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Inland standing waters hold a large majority of the Earth’s liquid 
surface fresh water, support important biodiversity and provide 
key ecosystem services to people around the world1. Yet, stand-

ing waters are highly vulnerable to climate change. Some of the 
most pervasive and concerning consequences of climate change for 
standing waters are the direct and indirect effects of rising water 
temperature2. This temperature increase can influence physi-
cal structure, rates of processes and species composition3,4, and in 
turn temperature can strongly influence the distribution and abun-
dance of freshwater species across the globe5. However, within a 
lake or reservoir, temperature varies seasonally6 and horizontally7, 
and often vertically in those that are deep enough to stratify8,9. As 
standing waters warm over time, aquatic communities may have to 
disperse to track thermally suitable habitats10. A critical step in the 
understanding of climate change impacts on aquatic ecosystems is 
therefore to describe the speed at which their thermal environment 
is changing, often referred to as the velocity of climate change, that 
is, the distance at which isotherms shift over time11. The velocity 
of climate change has been studied extensively in marine and ter-
restrial ecosystems12,13 but has not yet been investigated in stand-
ing waters globally, despite the vulnerability of freshwater species to 
direct and indirect thermal alterations associated with warming14.

The velocity of climate change (km per decade) is calculated as 
the quotient of the long-term temperature trend (°C per decade) 
to the two-dimensional spatial gradient in temperature (°C km−1). 
Here we calculated the distribution of the historical velocity of 
climate change in the surface of inland standing waters world-
wide using surface temperatures from a new state-of-the-art 
global re-analysis from the European Centre for Medium-Range 
Weather Forecasts (ECMWF), ERA5, on a 0.25° × 0.25° grid (see 
Methods). Inland water temperature within ERA5 is simulated via 
the Freshwater Lake (FLake) model, which is embedded as a tile in 
the Tiled ECMWF Scheme for Surface Exchanges over Land incor-
porating land surface hydrology (HTESSEL). The FLake model has 
been extensively validated here (Extended Data Fig. 1) and in simu-
lations of the surface temperature of inland waters globally, and has 
been used to quantify worldwide aspects of inland water thermal 
dynamics such as seasonal cycles6, the onset of summer stratifica-
tion7 and mixing dynamics3.

Our study demonstrates that, over a period of 40 years (1979–
2018), the annual surface temperature of inland standing waters 
has increased in 99% of the surface grid cells analyzed, although 
there were substantial regional variations in magnitude (Fig. 1a). 
Worldwide, the median rate of warming in inland standing waters 
was 0.13 °C per decade (Fig. 1a). Our computed trends are similar to 
those calculated in previous studies which have demonstrated that 
the vast majority of lakes worldwide are warming2, despite differ-
ences in the seasonal extent of the data (all year versus summer) 
or the range of years analysed. Across inland standing waters, the 
median spatial gradient in temperature was 0.009 °C km−1 (Fig. 1b), 
and it was greater in regions with large elevation gradients, such as 
the European Alps (Extended Data Figs. 2 and 3). When the rate of 
warming is combined with the spatial gradient in temperature, the 
resulting median velocity of climate change across standing waters 
worldwide was 13.94 km per decade during 1979–2018 (Fig. 1c). As 
a result of higher increases in surface temperatures and lower spa-
tial gradients, the velocity of climate change is greater at mid- to 
high latitude (Fig. 1d) and in regions with low gradients in elevation 
(Extended Data Figs. 2 and 4).

