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A B S T R A C T   

A comprehensive real-time evaluation of the chemical status of surface water bodies is still utopian, but in our 
opinion, it is time to use the momentum delivered by recent advanced technical, infrastructural, and societal 
developments to get significantly closer. Procedures like inline and online analysis (in situ or in a bypass) with 
close to real-time analysis and data provision are already available in several industrial sectors. In contrast, atline 
and offline analysis involving manual sampling and time-decoupled analysis in the laboratory is still common 
practice in aqueous environmental monitoring. Automated tools for data analysis, verification, and evaluation 
are changing significantly, becoming more powerful with increasing degrees of automation and the introduction 
of self-learning systems. In addition, the amount of available data will most likely in near future be increased by 
societal awareness for water quality and by citizen science. In this analysis, we highlight the significant potential 
of surface water monitoring techniques, showcase “lighthouse” projects from different sectors, and pin-point gaps 
we must overcome to strike a path to the future of chemical monitoring of inland surface waters.   

1. Current status vs. potential applications 

Regulatory and scientific chemical monitoring serves societal and 
ecological needs, focusing on surface water bodies and dissolved 
chemical species in industrialized and populated areas. A highly visible 
challenge is the protection of drinking water resources and the avoid
ance of adverse ecological effects in the context of global climate change 
and the associated changing water distribution. Erfurt et al. (2019) 
describe the impact of drought events from 1800-2018 on southwestern 
Germany and emphasize: “Droughts […] cause impacts on ecology, 
economy, health, governance, and social behavior.” Consequently, 
while recognizing increasingly competing interests for water use and 
re-use (e.g., temperature (Zavarsky and Duester 2020)) and raising so
cietal awareness for global water distribution, chemical water moni
toring (regulatory and scientific) is increasingly important in 
transnational decision-making processes. Strategies on how to monitor 
the almost unmanageable multitude of anthropogenic chemical species 
from different sources are available. Usually, at different levels of 
complexity, they aim to provide robust data of the current chemical 
water quality status in order to (i) deliver long-term data on trends, (ii) 
detect patterns of chemical substances, (iii) detect potential threats to 

humans, biota, and ecosystem health, (iv) evaluate the current risk po
tential for the water bodies, (v) deliver inputs for prediction tools, and 
(vi) support decision-making on the political, environmental, and eco
nomic level. 

In past monitoring activities, the decoupling of sampling, analysis, 
and data provision was self-evident and a consequence of the clear 
separation between the in situ (sampling) and ex situ (laboratory) 
workload. Prominent examples of drawbacks caused by this practice are, 
discontinuous monitoring schemes with grab samples and large time 
intervals, or the failing to address discontinuously released chemical 
species (e.g., pesticides). Moreover, the delayed availability of data, 
impedes authorities and downstream waterworks to immediately 
respond to spill events. Additionally, current chemical routine moni
toring often provides only a small glimpse of the chemical burden in 
surface waters. So far, it focuses on regulated substances and as a direct 
consequence, it usually misses the multitude of emerging contaminants 
such as precursor species, by-products of industrial processes or the 
various transformation products. Taking this into account, it is time to 
look ahead at potential solutions, from technical innovations to verified 
monitoring approaches. Nowadays, time gaps between sampling, sam
ple preparation, analysis, quality management, data-processing, and 
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-provisioning are decreasing through significant technical improve
ments. These key technologies for improvements are also crucial for 
development towards the fourth industrial revolution (e.g., digitaliza
tion, big data and artificial intelligence analytics, from offline to inline 
and atline analyses, Internet of Things). Routine surface water moni
toring already includes continuous real-time inline (in situ) and online 
(in a bypass, e.g., a monitoring station) measurements as well as auto
mated data processing of basic physicochemical water quality parame
ters such as temperature, pH, conductivity, dissolved oxygen (DO), and 
turbidity. In some river basins, like at the river Rhine, international alert 
and warning plans are in place based on flow time models fed by 
chemical analyses at seven international stations along the river 
(https://www.iksr.org/en/topics/pollution/international-warning-a 
nd-alarm-plan), including close to real-time, on- and atline analysis 
(definitions in Fig. 1). Following this example, within the last decades 
each year between 16 and 61 alerts were triggered. These alerts included 
events from shipping, industries, agriculture, others, and unknown 
sources. However, as explained later this only includes visible (e.g., oil 
films) or target pollutants and systematic non-target approaches are 
urgently needed to complete the picture. 

