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Key Points 

 Reservoirs are the fourth largest anthropogenic methane source in the US state of Ohio. 

 Variables in national databases (reservoir size) predict methane emission rates nearly as well as 

variables measured on-site (nutrients). 

 The global warming potential of methane emissions from reservoirs exceeded that of carbon 

dioxide emissions.   
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Abstract 

Estimating carbon dioxide (CO2) and methane (CH4) emission rates from reservoirs is important for 

regional and national greenhouse gas inventories.  A lack of methodologically consistent data sets 

for many parts of the world, including agriculturally intensive areas of the US, poses a major 

challenge to the development of models for predicting emission rates.  In this study we used a 

systematic measurement approach to measure CO2 and CH4 diffusive and ebullitive emission rates 

from 32 reservoirs distributed across an agricultural to forested land-use gradient in the US.  We 

found that all reservoirs were a source of CH4 to the atmosphere, with ebullition being the dominant 

emission pathway in 75% of the systems.  Ebullition was a negligible emission pathway for CO2 and 

65% of sampled reservoirs were a net CO2 sink.  Boosted regression trees (BRT), a type of machine 

learning algorithm, identified reservoir morphology and watershed agricultural land-use as 

important predictors of emission rates.  We used the BRT to predict CH4 emission rates for reservoirs 

in the U.S. state of Ohio and estimate they are the fourth largest anthropogenic CH4 sources in the 

state.  Our work demonstrates that CH4 emission rates for reservoirs in our study region can be 

predicted from information in readily available national geodatabases.  Expanded sampling 

campaigns could generate the data needed to train models for upscaling in other U.S. regions or 

nationally. 

1 Introduction 
Lakes and reservoirs are sites of intense carbon processing in the landscape.  Carbon that enters 

lentic ecosystems through watershed runoff or internal primary production is subject to microbial 

transformations, often resulting in the production of the greenhouse gases (GHGs) carbon dioxide 

(CO2) and methane (CH4).  It is estimated that lentic waters emit between 110 – 810 Tg CO2-C y-1 

(Cole et al. 2007, Tranvik et al. 2009, DelSontro et al. 2018) and 69-112 Tg CH4-C y-1 (Bastviken et al. 

2011, DelSontro et al. 2018) to the atmosphere each year, equivalent to roughly 20% of global CO2 

fossil fuel emission.   
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Emissions from reservoirs are of particular interest due to the complex tradeoffs between the 

societal services provided by reservoirs (i.e. hydropower, shipping, drinking water) and their 

environmental impact.  Reservoirs have been recognized as sources of CO2 and CH4 since the early 

90s (Rudd et al. 1993) and the World Bank, UNESCO, and International Hydropower Association 

encourage assessments of potential GHG emissions when planning dam infrastructure projects 

(International Hydropower Association 2010, Liden 2013, Prairie et al. 2017b).  Furthermore, under 

the Intergovernmental Panel on Climate Change’s (IPCC) GHG reporting framework, emissions from 

reservoirs are considered ‘anthropogenic’ and can be included in a nation’s GHG inventory reported 

to the IPCC under the United Nations Framework Convention on Climate Change treaty, whereas 

emissions from lakes are considered ‘natural’ and therefore cannot be included in the GHG 

inventory.  While the distinction between ‘natural’ and ‘anthropogenic’ emissions is an 

oversimplification, it has led to increased interest in quantifying GHG emissions from reservoirs.   

The recently adopted IPCC methodology (Lovelock et al. 2019) for estimating reservoir CO2 and CH4 

emissions provides average emission rates (a.k.a. emission factors) for six major climate zones, but 

countries may choose to develop country specific emission factors or models, particularly where 

reservoirs constitute an important proportion of anthropogenic CH4 and/or CO2 emissions.  Although 

earlier studies suggested that tropical reservoirs had higher CH4 emission rates than temperate 

systems (Barros et al. 2011), a more recent data synthesis found little evidence for differences in 

emission rates among climate zones (Deemer et al. 2016), due partly to recent reports of high 

emission rates from eutrophic reservoirs in the United States and Switzerland (DelSontro et al. 2010, 

Beaulieu et al. 2014, Beaulieu et al. 2016, Beaulieu et al. 2018).  Beaulieu et al. (2014) estimated that 

CH4 emissions from reservoirs draining watersheds managed for corn and soybean production in the 

United States may emit 2.2 Tg CH4-C y-1, equivalent to 10% of the nation’s annual anthropogenic CH4 

emissions.  This estimate was derived by extrapolating measurements made at one agricultural 

reservoir to all US agricultural reservoirs and is therefore highly uncertain, but suggests that 

reservoirs may be an important component of the US anthropogenic CH4 inventory. 
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Most attempts to upscale GHG emission rates from individual waterbodies to regional or global 

estimates simply multiply an average emission rate by the total waterbody surface area in the region 

of interest (St. Louis et al. 2000, Cole et al. 2007, Tranvik et al. 2009, Barros et al. 2011, Bastviken et 

al. 2011).  This upscaling approach can be highly biased, however, unless the emission rate 

measurements come from a representative sample of lakes or reservoirs in the region of interest, 

which is unlikely.  Most investigators choose sites based on convenience, the presence of research 

infrastructure, or other unique features.  This set of criteria is unlikely to generate a collection of 

published emission rates that are representative of the population of lakes or reservoirs in the 

region.  An alternative upscaling approach is to use published emission rate data to parameterize a 

statistical model relating emission rates to important drivers.  Assuming the statistical relationships 

derived from the sample are applicable to the population, the model can be used to predict emission 

rates based on information about the population of lakes and reservoirs.  In this approach, the 

sample data should come from waterbodies that cover a sufficiently large range of values for the 

explanatory variables, but do not need to be a representative sample of the population of interest.  

For example, Del Sontro et al. (2018) built statistical models relating CH4, CO2, and N2O emission 

rates to measures of productivity (e.g. chlorophyll a, total phosphorus) and lake size.  These models 

were then used to predict emission rates across the globe based on satellite derived measures of 

chlorophyll a and published lake size distributions.   

 

Predicting emission rates from models is only possible if information about the model drivers is 

known at unsampled locations.  Historically, this has been a major impediment to upscaling, but 

advances in remote sensing and geospatial modeling are beginning to address this.  For example, the 

LakeCat database (Hill et al. 2018) contains 136 metrics describing watershed conditions (e.g. size, 

land use) for 378,088 waterbodies in the conterminous US and the LakeMorpho database (Hollister 

et al. 2011, Hollister and Stachelek 2017) contains information on morphometry (e.g. surface area, 

mean depth) for 363,314 waterbodies in the conterminous US. 
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Another limitation to upscaling reservoir GHG emissions in the US is a relative lack of published 

measurements.  For example, total CH4 emission rates (diffusive + ebullitive) for US reservoirs are 

only available for one reservoir in Ohio (Beaulieu et al. 2014, Beaulieu et al. 2016, Beaulieu et al. 

2018), six reservoirs in the southeastern US (Bevelhimer et al. 2016), and six reservoirs in the pacific 

northwest (Harrison et al. 2017).  Furthermore, the spatial and temporal resolution of the 

measurements vary among studies, complicating direct comparison of published rates.  

The objectives of this work are to 1) identify important environmental drivers of CO2 and CH4 

emission rates from reservoirs in the midwestern US, 2) upscale the measured emission rates to all 

reservoirs in one state in the region, and 3) test the model predictions against published emission 

rate measurements from other parts of the country.  To achieve these objectives, we used a 

statistical survey design and consistent methodology to measure CH4 and CO2 emission rates from 32 

reservoirs in Ohio, Kentucky, and Indiana.  Emission rates were modeled using driver data collected 

from lakeCat, lakeMorpho, and on-site measurements (e.g. chlorophyll a, total phosphorus).  We 

show that reservoir emission rates can be predicted from driver data contained in national 

databases and that there is little improvement in prediction accuracy when on-site measurements 

are included in the model.  When upscaled to the U.S. state of Ohio, we found that reservoirs are the 

fourth largest anthropogenic CH4 source.  We also demonstrate that the model performs poorly 

when used to predict emission rates outside of the study region, suggesting that controls on 

reservoir GHG emission rates may vary by region. 

2 Methods 

2.1 Site selection and survey design 
The survey was designed to include reservoirs that spanned a range of depth and watershed land-

use conditions, two factors which can have a strong effect on CH4 dynamics.  Candidate sample sites 

included the Ohio reservoirs in the National Inventory of Dams (NID) (United States Army Corps of 

Engineers 2013) and the 21 reservoirs in the US Army Corps of Engineers (USACE) Louisville District.  

Reservoirs determined to be industrial waste ponds, offstream ponds, or part of a series of 
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reservoirs closely arrayed along a single river channel were omitted, leaving a total of 73 candidate 

reservoirs.  Watershed land use was characterized for each candidate reservoir using 2011 NLCD 

data (U.S. Geological Survey 2014) and maximum reservoir depth was determined from bathymetric 

maps.  Each reservoir was placed into one of sixteen groups representing the 16 unique 

combinations of four agricultural land use levels, based on the quartiles of the agricultural land-use 

distribution, and four maximum depth levels, also based on the quartiles of maximum depth 

distribution.  Two reservoirs were selected from each of the 16 groups, resulting in 32 reservoirs 

distributed across Ohio, Kentucky, and Indiana (Fig. 1).  This design resulted in a balanced 

compliment of shallow and deep reservoirs across the agriculture to forested land-use gradient in 

this three-state region.  Each reservoir was sampled during a single contiguous two-day period 

between June 1 and September 14, 2016, except for Acton Lake which was also sampled on three 

dates in 2017 (Table S1).  The sampling dates were chosen to reflect warm season conditions when 

waterbodies were stratified and CH4 production rates were high.   