We compared the velocity of climate change in inland stand-
ing waters from 1979 to 2018 with those calculated for marine and 
terrestrial ecosystems11,12 by applying the same climate velocity 
algorithm to surface air temperatures over land and sea surface tem-
peratures, both of which are available from ERA5. We find that the 
velocity of climate change in inland standing waters was comparable 
to that calculated for surface air temperatures over land (13.76 km 
per decade), despite the median rate of warming in the latter being 
twice as fast (0.26 versus 0.13 °C per decade) (Fig. 2). The velocity 
of climate change in the ocean (26.84 km per decade), as calculated 
from sea surface temperatures, was higher than in standing waters 
and over land, because of the smaller spatial temperature gradient 
(0.003 °C km−1). The spatial temperature gradient in the ocean was a 
third of that in standing waters (0.009 °C km−1) and nearly a sixth of 
that over land (0.017 °C km−1). The velocity of climate change in the 
ocean is much less variable than in inland waters or on land (Fig. 2e), 
with small gradients punctuated by sharp thermal boundaries (for 
example, see the Gulf Stream). Areas of high velocity extend across 
larger regions in the ocean compared with the other ecosystems.
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Inland standing waters are particularly vulnerable to increasing water temperature. Here, using a high-resolution numeri-
cal model, we find that the velocity of climate change in the surface of inland standing waters globally was 3.5 ± 2.3 km per 
decade from 1861 to 2005, which is similar to, or lower than, rates of active dispersal of some motile species. However, from 
2006 to 2099, the velocity of climate change will increase to 8.7 ± 5.5 km per decade under a low-emission pathway such as 
Representative Concentration Pathway (RCP) 2.6 or 57.0 ± 17.0 km per decade under a high-emission pathway such as RCP 
8.5, meaning that the thermal habitat in inland standing waters will move faster than the ability of some species to disperse to 
cooler areas. The fragmented distribution of standing waters in a landscape will restrict redistribution, even for species with 
high dispersal ability, so that the negative consequences of rapid warming for freshwater species are likely to be much greater 
than in terrestrial and marine realms.
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Fig. 1 | the velocity of climate change in the surface of standing waters (1979–2018). a, The annual surface water temperature trend (°C per decade).  
b, The two-dimensional spatial gradient of annual surface water temperature change (°C km−1). c, The velocity of temperature change determined from the 
quotient of a and b (km per decade). d–f, The latitudinal mean (black) and median (grey) of the temperature trend (d), the spatial temperature gradient 
(e) and the velocity of climate change (f). White regions represent those where standing waters are absent from the global database.
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The climate velocities for inland standing waters calculated from 
ERA5 cannot be extended into the future, as the ERA5 tempera-
tures are produced in near real time as an operational forecast. To 
project future changes in climate velocities, a different approach 
is required. Here we simulate the velocity of climate change dur-
ing the twenty-first century using the same water temperature 
model as used in ERA5 during 1979–2018 (that is, FLake), but 
now force the model with bias-corrected climate projections 
from four global climate models: MIROC5, IPSL-CM5A-LR, 

GFDL-ESM2M and HadGEM2-ES (see Methods), on a 0.5° × 0.5° 
grid. These climate models contributed to phase 5 of the Coupled 
Model Intercomparison Project (CMIP5) and were bias-corrected 
within the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP2b). Contemporary to future projections (2006–2099) 
for low, medium and high Representative Concentration Pathway 
(RCP) scenarios are investigated: RCP 2.6, 6.0 and 8.5, respec-
tively (Fig. 3). For comparison, and to extend the record back in 
time, we also calculate the velocity of climate change from 1861 to 
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Fig. 2 | the velocity of climate change in terrestrial and marine ecosystems (1979–2018). a, The annual temperature trend (°C per decade) in terrestrial 
(left) and marine (right) ecosystems. b, The two-dimensional spatial gradient of annual surface temperature change (°C km−1). c, The velocity of 
temperature change determined from the quotient of a and b (km per decade). d–f, Comparison of the surface temperature trend (d), spatial temperature 
gradient (e) and velocity of climate change (f) in standing waters with those calculated over land (terrestrial) and in the ocean (marine). Each box 
represents the interquartile range, the horizontal line is the median and the whiskers are 1.5× the interquartile range.
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2005, where the historical climate simulations were forced using 
anthropogenic greenhouse gas and aerosol forcing in addition to  
natural forcing.