This article raises awareness for the high innovation potential visible 
in the chemical surface water quality monitoring, provided by the fourth 
industrial revolution. The most significant bottlenecks are addressed to 
deliver a basis for further discussion between different interest groups 
(e.g., science, administration, industry, politics). The aim is to create a 
common ground for future activities both in regulative and scientific 
surface water quality monitoring. We share the vision, within a time
frame of ten to twenty years, the chemical surface water quality moni
toring can catch up with its technical potential, if we set the right course 
today. 

2. Current routine? Today’s sensor-based monitoring 

To address the classical physicochemical parameters, well- 
established sensor designs are often preferred when large maintenance 
intervals are needed, e.g., in areas with limited infrastructure. These 
sensors form the basis of almost every chemical surface water moni
toring network, and the technical development has a significant overlap 
with the wastewater treatment market segment. In the last decades, the 
set of sensors was extended by ion selective electrodes (ISEs) and optical 
detection methods (UV-VIS, IR, fluorescence) for detection of specific 
chemical species or sum parameters (Finch et al. 1998, Jannasch et al. 
1994, Langmuir and Jacobson 1970). However, sensitivity, selectivity, 
interferences, and fouling effects may significantly limit their applica
tion (DeMarco et al. 2007, Pellerin et al. 2013). An example for in
terferences limiting ISEs is an over-estimation of the analyte’s 
concentration due to ionic interferences (Pellerin et al. 2013), e.g., by K+

while monitoring NH4
+ (Wang et al. 2020). Optical sensors for nitrite 

own often detection limits in the mg L-1 range, which is rarely reached in 
European natural waters and can be impacted by fouling effects on the 
optical measurement windows. However, anti-fouling techniques are 
already in practice or included in prototypes. They make use of fouling 
resistant materials, UV light from LEDs, or turbulences from air flushing 
(Meyer 2003). In summary, certain parameters are still difficult to be 
analyzed with sensors, but several recent technical approaches improve 
the measurements. Reagent-free or colorimetric optical sensors provide 
data for nutrients and optically visible substances (e.g., Boënne et al. 
(2014), Rieger et al. (2008)). Giving higher precision compared to ISEs 
(Pellerin et al. 2016), they are, sensitive to turbidity and colored water, 
i.e., high concentrations of suspended matter or humic substances 
dominant in wetlands or during floods, e.g., Blaen et al. (2016). Sensors 
based on fluorescence spectroscopy are employed to quantify aromatic 
organic compounds, chlorophyll α (Blaen et al. 2016), and algae 

Fig. 1. Categories in surface water monitoring analogous to process technologies. An in situ technique is inline (automated continuous analysis directly in the river, e. 
g., by sensors, and automated data provisioning), ex situ methods are online (continuous automated sample supply and analysis in a bypass with automated data 
provisioning, e.g., colorimetric methods with chemical addition), atline (more complex discontinuous analysis with either automated or manual sample preparation 
and supply and often discontinuous data provisioning), or offline (sample transport is mostly done manually to a different building or laboratory for analysis, 
resulting in time delays in data provisioning). 
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(Besmer et al. 2014, Ye et al. 2014). A validation of the sensor-based 
online techniques in direct comparison to the respective offline 
methods must therefore always be undertaken within the respective 
catchment area. As an example, for optical dissolved organic carbon 
(DOC) sensors the sum parameter is calibrated in the laboratory with a 
single substance. In contrast, in every surface water this sum parameter 
consists of several substances varying in composition and therefore re
sults may differ significantly. This also applies to turbidity, which is also 
a sum parameter. In addition, cross-comparison to remote sensing ac
tivities are needed to be able to monitor also inaccessible surface waters 
(e.g., due to topography; Gholizadeh et al. (2016)). Sensors are 
comparably easy to use, usually cheaper than the alternatives, run 
continuously (Blaen et al. 2016), and can be applied in situ, online in 
monitoring stations, or mobile on trailers/ships or autonomous vehicles 
(e.g., Meyer et al. (2019), Petersen (2014)). Even if sensor-based mea
surements still sometimes lack precision, they already are used to trigger 
event-based sampling during extreme events, spills, droughts, or algae 
blooms (e.g., by water level sensors; Gunold et al. (2019)). As an 
example, they own a significant potential to enhance the precision of 
river basin balances. Taking it together, to improve “routine” moni
toring, better knowledge of the limits of accuracy for the sensors 
(interfering factors and common practice to correct data, e.g., Shaugh
nessy et al. (2019)) and improved solutions to suppress fouling must be 
available. 

