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Abstract
Resilience was compared for alternate states of phytoplankton pigment concentration in two multiyear

whole-lake experiments designed to shift the manipulated ecosystem between alternate states. Mean exit time,
the average time between threshold crossings, was calculated from automated measurements every 5 min during
summer stratification. Alternate states were clearly identified, and equilibria showed narrow variation in boot-
strap analysis of uncertainty. Mean exit times ranged from 13 to 290 h. In the reference ecosystem, Paul Lake,
mean exit time of the low-pigment state was about 100 h longer than mean exit time of the high-pigment state.
In the manipulated ecosystem, Peter Lake, mean exit time of the high-pigment state exceeded that of the
low-pigment state by 30 h in the cascade experiment. In the enrichment experiment mean exit time of the
low-pigment state was longer than that of the high-pigment state by about 100 h. Mean exit time is a useful
measure of resilience for stochastic ecosystems where high-frequency measurements are made by consistent
methods over the full range of ecosystem states.

Lake ecosystems provide diverse examples of complex
dynamics, including multiple stable states and critical transi-
tions among them (Scheffer 1998, 2009). These include alter-
nate states of phytoplankton biomass resulting from either
trophic cascades or nutrient enrichment (Carpenter 2003).

Holling (Holling 1973) recognized that ecosystems exhibit
multiple states and occasionally shift among them. Holling
introduced resilience as “the persistence of relationships within
a system” and “a measure of the ability of these systems to
absorb changes of state variables, driving variables, and
parameters, and still persist.” He distinguished resilience from
stability, “the ability of a system to return to an equilibrium
state after a temporary disturbance.” Unlike stability which is
a local measure that treats perturbations as isolated events,
resilience accounts for perturbations of large amplitudes and
the ongoing tempo of sequential disturbances. A section titled
“The Random World” (pp. 13–15 of Holling 1973) discusses
the role of random fluctuations in resilience, including

examples from lake eutrophication, food webs, and fisheries.
Holling’s ideas of resilience imply probabilities of persistence
of an ecosystem state or identity in a stochastic environment.
However, most research has focused on deterministic aspects
of resilience and few quantitative studies have addressed resil-
ience in a stochastic framework.

Arani et al. (2021) proposed “exit time” as a stochastic
measure of resilience. Exit time, a stochastic variable, is the
average time until a shift between states of a stochastic sys-
tem is first observed. The mean exit time, or the median, can
serve as a resilience measure. A familiar example is half-life
of a radioisotope. Decay from the radioactive state to the
daughter state is a stochastic process of single atoms. Its half-
life is the median exit time, or time until half of the radioac-
tive atoms have decayed. In global change science, Kleinen
et al. (2003) mentioned exit time from Atlantic Meridional
Overturning Circulation (AMOC, the state of the ocean that
brings a mild climate to Western Europe) as a measure of the
expected time available for policy action to maintain resil-
ience of Europe’s climate. Arani et al. (2021) present empiri-
cal methods for measuring exit time from ecosystem states
using time series data. We apply that method here to assess
resilience of experimental lakes to trophic cascades and
nutrient enrichment.

In 2008, we began a series of experiments designed to grad-
ually shift lake ecosystems between alternate states. Our goal
was to evaluate dynamic indicators of resilience based on
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statistical changes in time series as the lake shifted from one
state to another (Carpenter et al. 2011; Scheffer et al. 2015;
Pace et al. 2017; Wilkinson et al. 2018). Because these studies
measured lake ecosystem variables frequently during both states
of the ecosystem and the transition, the data are suitable for esti-
mating exit time. Here, we determine mean exit times for two
different manipulations that induced alternate states and pro-
vided high-frequency time series needed to assess exit time as a
quantitative measure of resilience as described by Holling (1973).