A generalized random tessellation survey (GRTS) design (Olsen et al. 2012) was established for each 

of the 32 reservoirs using the spsurvey package (Kincaid and Olsen 2015) in R (R Development Core 

Team 2016).  The GRTS design included a minimum of 15 sampling sites per reservoir, with up to 27 

sites in the largest reservoir.  To increase the accuracy and precision of the reservoir-scale emission 

rate estimates, areas immediately below the largest tributary inputs, where emission rates are often 

high and spatially variable (Beaulieu et al. 2014, Beaulieu et al. 2016), were sampled at a higher 

density than open-water portions of the reservoir.  This stratification scheme was employed in 27 

reservoirs with distinct ‘tributary’ and ‘open-water’ areas.  Point estimates were scaled to 

population level estimates of mean and variance using an approach based on the Horvitz–Thompson 

theorem as described in Stevens and Olsen (2003) and implemented in spsurvey.  Population level 

estimates from the four Acton Lake surveys  were aggregated into a single estimate of mean and 

variance for the reservoir.  Differences in emission rates among strata (open-water, tributary) within 
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individual waterbodies were assessed by comparing the 95% confidence interval of the estimate for 

each stratum. 

2.2 Measurements 
Ebullitive and diffusive CO2 and CH4 emission rates were measured at all sites.  Water temperature, 

dissolved oxygen (DO), specific conductivity, pH, and chlorophyll a (chl a) were measured at a depth 

of 0.2 m below the water surface at all sites and 0.5 m above the sediment-water interface at the 

shallowest site.  These parameters were also measured at 1 m depth intervals throughout the water 

column at the deepest site in each reservoir.  Water samples were collected from 0.2 m depth for 

total nitrogen (TN), total phosphorus (TP), dissolved CH4, and dissolved CO2 at the deepest and 

shallowest sites.  Barometric pressure was measured at the deepest and shallowest sites in each 

reservoir.   

One reservoir from the survey, Acton Lake, was selected for additional measurements.  An inverted 

funnel (described below) was deployed at a shallow (1.5m) and deep (12m) site at Acton Lake from 

May 15 – December 10 in 2016 and 2017.  Gas was collected from the traps every two weeks and 

analyzed for CH4 and N2 content. 

2.3 Emission rates 
Short term floating chamber deployments were used to measure diffusive CO2 and CH4 emission 

rates (CO2-D and CH4-D, respectively).  The dimensions of the aluminum chamber were identical to 

those of the CSIRO chamber presented in Zhao et al. (2015).  The chamber floated on foam filled PVC 

pontoons with the chamber walls approximately 2.5 cm below the water surface.  The headspace 

was mixed with a 0.658 m³/min fan and vented through 0.48 cm i.d. x 12 m tubing to equilibrate the 

internal headspace pressure with the atmosphere.  The tubing was sufficiently long to assure no gas 

exchange between the chamber headspace and atmosphere.  The chamber headspace was 

interfaced to a DC operated gas analyzer (Ultra Portable Greenhouse Gas analyzer, Los Gatos 

Research, San Jose, CA, US) via 0.32 cm i.d. tubing.  The analyzer continuously recirculated the 

chamber headspace during each 5 minute deployment and recorded H2O, CH4, and CO2 partial 
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pressure every 5 seconds.  A 10-point calibration curve was established at the beginning of the field 

season, verified at the end of the field season, and a one-point calibration check was performed in 

the field prior to each deployment.   

Diffusive emission rates were calculated as 

CH4-D or CO2-D = (∆c/∆t)(V/A)(P/RT) 

where ∆c/∆t is the rate of change (ppmv h-1) of CH4 or CO2 in the chamber headspace, V is the 

chamber volume (L), A is the area of the water surface enclosed by the chamber (m2), P is the 

pressure (atm) inside the chamber (assumed to be equal to atmospheric pressure), R is the universal 

gas constant, and T is the air temperature (K).  Diffusive emission rates were converted from mol m-2 

d-1 to mg m-2 d-1 using the molecular weight of CO2 or CH4. 

The CO2 and CH4 rate of change in the chamber headspace was quantified using a linear and non-

linear model.  The linear model assumes a constant emission rate during the deployment, whereas 

the non-linear model assumes a decreasing emission rate as the concentration gradient between the 

dissolved gas and the chamber headspace diminishes during the deployment (Stolk et al. 2009).  The 

non-linear model is of the form 

ct = cmax – [(cmax – c0)exp(-Kt)] 

where cmax (ppm) is the maximum concentration that can be reached in the chamber, c0 (ppm) is the 

initial concentration, t is time, and K (min-1) is a rate constant (Demello and Hines 1994, Stolk et al. 

2009).  The model was fit to the data using nonlinear least squares in the minpack.lm package 

(Elzhov et al. 2016) and the rate of change of CO2 and CH4 in the chamber headspace at t = 0 is 

calculated as 

 ∆c/∆t = K(cmax – c0) 

The acceptance criteria for model fits was a coefficient of determination (r2) of > 0.9 and the model 

best supported by the data was chosen using Akaike information criterion (AIC). 

Ebullitive emission rates (CO2-E or CH4-E; mg m-2 h-1) were measured using 0.56 m diameter inverted 

funnels suspended 0.8 m below an anchored buoy and topped with a gas collection reservoir 
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equipped with a ball valve and male luer lock fitting.  Funnels were deployed between 10:00 and 

21:00 (median deployment time = 14:44) and retrieved between 07:30 and 17:00 (median retrieval 

time = 10:28), for a median deployment duration of 19.4 hours (min = 14.5, max = 28.5 hours).  Upon 

retrieval, the total volume of gas in the collection reservoir was measured using graduated 

polypropylene syringes and up to three 20 mL samples were transferred to pre-evacuated (<50 

mTorr) 12 mL glass vials (Exetainers, LabCo, Wales, U.K.) equipped with a PTFE silicone septa stacked 

on top of a chlorobutyl rubber septa and analyzed for CH4, CO2, and N2 partial pressure.   

Ebullitive emission rates were calculated by multiplying the volumetric ebullition rate (mL m-2 h-1) by 

the molar volume at the lake temperature (mol L-1) and the fraction of CH4 or CO2 in the bubble gas.  

Finally, the molar ebullitive flux rate (mole m-2 h-1) was converted to a mass flux (mg C m-2 h-1).  Total 

emission rates (CO2-T or CH4-T) were calculated as the sum of diffusion and ebullition. 

To determine the net GHG footprint of the reservoirs, CH4 emission rates were converted to CO2-

equivalents (CO2-eq) using a 100-year time horizon Global Warming Potential (GWP) of 34 (Stocker 

et al. 2013).  Due to their different lifetimes in the atmosphere, the warming potential of CH4 relative 

to CO2 depends on the timescale of interest and the IPCC provides different GWP values for 20, 100, 

and 500-year time horizons.  Over time the C dynamics of flooded ecosystems tend to shift (Prairie 

et al. 2017a), calling into question the use of GWP for short-term studies (Frolking et al. 2006). We 

chose to use the 100-year time horizon for several reasons: 1) life-cycle analysis studies often 

assume a reservoir lifetime of 100 years (e.g., Gagnon et al. 2002, Prairie et al. 2017b), 2) to be 

consistent with the method used in the USEPA’s National Inventory of Greenhouse Gas Sources and 

Sinks (US Environmental Protection Agency 2019b), and 3) to be consistent with many other 

published studies (e.g., Deemer et al. 2016, DelSontro et al. 2018).  

2.4 Environmental variables 
Duplicate dissolved gas samples were collected by pulling 115 mL of water into a 140 mL 

polypropylene syringe containing 25 mL of air and fitted with a 2-way stopcock.  The stopcock was 

closed underwater, then the syringe was gently shaken for 5 minutes to equilibrate the gas and 
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water phases.  Five mL of equilibrated headspace gas was used to flush the stopcock and attached 

27 gage needle, and the remaining 20 mL transferred to a pre-evacuated (<50 mTorr) 12 mL glass 

vial (Exetainers, LabCo, Wales, U.K.).  Triplicate 20 mL air samples were collected in 30 mL 

polypropylene syringes from 2.5 m above the water surface and transferred to pre-evacuated 12 mL 

glass vials.  The dissolved CO2 and CH4 concentration in the original water sample was calculated 

from the Bunsen solubility coefficient at the temperature of the headspace equilibration, an 

assumed CO2 and CH4 partial pressure in the air (used as the headspace gas) of 405 and 1.85 ppm, 

respectively, and a mass-balance for the headspace equilibration system.  Full documentation of the 

calculations is available at the National Ecological Observatory Network’s GitHub repository 

(https://github.com/NEONScience/NEON-dissolved-gas). 

Water temperature, DO, and chl a were measured using a YSI 6600 multiparameter sonde (Yellow 

Springs, Ohio, US) with an optical DO sensor and barometric pressure was measured using a YSI MDS 

650.  The data sonde was calibrated prior to each field day and the calibration was verified at the 

end of the day.  Water samples for TP, TN, and TOC analysis were collected in new HDPE bottles 

triple rinsed with site water and stored on ice.  Samples were stored at 5 oC and analyzed within 24 

hours or frozen and analyzed within 28 days. 