3. From offline to online 

Usually, the most analytically accurate methods (providing often 
also the lowest limits of detection (LODs)) are laboratory offline tech
niques. If feasible, these techniques can be transferred to automated 
online monitoring techniques and adapted to tolerate extended main
tenance intervals. Basically, injection systems are modified, software is 
adapted for 24/7 runtimes, process and quality control (QC) as well as 
the data processing and evaluation need to be automated. In contrast to 
many fourth industrial revolution trends, e.g., in the semiconductor 
industry (Wiederin and Otaki 2017), surface water is biologically active, 
delivering its own challenges, for which filtration or disinfection (e.g., 
with UV light) may improve the analytical stability. 

To transfer laboratory methods to online monitoring methods, a 
higher degree of freedom than in conventional method development is 
needed. This can be supported, e.g., by 3D-printing of low-cost auto
samplers run by open-source software (Carvalho and Murray 2018), 
designing self-cleaning autosamplers with integrated sample filtering 
controlled by RaspberryPi (Stadler et al. 2017), or using cost-effective 
pipetting robots (Steffens et al. 2017). To foster these processes, more 
scientists and institutions must support open-source software develop
ment and open-access technology sharing trends, beyond the informa
tion usually delivered in publications. 

3.1. Inorganic substances 

Using common analysis techniques, robust in situ lab-on-a-chip de
vices have recently been 3D-printed for the detection of Pb, Cd, Zn, Cu, 
Hg (Katseli et al. 2020, Lee et al. 2017), NH4

+ (Fornells et al. 2020), and 
algae (Schaap et al. 2012). Automated online IC has recently been 
developed for anion and cation monitoring in rivers (Floury et al. 2017, 
Murray et al. 2020). As an example for single element analyses, total Hg 
has been analyzed online by cold vapor atomic absorption spectrometry 
(CV-AAS) for 5 days at the river Elbe, Germany (Elsholz et al. 2000). For 
less polluted water bodies, enrichment or the more sensitive atomic 
fluorescence spectrometry detector (AFS) are suitable online alterna
tives. The most commonly used instrument in single-run, multi-element 
analysis of trace elements is inductively coupled plasma mass spec
trometry (ICP-MS). ICP-MS has been applied online for trace elements in 
environmental aerosols (Mishra et al. 2018) and is already automated in 
the semiconductor industry atline for vapors and liquids (Wiederin and 

Otaki 2017). Single run multi-element analysis with 20-70 analytes by 
ICP-MS (Belkouteb et al. in prep., Fabricius et al. 2020) and online 
preconcentration solutions (Wuttig et al. 2019) are first steps towards 
real multi-element online analysis of the almost complete surface water 
element balance. For automated online voltammetric determination of 
trace elements, commercial techniques exist for about 20 elements down 
to ppt concentrations (e.g., Metrohm Process Analytics, 2016). For some 
elements, speciation (i.e., oxidation state) is possible (e.g., As, Sb, Fe, Cr, 
Mo, Se) and also in situ sensors exist (Illuminati et al. 2019, Tercier-
Waeber et al. 2021). In addition to total element concentration analysis, 
isotopic analysis can provide evidence for the origin of the water and 
impacts from different tributaries. The first online injection techniques 
for stable water isotopes without isotopic fractionation have already 
been evaluated 9 years ago for potential field application (Herbstritt 
et al. 2012, Koehler and Wassenaar 2011), while online application was 
first performed in 2017 (von Freyberg et al. 2017). A similar setup was 
used for the analysis of δ13C in dissolved organic carbon (DOC) and 
dissolved inorganic carbon (DIC, Hartland et al. (2012)) and therefore 
also has the potential to be run online. Total radioactivity of water 
currently is surveilled continuously by the widely used scintillation 
analysis with probes in real-time within networks across large areas (e. 
g., Doll et al. (2013), Wedekind et al. (1999)). Most important aspects to 
be improved in the next 10 to 15 years are: reduce the price and raise the 
robustness as well as further promote online preconcentration and ma
trix removal methods. 