Methods
Peter and Paul Lakes

Paul and Peter lakes are paired lakes in Gogebic County,
Michigan, USA (46�250 N, 89�500 W). Since 1951 the lakes
have been used for whole-lake experiments with Paul as the
reference lake and Peter as the manipulated lake (Elser
et al. 1986). Since 1984 the lakes have been used for a series of
experiments on trophic cascades, allochthony measured by
13C addition, and eutrophication by nutrient enrichment
(Carpenter and Pace 2018).

Trophic cascade experiment
At the start of the trophic cascade experiment, Peter Lake’s

food web was dominated by planktivorous minnows. In 2008
and 2009, small numbers of adult largemouth bass (Micro-
pterus salmoides L.) were gradually added to Peter Lake
(Carpenter et al. 2011). A large year class of bass resulted in
2010. Increasingly with bass additions, minnows sought ref-
uge in shallow water and the surrounding bog (Cline
et al. 2014). The decline of minnow numbers in offshore
waters was followed by expansion of large-bodied grazing zoo-
plankton (Pace et al. 2013) and decline in chlorophyll concen-
tration (Carpenter et al. 2011). Paul Lake’s food web was
dominated by largemouth bass throughout the experiment
(Carpenter et al. 2011).

Nutrient enrichment experiment
Nutrients in the form of inorganic phosphorus and nitro-

gen were added to enrich Peter Lake in 2013, 2014, and 2015.
Nutrients were added daily over the summer season for the
first 2 yrs and only until early warning signals were obtained
in the third year (Pace et al. 2017; Wilkinson et al. 2018). Phy-
toplankton responded to the additions of nutrients but bloom
timing and magnitude varied considerably among years
(Wilkinson et al. 2018). Paul Lake, which drains into Peter
Lake, did not receive added nutrients and served as an
unmanipulated reference ecosystem.

High-frequency pigment measurements
We used automated pigment measurements during sum-

mer stratification to estimate mean exit times. Data were
recorded every 5 min.

During the cascade experiment, each lake was monitored
with two Yellow Springs Instruments multiparameter sondes

(model 6600-V2-4) equipped with optical chlorophyll a (Chl
a) sensors (model 6025) deployed at a depth of 0.7 m at a cen-
tral station (Batt et al. 2013). Chl a is reported in μg/L. We did
not use phycocyanin sensors in this study because cyano-
bacteria were at low concentrations throughout and did not
reflect the dynamics of the phytoplankton community.

During the enrichment experiment each lake was moni-
tored with a Hydrolab DS5X sonde including a sensor for phy-
cocyanin fluorescence (model 007291) deployed at a depth of
0.75 m (Pace et al. 2017). Chlorophyll sensors in this study
were not responsive to phytoplankton blooms unlike direct
manual measurements of extracted chlorophyll (S.I.).
Unknown processes likely related to the presence of large
cyanobacterial filaments resulted in low detection of
chlorophyll—a phenomena observed by others (Gregor and
Marš�alek 2004). Phycocyanin fluorescence and extracted chlo-
rophyll had similar dynamics consistent with limited micro-
scopic counts indicating blooms were dominated by
cyanobacteria (Wilkinson et al. 2018). Phycocyanin is reported
in relative fluorescence units (RFU). Direct laboratory measure-
ments of phycocyanin concentration (μg/L) were linearly
related to RFU (Pace et al. 2017).

Estimation of mean exit time
Mean exit time was estimated by the following steps: (1)

Standardize the pigment time series (Arani et al. 2021) (S.I.
Dynamic Linear Models); (2) Test the Markov hypothesis for
standardized time series by the Langevin method (S.I. Assess-
ment of the Markov Property and Stationarity). (3) Test the
stationarity of the standardized time series by the augmented
Dickey–Fuller (ADF) test (S.I. Assessment of the Markov Property
and Stationarity). (4) Using the standardized time series, esti-
mate the deterministic and stochastic components of a
Langevin model (system reconstruction); (5) Calculate mean
exit time for the ecosystem states of interest.