The magnitude of the surface air temperature change, which 
is one of the dominant drivers of surface warming in standing 
waters, increases considerably during the twenty-first century, 
with the magnitude of change increasing from RCP 2.6 to 6.0 to 

8.5 (Extended Data Fig. 5). Our simulations demonstrate that the 
surface temperature of global standing waters will also increase 
during the twenty-first century (Fig. 3a). Specifically, under RCP 
2.6, 6.0 and 8.5, surface water temperature trends will accelerate to 
0.06 ± 0.04 °C per decade (quoted uncertainties represent the stan-
dard deviation from the FLake model driven by all four climate 
model projections), 0.23 ± 0.07 °C per decade and 0.40 ± 0.12 °C 
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Fig. 3 | historical and future projections of the velocity of climate change in inland standing waters. a, Temporal change in annual surface water 
temperature anomalies (relative to 1951–1980) from 1861 to 2099, showing the historical period (1861–2005) and contemporary to future climate 
projections (2006–2099) under three greenhouse gas concentration pathways (rCPs 2.6, 6.0 and 8.5). The thick lines show the average from the FLake 
model driven by four global climate models (mIrOC5, IPSL-Cm5A-Lr, GFDL-ESm2m and HadGEm2-ES), and the shaded regions represent the standard 
deviation. b–d, model projections of the temporal gradient of temperature change (°C per decade) (b), the two-dimensional spatial gradient of surface 
temperature change (°C km−1) (c) and the velocity of climate change (km per decade) (d). e–g, model projections for winter versus summer of the temporal 
gradient of temperature change (°C per decade) (e), the two-dimensional spatial gradient of surface temperature change (°C km−1) (f) and the velocity of 
climate change (km per decade) (g). Each box represents the interquartile range, the horizontal line is the median and the whiskers are 1.5× the interquartile 
range. Each box contains the simulations from the FLake model forced by each of the climate model projections.
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per decade, respectively (Fig. 3b) from 2006 to 2099, compared 
with 0.03 ± 0.02 °C per decade from 1861 to 2005. Note that the 
temperature trend calculated from 1861 to 2005 is lower than that 
reported previously for the 1979–2018 period due to the rapid 
warming which occurred following the 1980s (Fig. 3a), in agree-
ment with previous studies of observed lake surface temperature 
change15. The spatial gradient in temperature is similar across the 
different future climate scenarios (Fig. 3c), as well as the 1861–2005 
period. Specifically, the spatial gradient was 0.0063 ± 0.00004 °C 
km−1 during the historical period, and marginally higher during 
the twenty-first century at 0.0064 ± 0.00005 °C km−1 under RCP 2.6 
and 6.0, and 0.0065 ± 0.00009 °C km−1 under RCP 8.5. The model 
projections demonstrate that the median velocity of climate change 
from 1861 to 2005 was 3.5 ± 2.3 km per decade, again lower than 
in the 1979–2018 period due to the different temporal period con-
sidered. We project a median climate velocity during the period 
2006–2099 of 8.7 ± 5.5 km per decade for RCP 2.6, 32.6 ± 10.3 km 
per decade for RCP 6.0 and 57.0 ± 17.0 km per decade for RCP 8.5.

The worldwide patterns of climate velocities are projected largely 
to hold under twenty-first century climate change, with areas that 
have experienced the highest velocities during the historical period 
(1861–2005) also typically experiencing the greatest velocities dur-
ing the contemporary to future period (2006–2099). Specifically, 
there were statistically significant relationships between the world-
wide climate velocities during the historical and future periods 
under RCP 2.6 (R2 = 0.52; P < 0.001), RCP 6.0 (R2 = 0.48; P < 0.001) 
and RCP 8.5 (R2 = 0.38; P < 0.001), but with a decrease in correla-
tion with an increase in the severity of climate change. There appear 
to be no systematic changes in the projected spatial patterns of 
climate velocity in the future; but some regions, such as Northern 
Europe, northeastern USA and northern Canada, will experience 
greater changes than others (Extended Data Fig. 6). The velocity of 
climate change in standing waters during the twenty-first century 
will be slightly greater in summer than in winter (Fig. 3e–g; sum-
mer was defined as July–September in the Northern Hemisphere 
and January–March in the Southern Hemisphere, with the opposite 
definition used for winter). For example, under RCP 8.5, our simu-
lations suggest that, by the end of the current century, the median 
velocity of climate change will increase to 58.0 ± 13.2 km per decade 
during summer and 43.2 ± 10.5 km per decade during winter. This is 
a result of surface water temperatures in standing waters increasing 
at a faster rate in summer (0.59 ± 0.14 °C per decade) than in winter 
(0.47 ± 0.11 °C per decade), but is also influenced by a slightly higher 
median spatial temperature gradient in summer (0.008 ± 0.00007 °C 
km−1) versus winter (0.007 ± 0.00007 °C km−1) (Fig. 3).