2.5 Analytical 
Methane, CO2, and N2 were measured on a Bruker 450 gas chromatograph equipped with a flame 

ionization detector, methanizer, and thermal conductivity detector.  Air, dissolved gas, and ebullition 

samples were analyzed in separate runs using a minimum of one 5-point standard curve bracketing 

the expected concentrations for each analyte.  Standard curves were created using certified or 

primary standards, had a minimum r2 of 0.990, and standard checks were analyzed throughout 

analytical runs. 

Automated colorimetry (Lachat Instruments QuickChem 8000 Flow Injection Autoanalyzer, Loveland, 

CO, USA) was used to measure TP following acid persulfate digestion (Bogren 2001) and TN following 

alkaline persulfate digestion (Smith and Bogren 2003).  TOC was measured using high temperature 

https://github.com/NEONScience/NEON-dissolved-gas
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oxidation and NDIR detection (Shimadzu TOC-L/ASI-L).  Quality control measures included standard 

curves, standard checks, laboratory blanks, and matrix spikes. 

2.6 Data analysis 

2.6.1 Covariates 
Potential predictor variables for modeling CO2 and CH4 emission rates include reservoir 

characteristics measured during the field campaign and those available in NHDPlusV2, lakeCat, and 

lakeMorpho, a group of related geo-spatial hydrologic data sets for the US (Hollister and Stachelek 

2017, Hill et al. 2018, McKay et al. 2018).   

Variables measured during the sampling campaign, hereafter ‘local’ variables, include measures of 

water chemistry (TN, TP, TOC, chl a, dissolved CO2, dissolved CH4) and relative volumes of the 

hypoxic layer (oxygen saturation < 5%) and hypolimnion.  We defined the hypolimnion as the water 

layer below the plane with the greatest temperature gradient.  Lakes where the temperature 

gradient did not exceed 1 C m-1 were considered unstratified.   

NHDPlusV2, lakeCat, and lakeMorpho covariates, hereafter ‘national’ variables, include reservoir 

area, perimeter, max depth, mean depth, proportion littoral, climate data, and 128 variables 

describing watershed characteristics (i.e., land-use, size, soil properties).  We recalculated the 

estimates of basin shape (i.e. depth) in NHDPlusV2, which were modeled based on the surrounding 

terrain (Hollister et al. 2011), using digitized bathymetric maps.  We used the morphology 

descriptors included in the ‘national’ variables to calculate additional morphology descriptors.  

Shoreline development factor (D; Kalff 2002) was calculated as  

𝐷 =  
𝐿

2(𝐴𝜋)0.5
 

where L is perimeter and A is area.  Reservoir circularity (C), lake area relative to that of a perfect 

circle with circumference equal to L, was calculated as 

C = 4πAL-2 

Dynamic ratio (DR; Hakanson 1982), an index related to the fraction of the lake bottom subject to 

erosion/resuspension from wind induced mixing, was calculated as 
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𝐷𝑅 =  
𝐴0.5

𝑧̅
 

where 𝑧̅ is mean depth calculated as the ratio of reservoir volume and surface area.  The 

lakeMorpho dataset includes estimates of reservoir volume, but we recalculated volume using 

ArcGIS (ESRI, Redlands, CA, US) and the digitized bathymetry.  Depth ratio was calculated as the ratio 

of mean to maximum depth (Kalff 2002) and the proportion of the lake < 3m deep, an index for 

littoral zone extent, was calculated using ArcGIS and the digitized bathymetry. 

The list of potential predictor variables was reduced to those for which we hypothesized a 

relationship with CH4 and/or CO2 emissions.  Correlation among predictor variables does not affect 

BRT prediction performance, but can confound model interpretation (Freeman et al. 2016, Fox et al. 

2017).  We therefore omitted one variable from any pair with a Pearson correlation coefficient > 0.9.  

Variable pairs that were more weakly correlated, but were likely to complicate model interpretation, 

were scrutinized, and in some cases, one variable in the correlated pair was dropped.  For example, 

previous studies have shown that CH4-D is negatively related to lake size (Rasilo et al. 2015) and 

positively related to shoreline development factor (Bevelhimer et al. 2016); however, these two 

variables were inversely correlated in our data set (R = 0.11), as has been reported in other studies 

(Winslow et al. 2014).  This correlation could confound model interpretation; therefore shoreline 

development factor was omitted.  The final list of predictor variables in the model consisted of 8 

local and 12 national variables (Table 1). 

2.6.2 Boosted regression trees 
We modeled reservoir GHG emission rates using boosted regression tree (BRT) models, a type of 

machine learning (ML) algorithm.  Given a sufficiently large training data set, ML algorithms have 

been shown to have better prediction accuracy than general linear models (glms) (Elith et al. 2008) 

and are increasingly used to model GHG emission rates in wetlands, lakes, and reservoirs (Papale 

and Valentini 2003, Mosher et al. 2015, Chen et al. 2018) .   

Boosted regression trees consist of a collection of decision trees, where each tree is a statistical 

model that partitions the predictor space into regions that have the most homogenous values for a 
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response variable (Breiman et al. 1984, Elith et al. 2008).  Typical tree-based methods generate a 

single tree, whereas BRT generates many trees using modern boosting algorithms (Schapire 2003) 

and combines them for prediction.  This type of ensemble approach is based on the idea that 

individual trees often overfit the training data and result in noisy predictions.  Averaging across many 

trees reduces the variance of the model and improves prediction accuracy. 

We constructed separate BRT models for diffusive, ebullitive, and total CO2 and CH4 emission rates.  

Two types of models were constructed for each response variable; the first model type used only the 

‘national’ covariates while the second model type used both the ‘local’ and ‘national’ covariates.  

This allowed us to asses 1) how well emission rates can be modeled using variables available for all 

waterbodies in NHDPlusV2, and 2) how much prediction accuracy improves when ‘local’ information 

is included in the model. 

We constructed 50 BRT models for each response and covariate combination using the gbm package 

(Ridgeway 2017) in R.  To minimize overfitting, each model was trained using 90% of the 

observations collected during this field study and tested against the remaining 10%.  Cross-validation 

on the training data set was used to further minimize overfitting.  To generate a training data set 

that reflected the full range of patterns across the 32 observations, the data were classified into 5 

clusters, using K-means clustering, and the training data randomly selected from these 5 groups.  A 

different training data set was generated for each BRT.   

Each observation in the training data was weighted by the inverse of the variance of the reservoir-

scale emission rate estimate.  As described above (section 2.1), the variance was estimated from the 

GRTS survey design for each waterbody.  This approach gave greater weight to well-constrained 

observations and less weight to more uncertain observations. 

The optimal number of trees for each BRT was calculated as the number of trees beyond which 

model performance no longer improved.  Only BRTs with an optimal number of trees > 1000 were 

accepted (Elith et al. 2008).  Final BRT model performance was quantified as the mean square 

prediction error (MSE) calculated separately for the training data (“in-sample”, or isMSE) and the 
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10% of the observations excluded from the training data (“out of sample”, or osMSE).  The collection 

of 50 BRTs for each response and covariate combination were ranked according to isMSE and 

osMSE.  We defined the best model as the one with lowest sum of in and out of sample MSE rank,  

reflecting a balance between in and out of sample prediction error.  Giving equal weight to in-

sample and out-of-sample prediction error further minimized overfitting. 

Standardized root mean square error (SRMSE) was calculated for all final models 

osSRMSE=(osMSE0.5) (mean response-1) 

isSRMSE=(isMSE0.5) (mean response-1)     

where ‘mean response’ is the mean of the observed response variable in the training data.  SRMSE is 

a measure of relative error and is therefore useful for comparing model performance across 

different response variables.   

We use partial dependence plots, created with the pdp library (Greenwell 2017), to visualize 

relationships between response and predictor variables.  Partial dependence plots provide a 

visualization of the relationship between the response and one predictor variable while accounting 

for the average effect of the other predictors in the model.  The relative influence of predictor 

variables was calculated based on the number of times a variable is selected for splitting, weighted 

by the squared improvement to the model following each split, and scaled so that the sum of all 

variables adds to 100 (Elith et al. 2008).   

2.6.3 Upscaling 
We used the BRT to predict total CH4 emission rates for a subset of waterbodies contained in the 

waterbodies layer of the NHDPlusV2 database for the US state of Ohio.  The sample sites are 

distributed across the three main ecoregions in the state (Fig. 1), span a broad range of land-use 

conditions and reservoir morphometry, and are therefore representative of the environmental 

gradients most likely to affect emission rates.  We adopted a state boundary to define our region of 

interest, rather than a more ecologically meaningful boundary, to facilitate comparison with 

emission sources in the FLIGHT database (https://ghgdata.epa.gov/ghgp/main.do) and 

https://ghgdata.epa.gov/ghgp/main.do
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anthropogenic GHG inventory (US Environmental Protection Agency 2019b), both of which report 

emissions by state.   

Reservoirs were identified from NHDPlusV2 Ohio waterbodies with FTYPE values of “LakePond” or 

“Reservoir” and surface area > 8 Ha.  Smaller waterbodies (e.g. ponds) are given separate treatment 

in the IPCC methodology (Lovelock et al. 2019) and are not addressed here.  Because the FTYPE 

codes in NHDPlusV2 are not reliable discriminating reservoirs from natural lakes (Clow et al. 2015), 

we used the following additional criteria to identify reservoirs: 1) an FTYPE value of ‘reservoir’ in 

NHDPlusV2, 2) GNIS name contained ‘reservoir’, 3) previous National Lakes Assessments 

(https://www.epa.gov/national-aquatic-resource-surveys/nla) site visits classified the waterbody as 

‘man-made’, or 4) were located in close proximity to a dam in the National Inventory of Dams (NID) 

database (United States Army Corps of Engineers 2013).  Finally, the identified waterbodies were 

merged with the lakeCat and lakeMorpho databases to capture catchment and morphology 

descriptors.  