The in situ sensors detected chlorophyll for the cascade
experiment and phycocyanin for the enrichment experiment.
We used standardized levels of pigment fluorescence (S.I.
Dynamic Linear Models and Figs. S-1, S-2, S-3, and S-4) as indi-
cators of pigment concentration for both experiments. For the
standardized levels reported here, the ADF test rejected
the null hypothesis of non-stationarity (p < 0.01 for each lake
in each experiment) and data exhibited the Markov
property (S.I. Assessment of Markov Property and Stationarity).

Langevin analysis
Exit time develops from terms of the Langevin Eq. 1 as

summarized in several works (Siegert et al. 1998; Siegert and
Friedrich 2001; Rinn et al. 2016; Tabar 2019). A detailed
description of exit time analysis is presented by Arani
et al. (2021). We present an abbreviated explanation here. A
complete worked example (Peter Lake in the enrichment
experiment) is provided as R scripts: https://github.com/
SRCarpen/ExitTime_BinMethod_PeterLakeExample
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The time series of standardized levels bt/st were used as state
variables (xt) to estimate the drift-diffusion model known as
the Langevin equation (Carpenter and Brock 2011; Rinn
et al. 2016; Tabar 2019)

dx¼D1 xð Þdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 xð Þ

p
dW ð1Þ

The implementation in R is based on Rinn et al. (2016) and
the Matlab code of Arani et al. (2021). D1(x) is the deterministic

core of the dynamics called the “drift” in stochastic dynamic

modeling. Its roots D1(x) = 0 are the equilibria. D2(x), called “dif-
fusion” in stochastic modeling, is a deterministic function that rep-

resents the intensity of the noise as a function of x. The noise

source is dW where W stands for the Wiener process, and thus dW

represents Gaussian white noise. The fitted drift and diffusion

functions are used below in calculations of effective potential, the

stationary distribution, and mean exit time.

In this paper, diffusion functions are plotted using the
definition

D2 xð Þ¼1
2
σ2 xð Þ ð2Þ

Thus σ xð Þ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 xð Þp

, and this conversion allows drift and dif-
fusion to be compared in the same units, pigment standard-
ized level/time.

Potential and effective potential
Stability of dynamic systems can be illustrated by

potential curves, or “ball and cup” diagrams that show stable
points as valleys and unstable points as hilltops. For determin-
istic systems, the potential curve P(x) is the integral

U xð Þ¼
ðx

D1 zð Þdz ð3Þ

where z is a dummy variable and the integral is computed over the

relevant range of x.

The potential U(x) does not account for the noise of the
system. Studies of resilience should account for the possibility
that random events may change the shape of the potentials
(Horsthemke and Lefever 1984). Effects of noise are included
in the effective potential, UE(x) (Arani et al. 2021) and we use
his function here

UE xð Þ¼�
ðx
D1 zð Þ
D2 zð Þdzþ log D2 xð Þð Þ ð4Þ

Exit time
For both lakes in both experiments, the drift function D1

describes a curve with two stable equilibria separated by an
unstable equilibrium (main text Figs. 1–4). The expected exit
times from each stable basin can be estimated by solving the

backward Fokker–Planck equation with appropriate boundary
conditions for each basin:

D1 xð ÞdT
dx

þD2 xð Þd
2T
dx2

¼�1 ð5Þ

The solution of this equation, given the boundary conditions,
is mean exit time T(x) if the starting state of the system is x. For

each basin, we use an absorbing boundary at the middle unstable

equilibrium where small random disturbance can cause a shift

between basins. For the outer boundaries (left boundary of the left

basin, right boundary of the right basin) we use a reflecting

Fig. 1. Resilience analysis of manipulated Peter Lake during the Cas-
cade experiment. (A) Chlorophyll (standardized level) vs. year during
the experiment. Solid horizontal line denotes the unstable threshold.
(B) Drift (black) and diffusion (red) functions vs. chlorophyll standard-
ized level. (C) Effective potential vs. chlorophyll standardized level. (D) Exit
time (h) vs. chlorophyll standardized level, with probability-weighted
means, for the two stable basins. Vertical dotted line is the threshold
between the basins. (E) Stationary probability density vs. chlorophyll stan-
dardized level. Shading denotes the low-chlorophyll (blue) and high-
chlorophyll (green) basins.
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boundary to indicate that no shift occurs. If the boundary is