The pace of climate change identified here for standing waters 
during the twenty-first century will produce new, and rapidly warm-
ing, thermal conditions for species at a given location. The ecologi-
cal consequences will depend on the ability of a species to survive at 
a site, disperse within a catchment or disperse between catchments. 
The ability of a species to continue to survive at a site will depend on 
the temperature sensitivity of their most susceptible life-stages16,17. 
In addition, phenotypic plasticity may allow a species to acclimate 
to higher temperatures, while adaptation to higher temperatures 
is unlikely since rates of evolutionary change for critical thermal 
maxima are many orders of magnitude lower than even the rate of 
historical temperature trends2,18. In addition, cooler water at depth 
during seasonal stratification may provide a potential refuge from 
increasing surface water temperatures. However, the environment 
at depth may not always be suitable in terms of light, food supply or 
oxygen concentration. For example, some fish are unable to exploit 
cooler temperatures at depth because of low oxygen concentration19, 
and oxygen depletion is likely to increase with climate change and 
continued eutrophication. Furthermore, the critical thermal period 
may occur in non-stratified periods of the year. For example, early 
life stages can be the most temperature sensitive16, and these can 

occur in the winter when stratification is generally absent but the 
velocity of climate change is almost as great as in the summer. The 
evidence of summer fish-kills in lakes, and their lack of correlation 
with lake depth, suggests that depth may only provide a partial ther-
mal refuge4 and, as demonstrated in the oceans, climate velocities 
can be faster at depth than at the surface20. Phenological change in 
the response to warming may allow sensitive stages to exploit cooler 
times of the year, but where the seasonality of different components 
of the food web changes at different rates, the changing phenol-
ogy could also cause food-web desynchronization, with potential 
negative consequences21. While there has been a focus on the con-
sequence of rapid surface warming of inland standing waters for 
cold-water stenotherms at high latitudes22, warm-water species 
that are close to their critical thermal limit at low latitudes are  
equally at risk23.

Dispersal is an important life-history trait that, unlike the 
responses above, will not prevent species loss at a given site but may 
permit a species to survive by moving to cooler habitats. Within the 
dendritic hydrological network of a catchment, dispersal to cooler 
standing water can occur either upstream to higher elevations or, in 
large river systems, downstream to higher latitudes. However, spe-
cies in headwaters or isolated tributaries may have a low connectiv-
ity to more suitable habitats and so be particularly susceptible to 
rapid warming24. For some species, such as freshwater molluscs, the 
rates of active dispersal of 1 to 10 km per decade (ref. 25) are less than 
forecast future change under both medium and high greenhouse gas 
concentration pathways. While many amphibians move relatively 
small distances, at least some individuals may move over 10 km 
(ref. 26). More motile species, such as some fish, have the poten-
tial to migrate rapidly in response to long-term climate change10,27. 
However, in all cases, dispersal may be limited by physical and eco-
logical barriers caused by the complex mosaic of freshwater envi-
ronments. The increasing number of dams on the world’s rivers28 
may further restrict dispersal by preventing access to upstream 
reaches and because the habitat in the intervening reservoir may 
be unsuitable. Even greater challenges are faced in dispersal across 
land to cooler catchments at higher elevation or higher latitude, 
as illustrated by the fragmented distribution of fish within a land-
scape29 and the high degree of endemism in freshwater organisms30. 
Aquatic insects have a variable potential to disperse actively between 
catchments in their adult stage31, while other organisms depend on 
vectors such as wind or transport by large motile animals such as 
birds32. For dispersal within and between catchments, colonization 
and expansion in cooler areas may be impeded by interactions with 
the resident community of species that can restrict the establish-
ment of new species despite an adequate propagule pressure32.