To upscale to an annual estimate, we assumed 1) our measured rates were representative of April – 

October conditions (7 months), and 2) emission rates declined to a low and constant rate of 1 mg 

CH4 m-2 h-1 from November through March (Beaulieu et al. 2014; 

https://ameriflux.lbl.gov/sites/siteinfo/US-Act, Beaulieu et al. 2018).  We calculated 95% confidence 

intervals for the upscaled emission estimate by repeating the calculations 1000 times where each 

calculation was based on a bootstrapped sample (with replacement) of the reservoirs in Ohio (Efron 

1979).  This non-parametric manner of estimating uncertainty is well-accepted in the statistical 

literature and allows the modeler to simulate replication by sub-sampling the data set a large 

number of times.   

3 Results 

3.1 Basic site description 
The survey design resulted in a collection of reservoirs spanning a broad range of morphological and 

chemical conditions.  Sampled reservoirs ranged from 1 – 32 km2 in surface area (median = 4.6 km2) 

https://www.epa.gov/national-aquatic-resource-surveys/nla
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with maximum depths ranging from 2.7 – 35 m (median = 11.0 m) (Table 1).  Watershed land use 

across the 32 reservoirs was predominantly cultivated lands in the western portion of the study area 

transitioning into forested lands in the east and south (Fig. 1).  This broad range of watershed 

condition was reflected in the water chemistry with TP, TN, and chla ranging from 7.9 – 773, 231 – 

3463, and 1.5 – 61.4 µg L-1 across the study sites, respectively, and exhibiting positive correlation 

with percent cultivated land in the watershed (R = 0.36, 0.78, and 0.50, respectively).  Twenty-four 

reservoirs were thermally stratified at the deepest sampling site and 22 reservoirs had hypoxic 

bottom waters. 

3.2 Emission rates 
Dissolved CH4 was supersaturated at all sites (Table 1, range 0.43 – 18.55 µmol L-1, median = 2.95 

µmol L-1), indicating that all reservoirs were a source of CH4 to the atmosphere.  This was reflected in 

CH4-D which ranged from 0.03 – 21.99 mg CH4 m-2 h-1 across the 491 individual measurements that 

met the modeling acceptance criteria (see Methods).  When aggregated to the reservoir-scale, CH4-D 

ranged from 0.11 – 4.95 mg CH4 m-2 h-1 (Fig. 2; median = 1.26 mg CH4 m-2 h-1).  Methane ebullition 

rates ranged from 0 to 155.4 mg CH4 m-2 h-1 (Fig. 2; median = 0.96 mg CH4 m-2 h-1) across 536 

individual measurements and averaged 5.0 mg CH4 m-2 h-1 at the reservoir scale (range: 0.1 – 22.8 

mg CH4 m-2 h-1).  Bubble CH4 content ranged from 0.01 – 86.3% CH4 (median = 57.4%, n = 336) and 

was inversely related to bubble N2 content (Fig. 3A).  Total CH4 emission rates (diffusive + ebullitive) 

ranged from 0.03 – 155.4 mg CH4 m-2 h-1 across all point measurements and averaged 1.47 mg CH4 

m-2 h-1 when aggregated to the whole-reservoir scale (Fig. 2; range: 0.51 – 24.57 mg CH4 m-2 h-1).  

Total CH4 emission rates ranged from 5.1 – 12.3 mg CH4 m-2 h-1 across the four surveys at Acton Lake 

(Table 2) with an overall mean (+/- 95% CI) of 9.2 +/- 3.0.  The total CH4 emission rate was greater in 

the tributary than open-water strata in 21 of the 27 reservoirs where a stratified survey design was 

used, although the difference was statistically significant in only 8.  On average, ebullition composed 

65% of total CH4 emissions (range: 11 – 99%) with diffusive emissions accounting for the balance. 
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Dissolved CO2 ranged from 26.0 – 244.9 µmol L-1 (Table 1, median = 113.5 µmol L-1), equivalent to 28 

– 278 % of the saturation value.  Reservoir scale CO2-D ranged from -92.8 – 193.1 mg CO2 m-2 h-1 

(median = -41.0 mg CO2 m-2 h-1).  Trapped bubbles contained minor amounts of CO2 (range: 0.02 – 

8.8%, median = 0.19%) and CO2 ebullition constituted only 0.63% of total CO2 emissions, on average.  

Reservoir-scale CO2-T ranged from -93 - 193 mg CO2 m-2 h-1 (Fig. 2, median = -40 mg CO2 m-2 h-1) and 

21 reservoirs exhibited net CO2 uptake during the measurement campaign (Fig. 2D).   

Although all 32 reservoirs were CH4 sources during the survey, the GWP of these emissions was 

completely offset by CO2 uptake in 11 reservoirs, yielding a net negative GWP for combined CH4/CO2 

emissions using the 100-year time horizon (Fig. 2E).  The remaining 21 reservoirs yielded a positive 

net GWP of CO2/CH4 emissions, despite 10 of them functioning as CO2 sinks.  If the 20-year GWP was 

used to compare CH4 to CO2, all reservoirs would have had larger and more positive combined GWP. 

3.3 Boosted regression trees 
Boosted regression trees for diffusive, ebullitive, and total CH4 emission rates fit the data well with 

isSRMSE values ranging from 0.11 – 0.40 and R2 values for predicted vs observed (in-sample) ranging 

from 0.87 – 0.99 (Table 3, Fig. S1).  Model predictions were less accurate at high emission rates, 

likely because these observations had larger confidence intervals (Fig. 2) and were therefore given 

less weight in the model.  As expected, model performance was somewhat greater when assessed 

against the training data than testing data.  On average, osSRMSE values for the CH4 models were 

78% greater than isSRMSE values.  Model performance was best for the total CH4 emission rate, 

followed by ebullitive and diffusive emission rates.  Combining local covariates (i.e. nutrient 

chemistry) with national covariates (i.e. watershed land use) improved CH4 model performance 

when assessed against the training data, but not when assessed against the testing data. 

Indicators of watershed agricultural land use were important predictors in all CH4 models and 

descriptors of reservoir morphology were important predictors in most CH4 models (Table 3, Fig. 4).  

Reservoir area predicted diffusive CH4 emissions and max depth predicted ebullitive and total CH4 

emissions.  The BRT that included local covariates for CH4-D identified TOC, dissolved CH4, and TP as 
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important predictors.  Proportion hypolimnetic and dissolved CO2 were important local predictors 

for CH4-E and CH4-T. 

Prediction accuracy of the CO2-T BRT was worse than that of the CH4 models (Table 2).  The CO2-T 

model informed by only national covariates identified littoral extent and agricultural on steep slopes 

as important predictors.  The addition of local covariates, particularly dissolved CO2, improved model 

performance.   

3.4 Upscaling 
We identified 280 reservoirs in Ohio greater than 8 Ha.  These reservoirs have a cumulative surface 

area of 479 km2 and emit 21.3 (13.3 – 30.8) Gg of CH4 per year. 

4 Discussion 

4.1 CH4 emission rates 
CH4-T estimates for the individual reservoirs included in this study are reasonably well constrained 

and compare well to the literature.  Total CH4 emission rates measured in our diverse collection of 

32 reservoirs spanned an order of magnitude (0.51 – 24.57 mg CH4 m-2 h-1), with higher rates 

occurring predominantly in the agricultural plains in the northwestern portion of the study region 

and lower rates in the Appalachian foothills of the eastern and southern portions of the study region 

(Fig 2).  These emission rates are within the range reported for reservoirs worldwide (Deemer et al. 

2016) and are comparable to values reported for other reservoirs in this region.  In an investigation 

of six large, forested reservoirs in the southeastern US, Bevelhimer et al. (2016) reported reservoir-

scale CH4-T ranging from 0.04 – 1.07 mg CH4 m-2 h-1, similar to our values for forested reservoirs in 

the eastern and southern portions or our study (i.e. PDT, CFK).  Beaulieu et al. (2018) monitored CH4-

T at William H. Harsha Lake, an agricultural reservoir in southwestern Ohio that was also included in 

this study (EFR), and reported an average CH4-T of 34.3 mg CH4 m-2 h-1 between April and December 

2015, which is similar to the highest rate observed during this study (mean +/- 95% CI: 24.6 +/- 7.59 

mg CH4 m-2 h-1), but higher than the current Harsha Lake measurement (mean +/ 95% CI: 10.1 +/- 5.2 

mg CH4 m-2 h-1), likely due to daily/seasonal  variation in emission rates (section 4.2) and/or 
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differences in measurement methods between sampling campaigns (Beaulieu et al. 2018).  Although 

there are few published studies of CH4 emission rates from reservoirs in this region of the US, the 

available data suggest a pattern of increasing emission rates across an agricultural to forested land-

use gradient. 

Because CH4 is a relatively insoluble gas, it is often emitted in the form of bubbles that are released 

from the sediment and rise through the water column.  Ebullition was an important emission 

mechanism in this study, comprising >50% of total CH4 emissions in 75% of the 32 sampled 

reservoirs (Fig. 2).  This compares well to reports that ebullition contributes 65% of total CH4 

emissions from individual reservoirs (Deemer et al. 2016) and between 40-60% of total emissions 

from individual natural lakes (Bastviken et al. 2004). Comparison of CH4-E among lakes and studies 

can be complicated, however, by differences in bubble composition.  The CH4 content of bubbles 

collected in this study ranged from 0.01 – 86.3% CH4 (median = 57.4%), similar to the range 

previously reported for lakes (Walter et al. 2008) and reservoirs (Harrison et al. 2017, Koschorreck et 

al. 2017, Beaulieu et al. 2018).  Bubble CH4 content was inversely related to N2 content (Fig. 3A), a 

pattern which has also been observed in lakes and wetlands (Chanton et al. 1989, Nakagawa et al. 