3.2. Organic substances 

Organic micropollutants in water are usually analyzed by gas chro
matography (GC) or liquid chromatography (LC) coupled to mass 
spectrometry (MS). The automation of sample preparation by online 
solid-phase-extraction–LC-MS for the analysis of a variety of pesticides, 
pharmaceuticals, biocides, and industrial chemicals in surface water 
bodies has recently made enormous progress (as reviewed by Elpa et al. 
(2020)). While the technical equipment for such setups is commercially 
available, the automation of the entire workflow, including sampling 
but especially data processing and evaluation, is more challenging and 
requires custom-built solutions (see Section 3.3). Nonetheless, almost 
entirely automated laboratories are operating on a continuous basis, in 
one example for the monitoring of specific organic compounds in in
dustrial production water (Wortberg and Kurz 2019). 

In contrast to target analysis, which is restricted to a limited selection 
of known analytes, non-target-screening (NTS), based on the detection by 
high-resolution mass spectrometry (HRMS), enables the analysis of all 
compounds amenable to the chosen chromatographic method and 
detected by the MS applied. Thus, the data can be screened post-analysis 
for any known or suspected contaminant, a process which can be 
automated by employing a substance library (Jewell et al. 2019). In 
addition, NTS enables the detection of unknown contaminants by 
searching the data for characteristic emission patterns or unexpected 
changes and then identifying these unknowns with the help of the ac
quired mass spectra (Ruppe et al. 2018, Schlüsener et al. 2015). NTS is 
thereby both a powerful tool for (in a sense) digitally storing samples for 
post-analysis screening (Hollender et al. 2017) and also to increase the 
breadth of chemical monitoring. Only recently, Stravs et al. (2021) 
developed a trailer-based automated sampling and HRMS measurement 
system for surface water, e.g., for the deployment in remote locations. 
To make use of the full potential of NTS, we must address the following 
challenges: Especially for automated online monitoring, optimized and 
robust algorithms for automated processing and evaluation of NTS data 
are essential (see Section 3.3). There is a need to increase the compa
rability of NTS data by strategies for quality assurance such as the 
application of (automated) quality control charts (e.g., for mass devia
tion and resolution, absolute and relative intensities) as well as the 
evaluation of false positives and false negatives, i.e. erroneous de
tections or non-detections due to errors in the data evaluation 
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algorithms. Moreover, freely available mass-spectral libraries tailored to 
surface water monitoring must be continuously extended and be easily 
accessible to overcome the bottleneck of compound identification. 
Finally, databases for storing quality-assured NTS data combined with 
powerful and easy-to-use online dashboards for user-specific data eval
uation and prioritization would foster the inter-regional and retrospec
tive evaluation of both known and unknown organic water 
contaminants. 

3.3. Automation of data processing and evaluation 

Next to instrumental automation, online routines in quality assur
ance and quality control (QA/QC), process control, and data processing 
must be adapted. Regarding the high throughput of samples, automated 
data processing, data QA/QC, its evaluation, and close to real-time 
availability are becoming more common (Fleischer and Thurow 
2018). Sometimes, commercial solutions are applied (Ehmann et al. 
2006), but usually at the moment at least parts of the setups must be 
adopted or developed from scratch (Wortberg and Kurz 2019). Fortu
nately, the lack of commercial software applications is filled by several 
open-source automation solutions for both instrument control and data 
evaluation (Rijkenberg (2016), e.g., ms-utils.org, https://bio.tools, 
ms-utils.org, 2022, Ison et al. (2016)). Open-access journals and ex
change platforms may help to accelerate knowledge sharing and thereby 
foster automation of data processing and evaluation techniques which is 
urgently required for real-time data provisioning. QA/QC can involve 
regularly analyzed standards, redundant systems, or statistical data 
(history) evaluation like classification of river water composition based 
on principal component analysis and linear discriminant analysis, e.g., 
Filella et al. (2014). Automated data evaluation may end up in, e.g., pure 
warning systems by comparing with threshold values (Wortberg and 
Kurz 2019) or forecasting and early warning systems based on artificial 
neural network or inferential modeling in addition to threshold values 
(Recknagel et al. 2017, Xia et al. 2015, Zhu et al. 2010). To be able to use 
automated data evaluation systems on all monitored parameters, 
significantly more time and money must be invested into trans
disciplinary collaboration between, e.g., data- and environmental sci
entists. Here, large societal expectations lead in some cases to financial 
backing in areas like adaptive decision support systems, bayesian 
network modeling, machine-, deep-, or self-learning (incl. artificial 
neural network as reviewed in Ighalo et al. (2020)), often misleadingly 
summarized as “artificial intelligence” (Adeyemi et al. 2017, Kim and 
Lee 2018, Marcot and Penman 2019, Quinn and Hanna 2003, Yekeen 
and Balogun 2020). Next to transdisciplinary collaboration, trans
boundary collaboration must be intensified to successfully apply these 
emerging techniques for the benefit of our rivers and surface waters. 