The discussion above outlines the challenges that species in 
inland waters face in responding to rapid climate change. Although 
the velocity of climate change of inland standing waters is about half 
that of the ocean, the future consequences for the conservation of 
species, and the goods and services they provide, are likely to be 
much greater. This is caused by the combination of low dispersal 
rates of some freshwater species, substantial barriers to dispersal 
and ongoing major disruption to inland water biodiversity and 
ecosystem function by multiple anthropogenic stressors30. A recent 
analysis showed that the tracking of isothermal shifts in latitude in 
terrestrial species was six times slower than in marine species33; this 
tracking is likely to be even slower for species from inland standing 
waters. Placing this global analysis in a conservation context will 
require information on the thermal tolerance of different freshwater 
species, their dispersal ability and the local and regional connectiv-
ity of their habitat. It will also require the more complex interactions 
between species within a community to be understood and, for spe-
cies such as amphibians and some insects and fish with life stages in 
different environments, the consequences of environmental change 
experienced in different realms.
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Methods
Temperature data. Water temperatures from 1979 to 2018 were downloaded from 
the ECMWF ERA5 re-analysis product at a grid resolution of 0.25° × 0.25°. The 
surface water temperature of global standing waters was simulated within ERA5 
(ref. 34) via the FLake model35,36, which is implemented within HTESSEL37,38 of the 
ECMWF Integrated Forecasting System (IFS). The water temperature model is 
one of the most widely used lake models and has been tested extensively in past 
studies3,39. The lake surface temperatures from ERA5 were also validated here with 
satellite-derived lake surface temperatures from the European Space Agency (ESA) 
Climate Change Initiative (CCI) Lakes project (CCI Lakes; http://cci.esa.int/lakes) 
that provides, among other things, daily observations of lake surface temperature 
at a grid resolution of 1/120° for 250 lakes worldwide. From version 1.0 of the CCI 
Lakes dataset40, we selected only lakes based on the existence of a 10 × 10 pixel 
array of pure water surrounding the lake centre, following the recommendations 
of ref. 41. For each of these lakes, a 3 × 3 pixel array was then extracted for each 
day, and the average of these pixels was then calculated before comparison 
with the ERA5 data, which were also extracted for the lake-centre location. The 
satellite-derived lake temperatures used in the study were acquired between 
2007 and 2018, the period during which most satellite retrievals were available 
in ESA CCI Lakes. Good agreement was obtained between the simulations and 
satellite-derived observations of lake surface temperature (Extended Data Fig. 1). 
A detailed description of the surface temperature model and the implementation 
of surface water temperature in the IFS is provided in ref. 42. The surface water 
temperature model in the IFS is supported by two climatological fields: (i) an 
inland water mask, provided by the US Department of Agriculture–Global Land 
Cover Characteristics data43, at a nominal resolution of 1 km, which provides 
the fractions of each surface grid occupied by surface water; (ii) depth, which 
is specified according to ref. 44 and combined with a global bathymetry dataset, 
ETOPO1, which is a 1 arcmin global relief model of the Earth’s surface that 
integrates land topography and ocean bathymetry. Surface air temperature over 
land and sea surface temperatures were also downloaded by ERA5 from 1979 to 
2018 at a grid resolution of 0.25° × 0.25°. All data from January 1979 to December 
2018, inclusive, were accessed and analysed at an hourly resolution. Annual and 
seasonal averages, which were used in all velocity calculations, were then calculated 
from the hourly data. Summer and winter temperatures were calculated for 
standing waters. Following ref. 2, summer was defined as 1 July to 30 September for 
lakes situated in the Northern Hemisphere and from 1 January to 31 March in the 
Southern Hemisphere.