absorbing, T(x) = 0 at the boundary, i.e., the exit time is 0 at the

unstable edge between basins. If the boundary is reflecting, the

derivative dT
dx¼ 0 at the boundary, i.e., there is no change in T(x) at

the reflecting boundary. For calculations, we chose the left

reflecting boundary slightly above the lower limit of the data and

the right reflecting boundary slightly below the upper limit of

the data.

We solved the boundary-value problem (5) with the
bvpSolve() package in R using function bvptwp() (Mazzia
et al. 2014). An R script to illustrate the method using a simple
ecological model is found at https://github.com/SRCarpen/
Exit_Time_R

Solving for T(x) yields mean exit time as a function of x. It
is useful to have a single representative value of exit time for
an entire basin. We estimated a basin-wide mean exit time
for the full width of each basin as the probability-weighted
mean of T(x) with probabilities taken from the normalized sta-
tionary density of the Fokker–Planck equation which is com-
puted from D1 and D2 (Horsthemke and Lefever 1984; Arani
et al. 2021). For example, the mean of T(x) is p(x)T(x) where p
(x) is the stationary probability that sums to 1 over all values
of x. We integrated the stationary density using the hcubature
() function of the cubature() package in R (https://bnaras.
github.io/cubature/).

Uncertainty of exit time
To assess uncertainty of exit time, we first bootstrapped the

autoregressions by randomizing the errors (εt, Eq. S-1a) with
replacement and adding them to the predicted yt to generate
pseudodata (Efron and Tibshirani 1993). The pseudodata series
were fit to the Dynamic Linear Model (Eqs. S-1) and standard-
ized levels were used to estimate drift and diffusion (Eq. 2),
exit times (Eq. 5) and the stationary probability distribution.
One hundred bootstrap cycles were run, and the distribution
of exit times was corrected for bias (Efron and
Tibshirani 1993).

Results
Alternate states and resilience: Cascade experiment

Chlorophyll concentration time series during summer strat-
ification for manipulated Peter Lake and reference Paul Lake
were measured during the summer stratified seasons of 2008–
2011 (Figs. S1, S2).

Standardized levels of chlorophyll (Fig. 1A) in Peter Lake
were used to estimate components of a Langevin model
(Fig. 1A). Diffusion (variability) is larger than the deterministic
rate of change (drift) (Fig. 1B). We plotted sigma (Eq. 2) so that
both components have the same units.

Chlorophyll dynamics in Peter Lake are dominated by noise.
Nonetheless the drift function indicates three equilibria (three
crossings of the line y = 0). The left and right equilibria are sta-
ble, because a small increase in chlorophyll decreases the rate
of change causing chlorophyll to decrease toward the

equilibrium point, and a small decrease in chlorophyll increases
the rate of change, restoring chlorophyll toward the equilib-
rium point. The center equilibrium is unstable because small
changes of chlorophyll in either direction cause chlorophyll to
shift away from the center equilibrium. Thus, the center equi-
librium is a threshold separating two alternate stable equilibria.
The alternate equilibria represent the minnow dominated
(higher chlorophyll) and bass dominated (lower chlorophyll)
states. The effective potential (Eq. 4) shows two distinct stabil-
ity basins (Fig. 1C).

Exit time as a function of the initial value of chlorophyll is
zero at the unstable equilibrium, because a small perturbation
of chlorophyll at that point can shift the ecosystem in either

Fig. 2. Resilience analysis of Paul Lake, reference ecosystem for the Cas-
cade experiment. (A) Chlorophyll (standardized level) vs. year during the
experiment. Solid horizontal line denotes the unstable threshold. (B) Drift
(black) and diffusion (red) functions vs. chlorophyll standardized level. (C)
Effective potential vs. chlorophyll standardized level. (D) Exit time (h) vs.
chlorophyll standardized level, with probability-weighted means, for the
two stable basins. Vertical dotted line is the threshold between the basins.
(E) Stationary probability density vs. chlorophyll standardized level. Shad-
ing denotes the low-chlorophyll (blue) and high-chlorophyll (green)
basins.
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direction (Fig. 1D). Exit times rise as chlorophyll moves
either direction from the unstable equilibrium.