4. Non-stationary monitoring 

Usually, stationary platforms are employed for surface water moni
toring and sampling. Besides these, mobile infrastructures (e.g., trailer- 
based ex situ or autonomous in situ) equipped with GPS trackers, self- 
sustaining energy supply and data transmission via satellite or cellular 
network, depending on how remote the location is (Nam et al. 2005), are 
employed. Non-stationary examples from marine monitoring include 
buoys, autonomous gliders, and sailing boats or ferries. The latter pro
vide more infrastructure and the water utilized for engine cooling or 
daily needs can be sampled and analyzed without changing processes on 
the ships (Petersen 2014, Steffen 2018). Buoys are also employed in 
rivers (Apel et al. 2012) while autonomous gliders, e.g., for microplastic 
screening with near-IR-light sensors and optional sampling (Edson and 
Patterson 2015), are difficult to realize for waterways where the chal
lenges are less of technical nature, but more about legal challenges due 
to increased traffic densities compared to oceans. Remote-controlled 
boats already monitor small rivers/lakes for topography, hydrometry, 
and routinely for water quality (Degel and Hofmann 2017, Kutschera 

et al. 2017, Wiek et al. 2019). This on-site in situ monitoring is com
plemented by remote sensing towards spatially comprehensive moni
toring with optically active parameters like chlorophyll, turbidity or 
drought monitoring (reviewed in Gholizadeh et al. (2016), Wieland and 
Martinis (2020)). To develop and optimize more robust non-stationary 
deployable techniques, again transdisciplinary research efforts as well 
as a close collaboration between science and industry is needed, while 
legal restrictions for autonomous vessels in inland waters must be 
overcome. In addition, it is for foreseeable that satellite-based moni
toring merged with ground-based monitoring will play a more signifi
cant role in the future. 

5. Citizen science 

There are already examples of successful citizen science projects to 
monitor river water levels using modern smartphone capabilities (Etter 
et al. 2020, Strobl et al. 2019), routine water quality parameters by 
employing test kits (EarthEchoInternational, 2014), or biological pa
rameters such as bacterial DNA or blooms of cyanobacteria (htt 
p://www.my-osd.org; https://cyanos.org/) are addressed. Several 
challenges and restrictions are still visible (i) only easy-to-determine 
parameters are addressed, (ii) a carefully designed, well-explained 
experimental setup to avoid temporal and spatial data biases is 
needed, (iii) data/ sample transmission must be easy to use, (iv) a 
complex data evaluation including provisions for potential sampling 
differences is usually involved and (v) discussions about integrity of 
research and intellectual properties need to be overcome (Guerrini et al. 
2018). Even though the quality of citizen-based data is an ongoing point 
of discussion (Kosmala et al. 2016, Quinlivan et al. 2020, Thornhill et al. 
2018), it is self-evident the overall data quality will increase once a 
higher degree of automatization and of “plug and play” solutions are 
implemented. Initiatives like “MyH2O“, are already beyond science by 
bridging the gap between data collection and provisioning, delivering 
more security for the local population (https://www.unenvironment. 
org/youngchampions/news/story/turning-data-drinking-water-china). 
Undoubtedly, fostered by commonly used high-tech devices, by higher 
robustness and lower prices of analytical devices and by big data mining, 
data created by non-scientists shows the greatest and so far, mostly 
unexploited, potential for our future environmental monitoring. 