2002, Walter et al. 2008) and is attributed to N2 stripping.  N2 stripping occurs when ebullition 

removes N2 from porewaters more quickly than it is replenished via diffusion from the overlying 

water column, thereby depleting sediment N2 content and enriching the CH4 content of rising 

bubbles (Chanton et al. 1989).  Stripping likely contributed to the increasing bubble CH4 content 

from June through October observed at Acton reservoir (ACT; Fig.3B).  Falling bubble CH4 content in 

November and December likely reflects decreasing volumetric ebullition rates as the water column 

cooled, allowing diffusion to replenish porewater N2.  Patterns in porewater N2 stripping, in 

combination with temporal changes in temperature, organic matter availability, and other factors, 

can lead to complex spatial and temporal patterns in CH4 ebullition.   
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4.2 Survey and measurement approach 
Although it is becoming increasingly evident that ebullition is an important CH4 emission mechanism 

in lentic waters, it remains challenging to quantify due to strong spatial and temporal variability.  In 

this study, we characterized spatial variability within the framework of a generalized random 

tessellation survey (GRTS) design (see section 2.1).  Features of the GRTS design that make it 

particularly well suited for estimating CH4-E and CH4-T include 1) a spatially balanced distribution of 

sampling sites (Olsen et al. 2012), thereby better representing the full range of environmental 

conditions present within a waterbody as compared to random sampling, and 2) the ability to utilize 

spatial autocorrelation to better constrain variance estimates.  In this study, variance estimates were 

reduced by 23% when spatial autocorrelation was incorporated into the estimate, indicating strong 

spatial autocorrelation in CH4-T, as has been reported elsewhere (Beaulieu et al. 2016, Hilgert et al. 

2019).  The median 95% confidence intervals for CH4-T and CO2-T were 72.3 and 58.2% of the mean 

emission rate, respectively.  Given that the observed CH4 emission rates spanned two orders of 

magnitude in this study, an uncertainty estimate equivalent to ~ 70% of the mean is acceptable for 

the purposes of training a model for predicting emissions at unsampled locations.  Furthermore, our 

modeling approach used the uncertainty estimate to give more weight to well constrained 

estimates, thereby ensuring that model results weren’t driven by highly uncertain observations.  We 

suggest that studies of lentic CH4 and CO2 emission rates be based on robust survey designs that 

form the basis for well-defined variance estimates.   

Sampling tributary-associated areas at a higher density than open-water areas allowed for a better 

constrained and more accurate population estimate than if the entire waterbody had been sampled 

at a uniform density. Other studies have attributed tributary associated CH4 hots spots to higher 

temperatures at the sediment-water interface, high sediment deposition rates, and sustained 

nutrient inputs from inflowing rivers which support phytoplankton, a source of particularly labile 

carbon for methanogens (DelSontro et al. 2011, Grinham et al. 2011, Musenze et al. 2014, Sturm et 

al. 2014, de Mello et al. 2018, Hilgert et al. 2019).  Low water depths in tributary areas minimizes the 
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dissolution of bubbles during vertical transport through the water column, further enhancing CH4 

emissions (McGinnis et al. 2006). Our finding that tributaries supported higher CH4-T than open-

waters in 21 of the 27 reservoirs where stratification was employed (although the difference was 

only statistically significant in 8) further highlights the importance of including tributary areas in 

reservoir-scale emission estimates. 

Methane emission rates can exhibit temporal variation at time-scales ranging from hourly to yearly 

(Natchimuthu et al. 2016, Harrison et al. 2017, Maher et al. 2019).  Our survey was designed to 

represent a snapshot of conditions during the growing season.  Ebullition, the most important 

emission mechanism in most of the sampled reservoirs, was measured throughout ~19 hour (median 

= 19.4 hour) funnel deployments, encompassing roughly equal hours of daylight and dark.  Our 

ebullition rate estimates should therefore integrate across diurnal patterns and reflect emission 

rates similar to 24 hour daily integrated vales.  Diffusive emissions were measured during a short 5-

minute window of daylight, however, and could be biased if a diurnal pattern were present.   While 

several studies have documented diurnal patterns in CH4-E (Deshmukh et al. 2014, Maher et al. 

2019), the literature on diurnal patterns in CH4-D is somewhat mixed.  For example, Carey et al. 

(2017) failed to find a consistent diurnal pattern in CH4-D in a productive US reservoir.    

Natchimuthu et al. (2014) reported higher dissolved CH4 concentrations during daylight hours in a 

small pond (average depth = 1.2m), but it isn’t clear how patterns from a shallow pond would 

translate to patterns in our much larger reservoirs.  Recent eddy-covariance studies have shown 

evidence of diurnal patterns in CH4 emission rates, but the results are mixed and it is difficult to 

distinguish ebullition and diffusion using this method (Podgrajsek et al. 2014, Erkkila et al. 2018)  

Given the conflicting and sparse literature data, it is difficult to know whether the short-term CH4-D 

measurements in this study are biased.  Bias in CH4-D would not greatly affect the total emission rate 

estimate when ebullition was the dominant emission mechanism (Fig. 2), as was the case in 75% of 

the sampled reservoirs, but would be a concern where CH4-D and CH4-T were similar. 
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The four surveys conducted at Acton Lake indicate that CH4-T can vary by up to a factor of 2.4 within 

the warm weather months (Table 2; range : 5.1 - 12.3 mg CH4 m-2 h-1).  This variation could be caused 

by numerous factors including changes in hydrostatic pressure, which can trigger the release of 

bubbles stored in sediments (Varadharajan and Hemond 2012, Harrison et al. 2017), availability of 

algal derived carbon (West et al. 2016), or extent of porewater N2 stripping (section 4.1).  While the 

temporal variability observed at Acton Lake was substantial, it was less than the variation observed 

across the 32 study sites (Fig. 2; range: 0.51 – 24.57 mg CH4 m-2 h-1) or within Acton Lake during any 

of the four surveys (within lake CH4-T maximum exceeded minimum by a factor of 43, on average, 

data not shown), suggesting that that spatial variability (both intra and inter reservoir) exceeds 

temporal variability.  Nevertheless, temporal variability may introduce uncertainty and bias into 

model predictions.  Sampling on randomly selected days, as was done in this study, is likely to miss 

episodic emission events, which appear to be responsible for most day to day variability in CH4-T 

(Varadharajan and Hemond 2012), resulting in emission rate estimates that are biased low (Wik et 

al. 2016).  Quantifying model uncertainty resulting from temporal variability is challenging, but 

emerging continuous monitoring approaches may allow for this in future studies (Jammet et al. 

2017).   

4.3 CO2 emission rates 
Ebullitive CO2 emissions were negligible compared to diffusive emissions in most reservoirs.  This 

pattern is expected because CO2 is a relatively soluble gas with most produced CO2 dissolving into 

the water column or pore waters, rather than accumulating in bubbles.  Our findings are consistent 

with reports that CO2-E is less than 0.05% that of CO2-D in large reservoirs in the Southeastern US 

and Brazil (Bergier et al. 2011, Kemenes et al. 2011, Bevelhimer et al. 2016), suggesting this pattern 

is common across a broad range of lentic ecosystems. 

Reservoir-scale CO2 emission rates were highly variable across the 32 reservoirs (-93 - 193 mg CO2 m-

2 h-1), spanning nearly the entire range of reservoir CO2 emission rates found in the published 

literature (-54.4 - 403 mg CO2 m-2 h-1; Deemer et al. 2016), reflecting the broad range of watershed 
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and reservoir conditions in this study.  Sixty five percent of the reservoirs functioned as CO2 sinks 

during the sampling period, which contradicts findings from several global-scale and regional-scale 

studies.  In a study of 1835 lakes with a worldwide distribution, Cole et al. (1994) reported that only 

13% were CO2 sinks.  Similarly, Deemer et al. (2016) found that only 16% of published studies report 

net CO2 uptake in reservoirs and studies in boreal regions routinely report net CO2 efflux (Sobek et 

al. 2003).  Reports of CO2 emission rates for US lakes and reservoirs are more mixed, however.  A 

national-scale survey of dissolved CO2 found 35% of sampled US waterbodies (n = 1080) to be CO2 

sinks with no coherent spatial pattern (Lapierre et al. 2017), whereas regional studies suggest strong 

geographic variation.  For example, measurements in the southeastern US indicate net CO2 evasion 

from >85% of sampled lakes and reservoirs (n = 954) (Lazzarino et al. 2009, Bevelhimer et al. 2016), 

whereas surveys of lakes and reservoirs in the western and midwestern US indicate a predominance 

of CO2 uptake (Soumis et al. 2004, Balmer and Downing 2011) during the summer months, 

particularly in systems draining agricultural watersheds.  These contrasting results for US 

waterbodies highlight the difficulty in predicting lentic CO2 emission rates.  This is also reflected in 

the poor prediction accuracy of the CO2-T BRT model developed in this work, relative to that of the 

CH4-T BRT.  One possible explanation for this is that the controls on CO2 emissions may vary across 

the major US ecoregions.  For example, Lapierre et al. (2017) found geographically varying driver-

response relationship for dissolved CO2 in US waterbodies reflecting major landscape gradients 

across the country.  The 32 reservoirs included in our study span three major ecoregions (Fig. 1), 

roughly corresponding to regions identified by Lapierre et al. (2017) to have different dissolved CO2 ~ 

driver relationships, suggesting that spatially explicit modeling approaches may improve prediction 

accuracy for lentic CO2 emission rates. 