To obtain an average exit time over each basin, we calculate
the weighted averages where the weights are the normalized
stationary densities for starting values of chlorophyll (Fig. 1D,
E). The two states of the ecosystem are apparent in the station-
ary probability distribution. The mean exit times of the low
and high chlorophyll basins are 171 h and 196 h, respectively.

Fluctuations of chlorophyll in Paul Lake represent the base-
line variability of an unmanipulated ecosystem (Fig. 2A).
Although the diffusion is much larger than the drift, alternate
equilibria are discernible (Fig. 2B). Mean exit times of low and

high chlorophyll equilibria are 141 and 27 h, respectively
(Fig. 2D,E).

Alternate states and resilience: Nutrient enrichment
experiment

Phycocyanin RFU were highly variable in manipulated
Peter Lake (Fig. 3) and reference Paul Lake during the enrich-
ment experiment (Fig. 4).

Standardized levels of phycocyanin in Peter Lake suggest
shifts from low- to high-pigment levels during each year
(Fig. 3A). Diffusion (as sigma (Eq. 2), in the same units as drift)
was notably larger than drift (Fig. 3B). The effective potential

Fig. 3. Resilience analysis of enriched Peter Lake during the enrichment
experiment. (A) Phycocyanin (standardized level) vs. year during the
experiment. Solid horizontal line denotes the unstable equilibrium. (B)
Drift (black) and diffusion (red) functions vs. phycocyanin standardized
level. (C) Effective potential vs. phycocyanin standardized level. (D) Exit
time (h) vs. phycocyanin standardized level, with probability-weighted
means, for the two stable basins. Vertical dotted line is the threshold
between the basins. (E) Stationary probability density vs. phycocyanin
standardized level. Shading denotes the low-phycocyanin (blue) and
high-phycocyanin (green) basins.

Fig. 4. Resilience analysis of Paul Lake during the enrichment experi-
ment. (A) Phycocyanin (standardized level) vs. year during the experi-
ment. Solid line denotes the unstable equilibrium. (B) Drift (black) and
diffusion (red) functions vs. phycocyanin standardized level. (C) Effective
potential vs. phycocyanin standardized level. (D) Exit time (h) vs. phyco-
cyanin standardized level, with probability-weighted means, for the two
stable basins. Vertical dotted line is the threshold between the basins. (E)
Stationary probability density vs. phycocyanin standardized level. Shading
denotes the low-phycocyanin (blue) and high-phycocyanin (green)
basins.
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showed two stable basins, but the high-phycocyanin basin
appears shallower than the low-phycocyanin basin (Fig. 3C).
Exit times are zero at the unstable transition point between
the basins, and rise to the left and right of the transition point
(Fig. 3D). The two basins of attraction are evident in the sta-
tionary probability density (Fig. 3E). The probability-weighted
exit times are 290 h for the low-phycocyanin basin and 134 h
for the high-phycocyanin basin.

Paul Lake also exhibited seasonal fluctuations in standard-
ized level of phycocyanin (Fig. 4A). Diffusion was much larger
than the drift (Fig. 4B) but nonetheless alternate states are evi-
dent in the effective potential (Fig. 4C) and density (Fig. 4E).
Exit times are 112 h for the low-pigment basin and 13 h for
the high-pigment basin (Fig. 4D).

