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A B S T R A C T   

The potential for cyanobacterial blooms to impact recreational and drinking water source quality is a growing 
concern. Numerous monitoring tools have been developed that can alert stakeholders to the onset of cyano-
bacterial blooms to initiate mitigation efforts for waters used for recreation or drinking water supply. Early 
warning monitoring systems need to consider multiple aspects of a cyanobacterial bloom: whether a bloom is 
occurring in the source water, whether it might be transported to drinking water intakes, whether toxin or taste 
and odor compound producers are present and what proportion of the cells in a bloom they comprise, and 
whether cells are entering a utility at concentrations above threshold levels. No single monitoring tool can 
provide all this information, so multi-barrier approaches are needed. Reviews of monitoring tools and their 
variations are available, but they are generally limited to one type of tool. Instead, a review and comparison of all 
the available tools is needed to inform stakeholders of them and their relative advantages and limitations. 
Therefore, this review covers conventional tools including microscopic enumeration, pigment extraction, qPCR, 
probes, and remote sensing as well as emerging techniques including next-generation sequencing, photonic 
systems, biosensors, drones, and applications of machine learning and discusses them primarily from a practical 
and operational standpoint. Moreover, a three-tier framework is proposed for designing comprehensive early 
warning systems that groups monitoring tools by their analytical targets: biological activity or algal biomass, 
cyanobacteria or cyanobacteria-related genes, and cyanobacterial metabolites. First tier tools are generally 
simple and inexpensive to use, including turbidity, optical density, visual inspection, drones, chlorophyll a, and 
adenosine triphosphate. Changes in water quality conditions detected using a first tier tool triggers the use of a 
second tier tools for identification and quantification of cyanobacteria by microscopy, phycocyanin, biosensors, 
hyperspectral remote sensing, or next-generation sequencing. If potentially harmful concentrations of cyano-
bacteria are confirmed, third tier tools are deployed for quantifying concentrations of cyanotoxins and taste and 
odor compounds or the genes that encode for them using enzyme-linked immunosorbent assays, mass spec-
trometry, qPCR, or other analytical methods. This framework is designed to minimize the time and cost asso-
ciated with cyanobacteria monitoring without compromising the ability of stakeholders to detect the onset of a 
bloom.   
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1. Introduction 

Cyanobacteria are a group of diverse photosynthetic bacteria that 
can form blooms in water bodies (Bergkemper and Weisse, 2018; 
Seckbach, 2007). Climate change and excess nitrogen and phosphorus in 
water bodies promote cyanobacterial blooms, which may decrease 
phytoplankton diversity (Merel et al., 2013; Paerl and Paul, 2012). 
Moreover, toxins produced by cyanobacteria can induce serious illness 
or mortality in animals, including humans. Cyanobacteria can cause 
harmful algal blooms (HABs) and have become a serious global issue in 
freshwater lakes, rivers, and reservoirs (Zhou et al., 2017). Although 
multiple environmental factors contributing to bloom formation have 
been identified, the exact triggers that initiate their occurrence are still 
unclear (Huo et al., 2018). 

Some strains of cyanobacteria can produce potent toxins that may 
cause acute or chronic effects. Human exposure to cyanotoxins can occur 
through drinking water, recreational activities, or ingestion of seafood 
grown in HAB-impacted waters (Merel et al., 2013; Shang et al., 2018; 
Zamyadi et al., 2012a). Cyanobacteria can also produce taste and odor 
compounds, which affect water aesthetics and consequently the 
perception of drinking water quality by consumers and recreational 
water users, although these are typically not regulated. Drinking water 
quality guidelines related to cyanobacteria are based on maximum 
acceptable concentrations of toxins in treated water supplies (Courtois 
et al., 2018). Among all the cyanotoxins, microcystins are the most 
monitored group of cyanotoxin for water quality evaluation due to their 
high toxicity and widespread occurrence (Banerji et al., 2019; Du et al., 
2019; Lee et al., 2018). Globally, drinking water guidelines typically 
limit the concentration of microcystins (expressed as total microcystins, 
microcystin-LR, or microcystin-LR equivalents) to 1 to 2 µg/L for the 
general population and 0.3 to 0.4 µg/L for bottle-fed infants. 