Like many other studies of air-water CO2 exchange in lentic ecosystems, we measured diffusive CO2 

emission rates during daylight hours.  While these short-term measures of CO2-D have been used to 

inform global CO2 budgets for lentic systems (Cole et al. 2007, DelSontro et al. 2018), they may not 

reflect a daily integrated rate.  Diurnal changes in the relative rates of CO2 uptake (photosynthesis) 
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and production (respiration) can be pronounced, particularly in productive waterbodies, leading to 

higher emission rates during hours of darkness.  This pattern has been reported for a wide range of 

lentic ecosystems including lakes in northern Europe, Canada, Brazil, and China (Vesala et al. 2006, 

Natchimuthu et al. 2014, Reis and Barbosa 2014, Du et al. 2018, Erkkila et al. 2018, Spafford and Risk 

2018).  Perhaps more relevant to the current study are reports from a eutrophic lake and reservoir in 

the southcentral US (Liu et al. 2016, Xu et al. 2019).  During the summer months, both systems 

alternated between a CO2 source at night and sink during the day.  Although we are unaware of 

diurnal CO2 flux studies in our study region, the literature suggests that such patterns likely exist, and 

our measurements likely overestimate the daily CO2 uptake or underestimate the daily CO2 efflux.  

4.4 GWP of CO2 and CH4 emissions 
Although all 32 reservoirs were a source of CH4 to the atmosphere, eleven reservoirs had a negative 

combined CO2/CH4 GWP on a 100-year time horizon due to strong CO2 uptake.  This pattern has also 

been reported for small lakes in agricultural regions of the US, causing speculation that high-nutrient 

lakes may be net atmospheric CO2 sinks (Balmer and Downing 2011) due to high rates of primary 

production.  While many of the reservoirs in our study were net CO2 sinks during daylight hours 

when CO2-D was measured, it is possible that daytime uptake was offset by nighttime emissions.  It 

is also likely that CO2 emissions exhibit strong seasonal patterns in these temperate-zone dimictic 

reservoirs.  For example, a study of 15 reservoirs in the Glacial Till Plains of the US found that all 

systems absorbed atmospheric CO2 during the summer months, but emitted CO2 during the 

remainder of the year and were net CO2 sources at the annual scale (Jones et al. 2016).  A similar 

seasonal pattern was previously noted for Acton Lake, an agricultural reservoir included in this 

study, and Burr Oak, a forested reservoir located nearby our study sites (Knoll et al. 2013).  

Therefore, diel and seasonal measurements are required to accurately determine the CO2 

source/sink status of temperate zone reservoirs. 

Although 21 of 32 reservoirs were CO2 sinks during the measurement period, all were sources of CH4 

and the net GWP of CO2/CH4 emissions was positive in 21 of the 32 sampled reservoirs for a 100-
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year time horizon, indicating that these systems contribute to the radiative forcing of the 

atmosphere.  The GWP of CO2 emissions exceeded that of CH4 in only 4 reservoirs, in contrast with 

reports from six large reservoirs in the Southeastern US where the GWP of CO2 emissions exceeded 

that of CH4, suggesting there may be important regional variation in the relative importance of these 

GHGs.  On national and  global scales, however, the GWP of CH4 emissions from lakes and reservoirs 

far outweighs that of CO2 (Li and Bush 2015, Deemer et al. 2016, DelSontro et al. 2018).  

Understanding the relative importance of these two gases in total reservoir GWP is important when 

considering mitigation strategies.  For example, since CH4 emissions are predominantly driven by 

ebullition, management actions that minimize the release of CH4 rich bubbles from sediments, such 

as avoiding water-level drawdowns during the summer months, may mitigate CH4 emissions 

(Harrison et al. 2017, Beaulieu et al. 2018), but have little effect on CO2 emissions.  Reductions in the 

emission of both gases should follow management actions that reduce nutrient loading to surface 

waters, however (Deemer et al. 2016, Beaulieu et al. 2019).  Policy makers should also use the 

appropriate GWP horizon to weigh the relative merits of CH4 and CO2 emission reductions in 

meeting mitigation goals. 

4.5 Model performance 
Fifty BRTs were developed for each response variable (e.g., CH4-T, CH4-D) and collection of covariates 

(e.g., ‘national’, ‘national + local’).  Each BRT was trained and tested with unique subsets of the data 

and the accuracy of each model was quantified as the mean square error (MSE) of the predicted vs 

observed emission rates.  We defined the best model as the BRT that had the lowest combined in-

sample and out-of-sample MSE values, reflecting a balance between in-sample prediction accuracy 

and overfitting.  MSE values for the best models were relatively low, even when tested against the 

proportion of the data not used for training the model (e.g. out-of-sample data) (Table 3).  For 

example, the out-of-sample standardized root mean square error (osSRMSE), a measure of 

prediction error normalized to the mean response, ranged from 11 – 34% for CH4-T, depending on 

which covariates were included in the model.  Considering CH4-T values spanned two orders of 
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magnitude across the study, and the well-established difficulty of predicting CH4-T, this prediction 

error is quite low.   

Other regional scale studies have been largely unable to identify relationships between CH4-T and 

environmental drivers (Bevelhimer et al. 2016, Rinta et al. 2016), possibly because those studies 

used general linear modeling approaches, whereas the BRTs used in this work are better at 

accounting for non-linear and interactive dynamics (Elith et al. 2008).  Of course, the success of any 

modeling approach will be partly a function of the quality of the data being modeled.  A strength of 

the current work is that the site selection criteria (e.g., broad land use and morphology gradient) 

resulted in a broad range of environmental conditions while the survey design (e.g., GRTS design per 

waterbody) enabled accurate emission estimates.  Together, these features likely enabled the 

pattern detection reflected in the BRT results. 

Since BRTs do not have native methods for estimating model uncertainty, unlike generalized linear 

models, we used an empirical bootstrap (Efron 1979) to estimate the 95% confidence interval (C.I.) 

of the upscaled emission estimates for Ohio reservoirs.  The bootstrap 95% C.I. was equivalent to 

82% of the mean emission estimate, which is greater than uncertainty levels typically reported for 

U.S. anthropogenic CH4 sources.  For example, uncertainty in the magnitude of CH4 emissions from 

enteric fermentation and landfills,  the two largest anthropogenic CH4 sources in the U.S., is 

equivalent to 29 and 55% of the mean, respectively (US Environmental Protection Agency 2019b).  

Uncertainty in the estimated magnitude of reservoir CH4 emissions could be reduced through 1) 

improved identification of reservoirs in the landscape and 2) greater data availability for training 

predictive models.     

4.6 Reservoir morphology and CH4/CO2 emissions 
The BRTs identified descriptors of reservoir morphology as important predictors of CH4 emission 

rates, with indicators of reservoir size being particularly important.  For example, the models predict 

a negative relationship between CH4-D and reservoir surface area (Fig. 3A, S2E), as has been 

previously reported for boreal lakes (Rasilo et al. 2015).  Small lakes and reservoirs have several 
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characteristics that may promote CH4-D including extensive littoral habitat.  Methane released from 

littoral sediments has a short residence time in the overlying shallow water column, thereby 

escaping oxidation that converts a large fraction of dissolved CH4 to CO2 in deeper waters.  This 

phenomenon, termed the “epilimnetic shortcut”, has been demonstrated in several boreal lakes 

(Bastviken et al. 2008).  While we did not measure CH4 oxidation in this study, the BRTs predicted a 

positive relationship between littoral extent and rates of all 3 CH4 emission mechanisms (i.e., 

diffusion, ebullition, total), further suggesting that littoral areas are particularly important sites for 

CH4 emissions (Fig. S2G, S3H, S5F, S7E). 

Maximum reservoir depth was identified as an important predictor of reservoir-scale CH4-E, with 

rates falling rapidly from shallow systems to a max depth of 5-10 m, beyond which ebullition rates 

are predicted to remain low (Fig. 4C, S4E, S5H).  This pattern is also evident at the scale of individual 

point measurements where ebullition was uncommon beyond depths of ~ 10m (Fig. 5).  Ebullition ~ 

depth thresholds in the 5-10 m range have also been reported for lakes (West et al. 2016), 

suggesting this is a widespread pattern.  The inverse relationship between ebullition rates and water 

depth is consistent with the well-established understanding that the total dissolved gas pressure 

required for bubble formation is proportional to the hydrostatic pressure at the sediment-water 

interface (Mattson and Likens 1990, Boudreau et al. 2005, Scandella et al. 2011), therefore more 

biogenic gas production is required to support bubble formation in deep versus shallow waters.  

While this pattern has been previously demonstrated for lakes, our work illustrates that the 

conceptual model also holds for reservoirs. 

The BRTs identified a positive relationship between relative drainage area (RDA) and total CH4 

emission rates (Fig. 4E).  Relative drainage area is the ratio of watershed-to-reservoir surface area 

and is positively correlated with carbon, nitrogen, and phosphorus burial rates in our study area 

(Knoll et al. 2014).  We suggest that RDA serves as a proxy for sedimentation rates which can 

stimulate CH4 production by supplying reactive organic matter to deep, anoxic sediment, thereby 

fueling methanogenesis (Sobek et al. 2012).  Several studies have shown correlations between 
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sedimentation rates and CH4 emission rates in reservoirs, including Harsha Lake, a reservoir sampled 

in this study (Maeck et al. 2013, de Mello et al. 2018, Berberich et al. 2019).  While sedimentation 

rates may be important drivers of CH4 production, the composition of watershed derived particulate 

matter may also play a role.  The BRT also identified a positive relationship between the organic 

matter content of watershed soils and CH4-T (Fig. S6A), suggesting that organic rich material eroded 

from the watershed stimulates methanogenesis more effectively than inorganic materials.   