Validation of the models
For each dataset the one-step predictions of the fitted

Langevin equations compared to data had a lower negative
log likelihood than a hypothetical model with constant drift
(S.I. Model Validation). To visualize the goodness of fit we com-
pared one-step conditional probabilities predicted by the
Langevin equations with the observed one-step changes of
the data for selected initial points quantiles in each lake in
each experiment (S.I. Model Validation and Fig. S5). Predicted
distributions closely matched observed distributions.

Uncertainty of exit time estimates
Distributions of the deterministic equilibria (zeroes of the drift

function) were estimated by bootstrapping (S.I. Figs. S6, S7). For
Peter Lake, each bootstrapped pseudo-dataset, 100 for each
experiment, had three equilibria, two stable equilibria separated
by an unstable threshold. The variability of estimated equilibria
is relatively narrow and equilibria are well-separated on the pig-
ment axes (Fig. S6). For Paul Lake equilibria were distinct and
variability was modest (Fig. S7).

Distributions of mean exit time from 100 bootstrap cycles
were computed for both stable basins in both experiments
(S.I. Figs. S8, S9). Exit time includes the stochasticity of the
dynamics (diffusion). Patterns of the distributions were differ-
ent among experiments, lakes, and stability basins.

In manipulated Peter Lake, exit times were longer than in
unmanipulated Paul Lake based on interquartile ranges
(Fig. 5). Exit time from the low-pigment basin was longer than
exit time from the high-pigment basin in Paul Lake. In Peter
Lake for the cascade experiment the high-pigment equilibrium
had longer exit time than the low-pigment equilibrium. In the
enrichment experiment, this pattern was reversed with shorter
exit time in the high-pigment equilibrium.

Discussion
The long-term condition of both lakes is the low-pigment

state. In Peter Lake the manipulations caused short-term
excursions into the high-pigment state, but by different mech-
anisms. In the cascade experiment, intervals of high chloro-
phyll were caused by fluctuations in grazing associated with
movement of planktivorous fishes between littoral and pelagic
habitats (Pace et al. 2013; Cline et al. 2014). In the nutrient
enrichment experiment, intervals of high phycocyanin were
associated with accumulation of phosphorus and nitrogen in
phytoplankton (Wilkinson et al. 2018). When manipulations
ended, the ecosystem returned to the low-pigment pre-
manipulation state. For both experiments, phase-randomized
surrogate time series did not have alternate states, suggesting
that alternate states were not likely to be detected by chance
(S.I. Could Alternate States be Detected by Chance?).

In Paul Lake, fluctuations of pigment concentrations are
due to the routine dynamics of phytoplankton in a variable
physical–chemical environment, interacting with grazers in
an ecosystem that was not manipulated. Note that Paul Lake
lies upstream of Peter Lake, was sampled using a separate boat,
and was not contaminated with added nutrients. Chlorophyll
fluctuations in Paul Lake show occasional brief peaks in the
epilimnion (Fig. S2) as seen in previous studies (Carpenter and
Kitchell 1993; Carpenter et al. 2001). Weekly phytoplankton
counts in Paul Lake from 1984–1997 showed both absence
and occasional peaks of Cyanobacteria that are consistent
with the patterns we observed in high-frequency phycocyanin
data (Cottingham et al. 1998). These fluctuations could have
appeared as alternate states in our analysis.
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Fig. 5. Exit time for low- and high-pigment stable basins for both lakes
during the cascade and enrichment experiments. Error bars show the
interquartile range (25th to 75th percentile) and circle shows the median
(50th percentile) of 100 bootstrap samples (S.I.).
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We were surprised to see alternate states in the high-
frequency pigment data from Paul Lake. The experiments were
designed initially to test dynamic indicators of resilience. In
Peter Lake, several dynamic indicators provided early warnings
of loss of resilience but no indications of declining resilience
were detected in Paul Lake (Carpenter et al. 2011; Batt
et al. 2013; Pace et al. 2013, 2017; Cline et al. 2014; Wilkinson
et al. 2018).