Due to the potential for HABs to cause aesthetic and regulatory is-
sues, a wide range of techniques for monitoring cyanobacteria have been 
developed. However, accurately predicting cyanobacterial blooms in 
freshwater sources remains a challenge, so many utilities have focused 
on early warning systems to gain sufficient response time to react to 
potentially toxic HABs (Beardall and Raven, 2004; Bissinger et al., 2008; 
Geider and La Roche, 2002; McQuaid et al., 2011; Mohlin et al., 2012; 
Paerl et al., 2014). These source water monitoring programs require 
extensive financial resources, staff time to complete sampling and lab-
oratory analyses, and technical expertise to interpret data. Alert levels 
for what constitutes a HAB are scattered throughout the literature and 
other sources and include different water quality parameters (Ahn et al., 
2007; Chorus and Bartram, 1999; EPA Office of Water, 2015; Hazen and 
Sawyer, 2015; Newcombe, 2009). As a result, utilities are faced with 
making independent decisions on thresholds that prompt monitoring of 
cyanotoxins. This has resulted in an extreme diversity in the monitoring 
and detection tools deployed, ranging from visual identification to more 
sophisticated online monitoring with buoys equipped with probes. 
Despite these efforts, routine monitoring programs have been histori-
cally unreliable for alerting water utilities to cyanobacterial blooms 
(with only 53% reporting success in being notified of developing HABs) 
(AWWA, 2016). Furthermore, existing detection systems are often sus-
ceptible to interferences. Therefore, a synthesis of the knowledge in the 
literature and a summary of the advantages and limitations of current 
monitoring tools would benefit utilities that face HAB risks. 

A variety of different water quality indicators have been proposed for 
early detection of cyanobacterial blooms, including cell counts (Chorus 
and Bartram, 1999), chlorophyll a (Izydorczyk et al., 2009), extracted 
phycocyanin (Ahn et al., 2007), and phycocyanin fluorescence 
(Almuhtaram et al., 2018). Threshold values (medium, high, very high) 
are often provided to prompt utilities to begin additional monitoring or 
treatment (Newcombe, 2009). The ability to monitor cyanobacteria 
promptly and accurately, as well as associated toxins and taste and odor 
compounds, in order to correctly identify the exceedance of an alert 
threshold, is thus a key factor in the implementation of a successful risk 

management strategy (Zamyadi et al., 2016). However, these parame-
ters and guidelines vary with respect to sensitivity and time of analysis. 
Furthermore, cyanobacterial biomass and community composition are 
highly inconsistent in time and space; therefore, their characterization 
requires an analytical approach that captures this variability (Zamyadi 
et al., 2016). 

Some parameters can be measured in real-time and in situ using 
water quality probes, while other parameters require laboratory space 
and longer turnaround times before the information can be used to make 
decisions. For example, many utilities continue to rely on microscopy to 
enumerate cyanobacteria although this may require two to five days to 
receive a result (Zamyadi et al., 2016), which is problematic because the 
doubling time of cyanobacteria populations can be as fast as 1.24 days 
(Moisander et al., 2009). However, relying solely on real-time moni-
toring tools is not a satisfactory solution because they do not identify the 
potential for toxin or taste and odor compound production (Zamyadi 
et al., 2016). Thus, early warning systems should include multiple 
complimentary technologies to encompass real-time cyanobacteria 
monitoring, cyanotoxin and taste and odor compound measurements, 
and forecasts for cell growth. Therefore, a review of current monitoring 
tools and the potential for the interaction of their measurements to aid in 
decision-making for drinking water and recreational water stakeholders 
is warranted. However, existing reviews have been limited to specific 
types of monitoring tools such as satellite remote sensing (Dörnhöfer 
and Oppelt, 2016; Yan et al., 2018), fluorescence-based probes (Bertone 
et al., 2018; Zamyadi et al., 2016), drones (Wu et al., 2019), biosensors 
(Vogiazi et al., 2019), and qPCR (Pacheco et al., 2016). Despite recent 
studies investigating the advantages and limitations of some of these 
methods, a systematic study to collect all the available techniques and 
information about the performance and of these methods in early 
warning systems is not available. He et al. (2016) reviewed several types 
of sensors and monitoring systems for cyanobacteria and cyanotoxins in 
the context of a multi-barrier management approach, including pre-
vention, source control, monitoring, and treatment. In contrast, this 
review is focused on summarizing and assessing cyanobacteria moni-
toring technologies, especially recent advances, and identifying poten-
tial ways to combine them to create a robust early warning system. 