The BRTs also identified relationships between CO2-T and measures of reservoir morphology.  The 

BRT predicts greatest CO2 uptake (i.e. a more negative CO2 emission rate) in small reservoirs with 

extensive littoral zone habitat (Figs. 3G, S9F).  This pattern contradicts a recent literature review 

indicating that CO2 emission rates increase (i.e. become more positive) with decreasing lake size 

(DelSontro et al. 2018).  A possible explanation for this contradiction is that TP was negatively 

correlated with reservoir size in this study (pearson correlation coefficient = -0.15), therefore smaller 

reservoirs may have had greater nutrient availability and consequently higher rates of primary 

productivity.  This explanation is consistent with the BRT model based on local + national covariates 

which predicts rapidly increasing CO2 uptake (i.e. more negative CO2 emission rates) as a function of 

TP concentration (Fig. S8E).  Another possibility is that littoral zone macrophytes, which can reach 

nuisance levels in these reservoirs (Davic et al. 1997), are a direct sink for dissolved CO2 (Madsen and 

Sandjensen 1991).   

4.7 Primary production and CH4/CO2 emissions 
Several studies have shown that lentic CH4 emission rates are correlated with system productivity, 

presumably because autochothony promotes hypolimnion anoxia and provides a source of labile 

carbon to methanogens (DelSontro et al. 2016, West et al. 2016, DelSontro et al. 2018).  Our list of 

covariates included several indices of productivity, including estimates of watershed land-use, a 

proxy for nutrient loading, and in-lake measures of chla and nutrient concentrations.  Surprisingly, 

chla did not emerge as an important predictor variable in any of the BRT models, possibly because 

water column chla can vary greatly on hourly and daily time scales (Rusak et al. 2018), whereas 
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methanogens are more tightly linked to sediment conditions which reflect productivity over longer 

time scales.  The CH4-D BRT showed mixed patterns in relation to productivity indices.  The model 

predicted increasing CH4-D with increasing agriculture on steep slopes (Fig. 4B), but an inverse 

relationship with TP and watershed agricultural activity (Figs. S2F, S3E).  Patterns in the CH4-T and 

CH4-E BRT models were more intuitive, however, and demonstrate increasing emissions as a 

function of agricultural activity in the watershed (Fig. 3D, F, S4C, S5B, S5E, S6D, S6F).  These patterns 

suggest that ebullitive and total CH4 emissions are more closely tied to watershed condition than are 

diffusive emission rates, possibly because differential rates of CH4 oxidation can obscure patterns 

between CH4-D and rates of methanogenesis, whereas ebullition is largely unaffected by CH4 

oxidation (West et al. 2016).   

The relationships between CO2-T and indices of aquatic productivity were somewhat mixed.  Both 

BRTs (i.e. national covariates only, national + local covariates) identified a general trend of increased 

CO2 uptake (CO2-T became more negative) with increasing agriculture on steep slopes, though this 

relationship is somewhat obscured by one observation with widespread agriculture in the 

watershed, but relatively low CO2 uptake (Fig. 3H) in the national covariate model.  The BRT utilizing 

local covariates also identified increasing CO2 uptake with increasing TP (Fig. S8 B,E), another 

productivity proxy.  Together, these patterns suggest that external nutrient loading, derived partly 

from watershed agricultural practices, stimulate aquatic primary productivity and CO2 uptake, 

consistent with reports from other agricultural regions of the country (Balmer and Downing 2011).  

These intuitive patterns are somewhat confounded, however, by a predicted decrease in CO2 uptake 

(i.e. more positive CO2-T) with increasing agricultural in the watershed (Fig. S8D), suggesting CO2-T 

responds differently to agricultural on steep versus gentle slopes, though we are unable to explain 

why this may be.  

4.8 Local vs national predictor 
We ran one set of BRTs informed with only those covariates available for all US waterbodies 

included in NHDPlusV2 geodatabase and a second set of BRTs which also included ‘local’ covariates 
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measured during the field survey, including measures of water chemistry and algal abundance.  We 

expected prediction accuracy to improve when local covariates where added to the model, and for 

CH4 this was the case when prediction accuracy was assessed against the training data, but not when 

assessed against the testing data (Table 2).  Furthermore, prediction accuracy was quite good for all 

CH4 models, regardless of whether local covariates were included, suggesting that CH4 emission 

rates can be predicted for US reservoirs using the existing NHDPlusV2 and derivative geodatabases, 

without the need for additional resource intensive field-work.   

Unlike the CH4 models, prediction accuracy for the CO2-T BRT model substantially improved when 

local covariates were included, due largely to the predictive power of dissolved CO2 concentration.  

The BRT predicts a positive relationship between CO2-T and dissolved CO2 (Fig. S8A), which is 

consistent with well-established diffusive gas-exchange theory (MacIntyre et al. 1995).  This 

phenomenon is also reflected in the CH4-D BRT which identified a positive relationship between 

dissolved CH4 concentration and CH4-D, as has been previously reported for lakes in the US and 

Europe (Rinta et al. 2016).   The model identified a negative relationship between CH4-D and TOC 

(Fig. S2A), which may reflect an indirect relationship between TOC and CH4 oxidation.  

Methanotrophs are inhibited by high light availability (Thottathil et al. 2018).  Reduced light under 

high TOC conditions may therefore release methanotrophs from light inhibition, resulting in higher 

methanotrophic activity, lower dissolved CH4 concentrations, and lower CH4-D. 

4.9 Limitations of modeling approach 
Many of the response ~ driver relationships captured by the BRTs are consistent with established 

theory and previously reported results, suggesting that the models are being driven, at least in part, 

by fundamental ecological processes, rather than statistical artifacts such as overfitting.  Like all 

statistical models and ML algorithms, however, BRTs may overfit training data, particularly with 

smaller datasets.  We implemented several procedures to minimize this risk including the use of 

different subsets of the data to train 50 BRTs for each response ~ covariate combination, cross-

validation to minimize overfitting within each training data set, a criterion specifying the minimum 
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number of trees in an ‘acceptable’ model, and a model selection criterion that gave equal weight to 

in-sample and out-of-sample performance.  While these precautions minimize overfitting, they do 

not preclude it and possible evidence of overfitting can be found in partial dependence plots which 

do not conform to established response ~ driver relationships or are clearly driven by one or two 

observations.  The relationship between CH4-D and littoral extent (Fig. S3H) is an example where one 

or two observations seem to be driving a major feature of the partial dependence plot.  Ultimately, 

the best way to minimize overfitting is to train the model with more data.  This is not a trivial task in 

ecological systems where high spatial and temporal variability necessitate resource intensive 

sampling approaches, however.  This highlights the importance of different research groups 

adopting comparable measurement approaches so that reports from unrelated studies can be 

combined for use in modeling efforts.  We suggest that future studies of CH4 emissions should 

include a robust statistical survey design, report system-scale emission rate estimates (+/- 

confidence interval) and employ measurement methods that integrate ebullition over a diurnal 

cycle.  

4.10 Upscaling and extrapolating 
We estimate that Ohio reservoirs emit  21.3 (13.3 – 30.8) Gg of CH4 per year, which ranks as the 

fourth largest anthropogenic CH4 source in the state following waste (mostly landfills), cattle enteric 

fermentation, and petroleum/natural gas production, processing, transmission and storage (Table 5) 

(US Environmental Protection Agency 2019b, a).   These results reinforce previous reports that 

reservoirs are a significant anthropogenic CH4 source in the US (Beaulieu et al. 2014) and suggest 

that future work to improve emission estimates and identify mitigation strategies is merited. 

While this study was conducted at a regional scale, GHG inventory reports assembled in accordance 

with United Nations Framework Convention on Climate Change guidelines must be compiled at the 

national scale.  To test the prediction accuracy of our CH4-T BRT model at the national scale, we 

predicted CH4-T for reservoirs in the US Pacific Northwest (PNW) and Southeast (SE) for which 

published emission rates are available (Bevelhimer et al. 2016, Harrison et al. 2017) (Fig. 6).  The BRT 
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poorly predicted CH4-T in these regions of the country, which isn’t surprising given differences in 

climate, geology, and land use among the PNW, SE, and our study area.  It is also possible, however, 

that the poor prediction accuracy partly reflects model overfitting to our observations.  A national 

scale prediction model should be trained with data collected at the national scale.  To the best of our 

knowledge, the only published CH4-T rates for US reservoirs are those for 5 reservoirs in the PNW 

(Harrison et al. 2017), 6 in the SE (Bevelhimer et al. 2016), and 1 reservoir in Ohio from our previous 

work (Beaulieu et al. 2014, Beaulieu et al. 2016, Beaulieu et al. 2018).  While the data presented in 

this study will lead to a 4-fold increase in the available literature data, there remain large portions of 

the US where no measurements have been made.  Given that CH4-T can vary over four orders of 

magnitude across reservoirs, we suggest that surveying reservoir CH4-T at the national-scale is a 

critical research need that must be addressed before an unbiased estimate of US reservoir CH4 

emissions can be made.  The recent adoption of IPCC reporting guidelines for GHG emissions from 

reservoirs underscores the importance and timeliness of this issue (Lovelock et al. 2019). 