We considered the possibility that cyclic fluctuations in
irradiance, temperature or other variables could appear to be
alternate states in sensor data. During each experiment
in each lake, daily samples were taken, returned to the
laboratory, and analyzed by fluorometry to measure Chl
a concentration (Carpenter et al. 2011; Pace et al. 2017). Drift
functions of the Langevin Eq. 1 for daily chlorophyll time
series show alternate states for the manipulated lake, Peter
Lake, but not for the reference Paul Lake (Fig. S-10 and
S.I. Alternate States in Daily Chlorophyll Time Series). However,
the diffusion component is relatively large, consistent with
the sensor data. Because of the daily time step and small
sample size (about 120 daily samples per year vs. 288 sensor
samples per day, or about 34,560 sensor samples per year in
each lake), we did not attempt to estimate exit time from the
daily data. Patterns in the daily data are consistent with the
alternate states we detected in Peter Lake but ambiguous with
regard to the alternate states we detected in Paul Lake. Further
research using high-frequency pigment measurements in a
wider variety of aquatic environments is needed to improve
understanding of alternate states of phytoplankton and the
response of stochastic indicators such as exit time.

An exit event occurs when the pigment line crosses the
unstable equilibrium that separates the two basins (Figs. 1A,
2A, 3A, 4A). Most of the intervals between exit events are
short, and some quick events are hidden by the width of the
plotted lines. Thus, the mean exit times range from about 1 to
10 d due to the dominance of short events (Fig. 5). These
rather short mean exit times are another indication of the
high variability of the time series.

To be useful an indicator of stochastic resilience should be
repeatable, comparable among ecosystems, responsive to
changes in resilience, and have low-to-moderate uncertainty
for real-world time series. In addition, for our method the
time series to be analyzed should meet the assumptions of
the Langevin method. For these sensors and these lakes, the
standardized levels analyzed here meet these conditions.
Different data standardizations may be appropriate for differ-
ent ecosystems or sensors.

In summary, resilience of phytoplankton biomass (as mea-
sured here by their pigments) in lake ecosystems may depend
on slowly-changing variables such as watershed sources of
nutrients and colored Dissolved Organic Carbon, sediment
release of nutrients, grazer dynamics, and apex predators. Grad-
ual trends of such variables reduce resilience and increase the
likelihood that random events can cause a regime shift

(Holling 1973; Scheffer et al. 2001). Our experiments simulated
gradual forcing of Peter Lake by trophic cascades or nutrients.
Pigment concentration, especially in sensor optical measure-
ments, is highly variable and this variance strongly affects resil-
ience measured using exit time and likely other stochastic
indicators. The temporal fluctuations of chlorophyll are large
enough that thresholds are crossed every few days when mea-
sured by high-frequency sensors during multiyear whole-lake
experiments. We suspect that a decades-long perspective of
high-frequency measurements could reveal much longer exit
times for past states of Peter Lake, consistent with patterns seen
in paleolimnological records (Leavitt et al. 1989). Nonetheless
we have shown a pathway for comparative resilience studies of
lake ecosystems using resilience measures that are consistent
with Holling’s (Holling 1973) emphasis of random fluctuations
as a key element of resilience. The challenge is to build long-
term highly-resolved datasets needed to measure stochastic var-
iates that may provide a quantitative indicators for comparing
resilience among aquatic ecosystems.

Data availability statement
Data used here are downloadable from: (1) Carpenter, S.,

M. Pace, J. Cole, R. Batt, C. Buelo, and J. Kurzweil. 2018. Cascade
Project at North Temperate Lakes LTER High Frequency Sonde
Data from Food Web Resilience Experiment 2008–2011 ver
1. Environmental Data Initiative. https://doi.org/10.6073/pasta/
5a8c6398661fad0bc8f1f5119b1150d6. (2) Pace, M., J. Cole, and
S. Carpenter. 2020. Cascade project at North Temperate Lakes
LTER—High Frequency Data for Whole Lake Nutrient Additions
2013–2015 ver 2. Environmental Data Initiative. https://doi.org/
10.6073/pasta/cbe19041db41e720d84970f43156c042
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