Climate model projections. To calculate the velocity of climate change during 
the twenty-first century, we used the same water temperature model as in ERA5 
but driven by bias-corrected climate projections from four climate models 
(GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5) for historical 
(1861–2005) and contemporary to future periods (2006–2099) under three 
scenarios: RCP 2.6, 6.0 and 8.5. Similar to ref. 3, we downloaded atmospheric 
forcing data (air temperature at 2 m, wind speed at 10 m, surface solar and thermal 
radiation and specific humidity) needed to drive FLake from ISIMIP2b (https://
www.isimip.org/protocol/#isimip2b). All climate projection data were available at 
daily intervals and at a grid resolution of 0.5°. These data were used as inputs to 
the model after bias adjustment to the EWEMBI reference dataset45,46. To drive the 
surface water temperature model, lake depths were determined from the Global 
Lakes and Wetlands Database47, aggregated from the original 30-arcsec Global Lake 
Data Base44,48,49 to a 0.5° × 0.5° grid lake depth field. The depth dataset used by the 
lake model (that is, the average depth of all lakes within a grid) could influence the 
future projections, given that depth is an important lake attribute that influences 
the thermal response of lakes to climate change3,50. Notably, lakes of different 
depths within a grid could behave differently than those included here, which is a 
limitation that should be considered when interpreting these results.

Velocity of climate change. Climate velocities (km per year) were calculated by 
dividing long-term temperature trends (°C per decade) by the spatial temperature 
gradient (°C km−1). Long-term trends of each grid cell were calculated as the slope 
of a linear trend model, and the spatial gradients were calculated using a 3 × 3 grid 
cell neighbourhood. Finally, the spatial temperature gradient was calculated as the 
vector sum of the north–south and east–west temperature gradients. Specifically, 
the spatial temperature gradient for a focal cell was calculated as the difference in 
temperature for each northern and southern pair divided by the distance between 
them12. For these calculations we used the R package ‘Vocc’ (refs. 51,52).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
ERA5 data used in this study are available from https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. The FLake model 
source code is available to download from http://www.flake.igb-berlin.de/. Climate 
model projections are available at https://www.isimip.org/protocol/#isimip2b.
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Extended Data Fig. 1 | Validation of simulated lake surface temperatures. Comparison of simulated and satellite-derived surface water temperatures for 
196 lakes (2007-2018) from the ESA CCI Lakes dataset. Shown are comparisons of the average open-water temperatures for the lake-centre pixels.
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Extended Data Fig. 2 | the velocity of climate change in european standing waters. Shown for standing waters in Europe are a, the surface water 
temperature trend, b, the two-dimensional spatial gradient of surface water temperature change, and c, the velocity of climate change during the 1979 to 
2018 period. White regions represent those where standing waters are absent within the global database.
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Extended Data Fig. 3 | global relationship between the spatial temperature gradient and elevation. Shown is a comparison of a, the two-dimensional 
spatial gradient of surface water temperature change, and b, elevation. White regions represent those where standing waters are absent within the global 
database.
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Extended Data Fig. 4 | Comparison of the velocity of climate change and the spatial elevation gradient. Shown is the relationship between the velocity 
of climate change in the surface of inland surface waters and the two-dimensional spatial gradient of elevation change. Specifically, we show that climate 
change velocities are greater at sites with low elevation gradients. Thus, steep sites which show rapid change in elevation, experience lower climate 
velocities. Each box represents the interquartile range, the horizontal line is the median, and the whiskers are 1.5 times the interquartile range.
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Extended Data Fig. 5 | historic and future projections of global surface air temperature. Temporal change in annual surface air temperature anomalies 
(relative to 1951-1980) from 1861-2099 showing the historic period (1861-2005), with contemporary to future climate projections (2006-2099) under 
three representative greenhouse gas concentration scenarios (rCPs 2.6, 6.0, 8.5). The thick lines show the average of four global climate models 
(mIrOC5, IPSL-Cm5A-Lr, GFDL-ESm2m, HadGEm2-ES), and the shaded regions represent the standard deviation.
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Extended Data Fig. 6 | global variations in the velocity of climate change from 2006-2099 relative to 1861-2005. Shown are the differences in the 
simulated velocity of climate change between the historic (1861-2005) and the contemporary to future (2006-2099) period (that is, future minus 
historic) under rCP 8.5. results are shown for the lake model forced by four global climate models (a, mIrOC5; b, IPSL-Cm5A-Lr; c, GFDL-ESm2m; d, 
HadGEm2-ES). White regions represent those where the difference in climate velocities are negligible.
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