This review proposes a three-tier cyanobacteria system comprising 
tools for detecting biological events in the first tier, tools for confirming 
cyanobacteria presence in the second tier, and tools for detecting cya-
nobacterial metabolites and the genes that encode for them in the third 
tier. In general, first-tier tools are the least expensive and may be used at 
high frequencies to monitor baseline biological activity. A deviation 
from the baseline would then trigger the use of second and third-tier 
tools to confirm that the increased biological activity is due to cyano-
bacteria, and that cyanobacteria metabolites (toxins and taste and odor 
compounds) are present. This is a cost-saving approach that ensures that 
expensive third tier monitoring tools are used strategically when the 
likelihood of cyanobacterial metabolites being present is highest. 
However, costs associated with cyanobacteria monitoring depend 
heavily on whether capabilities are available onsite or must be con-
tracted to third-party labs. This distinction also significantly affects 
turnaround time, which, for some tests, can range from less than an hour 
if conducted onsite to a week if conducted by a third-party lab. There-
fore, designing a cyanobacteria monitoring system is a multi-faceted 
problem that requires careful consideration of a utility’s capabilities 
and, most importantly, the choice of monitoring tools. 

2. First Tier: Detecting biological activity 

The objective of this monitoring tier is to quantify biological activity 
in a water body or intake. Several tools are available for monitoring 
algal or biological activity in source waters and drinking water intakes 
including visual inspection, chlorophyll a extraction and fluorescence, 
adenosine triphosphate (ATP), and drones. The simplicity and low cost 
of these tools allows them to be used for routine monitoring at high 
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frequencies. By monitoring these parameters over the long term, utilities 
can establish alert thresholds that can be used to trigger monitoring of 
the second-tier tools to confirm the presence of cyanobacteria. The ad-
vantages and limitations of the first tier monitoring parameters are 
summarized in Table 1. 

2.1. Monitoring tools for detecting biological activity 

2.1.1. Visual inspection 
The simplest indicator of biological activity in a water body is a 

change in its visual appearance. Changes to transparency and color, the 
presence of visible streaks, and the formation of cohesive scums of 
buoyant cells are indicators of blooms, surface blooms, and surface 
scums, respectively (Chorus and Welker, 2021). In calm, thermally 
stratified water, buoyant cyanobacteria such as Dolichospermum can 
float to the euphotic zone to receive light for photosynthesis while 
nonbuoyant phytoplankton sink, so surface streaks or scums may be due 
to cyanobacteria (Webster et al., 2000). However, visual inspection 
alone cannot be used to reliably conclude that cyanobacteria are present 
because some algae species also form dense algal mats similar in 
appearance to cyanobacterial scums (Kravtsova et al., 2014; Watson 
et al., 2015; Znachor and Jezberová, 2005). Therefore, visual moni-
toring is a first-tier tool because additional testing is needed to verify 
that cyanobacteria comprise an observed algal bloom. 