6. Can we draw the full picture? 

Progress has been made and is still ongoing in the development, 
improvement, and evaluation of monitoring techniques. Diverse light
house projects already prove that automated online water monitoring is 
possible. However, adaption to routine online monitoring is often 
missing. Now is the right time to take the available techniques as a basis 
and add, step-by-step, innovative approaches from different sources 
(Fig. 2). This includes monitoring from different (autonomous) plat
forms (especially in remote areas), citizen science projects, utilizing 
existing infrastructures (like freighters), or creating new structures (like 
trailers). Inclusion of remote sensing techniques complement already in 
situ data, especially for areas with no possibility for area-wide in situ 
monitoring. 

Demands in chemical water monitoring depend on hydrological 
conditions, the degree and kind of contamination expected, the moni
toring aim, and last but not least the political will and financial means. 
Employed monitoring techniques and selection of monitoring parame
ters must vary significantly depending on the system monitored, e.g., 
major rivers need many parameters with lower time resolution, while at 
small rivers fewer parameters with a high time resolution are needed. In 
the current, far too long-lasting situation, countries downstream suffer 
from upstream chemical discharge. Therefore, especially at borders, 
networks of automated close-to-real-time monitoring stations will 
improve trust-based relations between countries. These joint projects 
are always also peace projects, especially in times of global change. 
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Regulative monitoring (based on the verification of compliance with 
limit values) can profit from scientific monitoring (based on a scientific 
question, usually not directly connected to regulation) to describe the 
current water status in much more detail. By using robust online tech
niques, threats towards goods worth of protection can be minimized and 
decision-making processes are improved. On the other hand, scientific 
monitoring can profit from regulative monitoring by its long-term data 
to, e.g., calibrate models and prediction tools. Cooperation and scientific 
exchange between different interest groups such as authorities, re
searchers, and industry will not only foster the innovation processes, but 
will also create a branched monitoring network where every single 
branch, and also in the end the environment, profit. 

Future monitoring should focus on close to real-time (online) data 
provisioning with (if needed) high time-resolution and low LOQs. 
Following the utopia of data transport instead of sample transport, in 
long-term perspective, this will save energy, time and money. The data 
created will enable a more comprehensive communication of evalua
tions and prognosis to stakeholders and the public. Currently, in several 
industrialized countries, trace-level concentrations and the detection of 
so-far unknown substances are often of highest concern. Once imple
mented, automated monitoring may quickly pay back their substantial 
initial costs, as in industrialized countries personnel expenses are high 
and can be significantly reduced by automation. For countries with less 
infrastructure and significantly different, often well-known pollution 
patterns, a reduction of costs of the available techniques will presumably 

enable improvement in surface water monitoring. Here, after price re
ductions, communities supported by citizen science tools are more often 
likely to take matters into their own hands. 

7. Conclusions 

To exploit the whole range of the potentials given by the so-called 
fourth industrial revolution for chemical surface water quality moni
toring, we must improve the following aspects within this decade:  

- Improve the technical equipment:  
- lower costs, raise robustness, and save resources via miniaturization,  
- enable automated online analysis of previously offline techniques,  
- automate matrix removal and analyte enrichment.  
- Exploit additional information from the complementary online 

monitoring by including not only chemical but also hydrological, 
(micro)biological, ecotoxicological, and sedimentological 
parameters. 

- Provide automated data processing and on-the-fly evaluation con
cepts like self-/ deep-/ machine-learning. Make these openly avail
able to increase the impact.  

- Create networks across all borders (countries and stakeholders) and 
address whole catchment areas to increase the efficiency of warning 
and forecasting approaches. 

Fig. 2. Summary of techniques and parameters available for chemical real-time surface water monitoring. These are in situ techniques with monitoring from boats, 
buoys and pontoons, data collection through citizen science and remote sensing, as well as techniques currently known from laboratories requiring more infra
structure which is provided in ships, trailers and monitoring stations. 
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- Most of all, time and money must be spent on an intensified 
knowledge exchange between different scientific fields and interest 
groups. 
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Nenadic, A., Peterson, H., Profiti, G., Rice, P., Romano, P., Roncaglia, P., Saidi, R., 
Schafferhans, A., Schwämmle, V., Smith, C., Sperotto, M.M., Stockinger, H., 
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