5 Conclusions 
We used statistically robust survey designs and standardized methods to measure diffusive and 

ebullitive emissions of CO2 and CH4 from 32 reservoirs spanning an agriculture to forested land-use 

gradient, representing the largest such effort in the US.  We found that all reservoirs were a source 

of CH4, whereas over half were absorbing atmospheric CO2.  The GWP of combined CO2 and CH4 

emissions on a 100-year time horizon was positive in ~70% of sampled reservoirs, with CH4 being the 

more important source of GWP in most. 

Our work verifies previous reports that reservoir and watershed morphology influence lentic CO2 

and CH4 dynamics.  We also found that CH4 emission rates were positively related to indices of 

allochthonous carbon inputs, whereas both CH4 and CO2 were related to measures of watershed 

agricultural activity.   

An important finding of our work is that the prediction accuracy of CH4 BRT models using readily 

available covariate information (i.e. NHDPlusV2 and derivative databases) was roughly equivalent to 
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those that used information from field-based sampling efforts (i.e. water chemistry, algal 

abundance), suggesting that CH4 emissions from  US reservoirs can be estimated without the need 

for resource intensive field campaigns.  This assumes that 1) models driven by national inputs will 

perform as well those using local inputs in other regions of the country, and 2) comparable training 

data are available from a nationally distributed set of reservoirs.  We therefore suggest that a critical 

next-step in this research is to embark upon a national-scale survey of CH4 and CO2 emission rates 

from US reservoirs. 
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Table 1.  Predictor variables used in boosted regression trees to model methane and carbon dioxide 

emission rates. 

 
Variable Units Mean Range 

Local variables    
chl a µg L-1 17.2 1.5 – 61.4 
TP µg L-1 84.3 7.9 – 772.7 
TN µg L-1 1202.9 231.4 – 3463.0 
TOC mg L-1 5.3 2.5 – 15.4 
*dissolved CH4 µmol L-1 3.58 0.43 – 18.55 
*dissolved CO2 µmol L-1 121.4 26.0 – 244.9 
proportion hypoxic -- 0.11 0 – 0.69 
proportion hypolimnetic -- 0.22 0 – 0.73 

National variables    
max depth m 13.3 2.7 – 35.1 
depth ratio -- 0.39 0.16 – 1.13 
dynamic ratio -- 0.57 0.12 – 1.80 
proportion < 3m deep -- 0.42 0.01 – 1.0 
†reservoir area km2 6.27 1.04 – 32.2 
relative drainage area -- 82.7 5.7 – 385.9 
percent agriculture % 43.5 0.1 – 83.9 
percent agriculture on slopes > 10% % 34 0 – 17.3 
surface soil erodibility factor -- 0.38 0.31 – 0.43 
soil organic matter % by weight 0.97 0.31 – 6.20 
runoff mm 405 325 – 520 
30-year normal mean air temperature Co 10.6 9.3 – 12.7 

*Units of mol L-1 were used in boosted regression tree models.  †Units of m2 were used in boosted 

regression tree models. 
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Table 2. Total methane emission rates (mean (95% C.I.)) measured during four surveys conducted at 

Acton Lake. 

 

Sample Dates CH4-T (mg m-2 h-1) 

2016-05-31 5.1 (3.6 – 6.6) 
2017-07-10 8.2 (5.1 – 11.3) 
2017-08-31 11.2 (7.5 – 14.9) 
2017-10-04 12.3 (8.7 – 16.0) 

Overall mean 9.2 (6.2 – 12.2) 
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Table 3.  Standardized root mean square error (SRMSE) of boosted regression tree predictions 

against training and testing data for diffusive, ebullitive and total CH4 emission rates and total CO2 

emission rates.  Coefficient of determination (R2) of model predictions is reported for testing data.  

‘national’ covariates are predictor variables available from the National Hydrography Dataset 

(NHDPlusV2) and related data products.  ‘national + local’ covariates include NHD variables and 

additional measurements made on-site during the field survey (i.e. nutrient chemistry) 

   training  testing 

Response 
variable Covariates 

Optimal 
trees isMSE isSRMSE R2 

 
osMSE osSRMSE 

diffusive 
CH4 

national 12803 0.38 0.40 0.87  0.41 0.42 
national + local 19976 0.17 0.26 0.90  0.54 0.46 

         
ebullitive 
CH4 

national 19987 1.72 0.24 0.98  2.28 0.28 
national + local 16760 0.52 0.13 0.99  3.42 0.33 

         

total CH4 
national 19984 0.91 0.15 0.99  0.46 0.11 
national + local 17190 0.56 0.11 0.99  5.55 0.34 

         

total CO2 
national 14813 1565 -4.29 0.73  734 -2.94 
national + local 8935 730 -1.65 0.91  274 -1.01 
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Table 4.  List of covariates leading to an average of at least a 5% reduction in mean square error 

when excluded from the model.  These represent the most important variables in each boosted 

regression trees are listed in order of decreasing importance for each model. 

Response variable Covariates Variable Relative Influence 

CH4-D 
National and 
local 
covariates 

TOC 15.7 
ag on slope > 10% 14.6 

dissolved CH4 14.6 
reservoir area 12.8 

TP 12.4 
proportion <3m deep 5.9 

soil organic matter 5.1 
    

CH4-D 
National 
covariates 

reservoir area 23.0 
ag on slope > 10% 14.3 
soil organic matter 10.1 

percent ag 9.4 
dynamic ratio 8.4 

relative drainage area 6.6 
depth ratio 5.9 

proportion <3m deep 5.6 
    

CH4-E 
National and 
local 
covariates 

relative drainage area 25.2 
proportion hypolimnetic 17.4 

percent ag 13.1 
dissolved CO2 9.3 

max depth 9.1 
proportion hypoxic 6.2 

    

CH4-E 
National 
covariates 

relative drainage area 21.4 
percent ag 15.3 

dynamic ratio 10.3 
soil erodibility factor 9.4 

ag on slope > 10% 7.7 
proportion <3m deep 7.4 

depth ratio 7.1 
max depth 6.6 

mean air temperature 6.3 
    

CH4-T 
National and 
local 
covariates 

soil organic matter 29.7 
depth ratio 11.8 

relative drainage area 10.1 
percent ag 8.0 

dissolved CO2 7.3 
ag on slope > 10% 6.9 

proportion hypolimnetic 5.7 
    

CH4-T 
National 
covariates 

relative drainage area 21.6 
depth ratio 20.0 
max depth 16.6 
percent ag 11.6 

proportion < 3m deep 7.0 
runoff 5.1 

    

CO2-T 
National and 
local 
covariates 

dissolved CO2 47.4 
ag on slope > 10% 14.5 

proportion hypoxic 6.9 
percent ag 6.1 

TP 5.8 
    

CO2-T 
National 
covariates 

depth ratio 23.8 
proportion < 3m deep 19.2 

runoff 15.8 
relative drainage area 9.2 

ag on slope > 10% 7.8 
reservoir area 6.9 

soil erodibility factor 5.0 
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Table 5.  Anthropogenic methane sources in Ohio.  Reservoir emissions were estimate with this work 

and all other sources are for the year 2017.  Enteric fermentation was taken from the Inventory of 

U.S. Greenhous Gas Emissions and Sinks: 1990-2017 (Table A-182;US Environmental Protection 

Agency 2019b).  All other sources were taken from the U.S. EPA’s Greenhouse Gas Emissions from 

Large Facilities program (US Environmental Protection Agency 2019b). 

 

Sector 
CH4 emission 
(Gg CH4 y-1) 

waste 187.0 

enteric fermentation 93.4 

petroleum and natural gas 29.6 

reservoir 21.3 

underground coal mines 14.3 

power plants 6.4 

refineries 0.8 

ponds 0.3 – 1.5 

metals 0.3 
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Figure 1. Site map illustrating major US ecoregions and location of 32 sampled reservoirs in study 

area.  Reservoir surface area is shown in blue and watershed boundaries are delineated in black. 
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Figure 2.  Reservoir scale mean emission rates and 95% confidence interval for A) total CH4 emissions, B) ebullitive CH4 emissions, C) diffusive CH4 emissions, 

D) total CO2 emissions, and E) global warming potential (GWP).  Vertical dashed line in panels D and E indicate emission rates of 0.  Inset map shows 

location of study sites relative to the states of Ohio, Kentucky, Indiana, and the three major ecoregions in the study area.



 

 
©2020 American Geophysical Union. All rights reserved. 

 

 

Figure 3.  A) CH4 and N2 content of bubbles collected during the 2016 survey.  B) Bubble CH4 content 

during two years (2017-2018) of biweekly sampling at a deep (12m) and shallow (1.5m) site at Acton 

Lake.  Solid and dashed lines represent LOESS smoothers.  
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Figure 4.  Partial dependence plots for boosted regression trees using only national covariates for A-

B) diffusive CH4 emission rates, C-D) ebullitive CH4 emission rates, E-F) total CH4 emission rates, and 

G-H) total CO2 emission rates.  Vertical ticks along x-axis represent observations included in the 

training data. 
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Figure 5.  Ebullitive CH4 emission rate versus water depth for 536 point measurements across the 32 

reservoirs in this study.  Symbol shading reflects the number of observations at any x, y coordinate.  

Dark and light shading reflect a high and low density of observations, respectively. 
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Figure 6.  Predicted vs observed CH4-T for reservoirs in the U.S. Pacific Northwest and Southeast.  

Predictions were made using the BRT trained on field data collected in Ohio, Kentucky, and Indiana 

during this study.  

 


