research on combining the DA and the sen-

itivity analysis. 

. Conclusion 

The number of the papers on data assimilation in water qual-

ty modeling is relatively small. Each of these papers summarizes

 large project specifically focused on DA application. However,

he volume of the DA applications in the water quality arena can

e much larger. Most of modeling works that involve calibration

ith monitoring data provide material for the data assimilation
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tudies. Such studies can provide the valuable information about

he possible time-dependence of model parameters as well as

bout reliability of calibration results. 

The data assimilation in water quality modeling is steadily de-

eloping. Each of applications of data assimilation in water qual-

ty modeling has provided useful insights into the functioning of

omplex aquatic systems. Data assimilation is an efficient means

f model accuracy improvement. It also offers the opportunity of

racking parameter changes in the varying environment. The pos-

ibility to improve the knowledge about the system with each

ew observation enriches monitoring information and may help

o guide and correct the monitoring program. Explicit account-

ng for uncertainties in data and models will help to reach in-

ormed decisions on managing water quality. Lately, DA applica-

ions have begun to address regulatory and management needs

ith watershed-scale hydrological and 3D hydrodynamic models

cquiring improved water quality components. 

Data acquisition capabilities for the DA in water quality arena

re steadily improving, especially in applications to harmful algal

looms where new remote sensing and proximal sensing platforms

ffer a treasure trove on useful information. The multisource DA

as been tried. Research appears to be needed on unresolved is-

ues concerning compatibility in space and time between model

esolution, data resolution, and data from different sources. More

nsight must be gained on data uncertainty of key DA input. Also,

n understanding needs to be developed on how the absence of

onitoring influential compartments of aquatic systems, such as

ottom sediments and periphyton, affect the performance of DA

n water quality models. 
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