Visual inspection suffers from other important drawbacks. First, not 
all cyanobacterial genera, such as Planktothrix, Limnothrix, Raphidiopsis, 
and Pseudanabaena form easily identifiable surface blooms or scums and 
instead may disperse homogeneously throughout a water body (Chorus 
and Welker, 2021). Other species have been reported to accumulate 
between thermal layers in a stratified water column and cannot be 
detected by visual inspection of the water surface (Konopka, 1989; Le Vu 
et al., 2011). This is problematic for drinking water utilities because 
intakes are often located deep below the water surface, and untreated 
cyanotoxins in water supplies can have disastrous consequences, as in 
the case of the Caruaru, Brazil incident in 1996 (Azevedo et al., 2002). 
Therefore, it is possible for a water body to appear free of algae activity 
at the surface but for cells to enter the plant via a deep raw water intake 
(Almuhtaram et al., 2018). Second, visual inspection may be less accu-
rate depending on the time of day because surface blooms and scums 
formed when waters are calm, typically in the early morning, may be 
mixed back into the water column by wind. Third, it is not feasible for 
utilities to carry out visual inspection frequently if their intakes are in 
inaccessible locations, such as hundreds of meters offshore as is common 
for plants drawing water from large lakes and reservoirs. Fourth, cells 
may be imperceptible in open water but become visible as they are 
accumulated on leeward shores of water bodies by prevailing winds. 
Finally, visual assessments of source water quality can be subjective and 
limited to areas that are visually accessible. Specifically, unless a utility 
conducts visual inspection in benthic zones or there are floating mats in 
the source, visually inspecting source water surfaces may not warn a 
utility of benthic cyanobacteria. Nevertheless, visual inspection con-
tinues to be a useful tool for detecting biological events and is included 
in the guidance documents of some jurisdictions (Chorus and Welker, 
2021; EPA Office of Water, 2015; Health Canada, 2016) and can be 
extended to screens, filters, and other parts of a drinking water treat-
ment process in addition to source water (American Water Works As-
sociation, 2010). 

2.1.2. Adenosine triphosphate (ATP) 
Adenosine triphosphate (ATP) represents total viable planktonic 

biomass. It occurs only in living cells and although ATP cell quotas vary 
among species, it can be used to estimate biomass (Method 10,200 I. in 
Baird et al., 2017). ATP is a potential early-warning indicator of 
increasing planktonic biomass, but insufficient peer-reviewed research 
is available to support its adoption in source water monitoring. It has 
been used successfully for other monitoring purposes including bacterial 

growth in distribution systems (Delahaye et al., 2003), wastewater and 
surface water infiltration (Vang et al., 2014), and microbial biomass of 
biofilters (Singh Sidhu et al., 2018). Greenstein and Wert (2019) eval-
uated ATP as an early indicator of algal activity in a culture of Microcystis 
aeruginosa as well as environmental samples collected in Lake Mead, 
USA. ATP exhibited a strong correlation to cyanobacterial biomass (R2 

= 0.97) in the monoculture and a moderate correlation to extracted 
chlorophyll a in the environmental samples (R2 = 0.79). The correlation 
in the environmental samples was lower than in the monoculture 
because of different ATP cell quotas in mixed species assemblages 
(Greenstein and Wert, 2019). Nevertheless, it is promising that ATP 
correlates to chlorophyll a, a well-established indicator of algal biomass. 
In another study, average cytoplasmic ATP concentrations among 
different species of aquatic microorganisms were reported to range from 
0.62 to 1.37 mM ATP, suggesting that ATP monitoring is robust against 
diversity in microbial communities (Bochdansky et al., 2021). Finally, 
increases in the ATP content of M. aeruginosa and Synechocystis sp. have 
been shown to coincide with increased cell division and glycogen pro-
duction, so an increase in ATP could be an early indicator for the start of 
bloom growth (Huang et al., 2014; Saha et al., 2016). 

For ATP to be used as an early-warning indicator for algal blooms, 
baseline and normal fluctuations in ATP in source waters need to be 
understood. ATP is found in all living organisms, so a water body will 
always elicit an ATP response. Moreover, sudden changes in water 
quality can rapidly increase ATP concentrations despite the absence of a 
bloom. For example, a rainfall event that washes bacteria like E. coli 
from soil, animal fecal matter, and other land sources into a water body 
may increase ATP in the absence of algae (Bushon et al., 2009). If algae 
are present, their spatial distribution may be uneven, resulting in vari-
able measurements depending on the selected sampling location in a 
water body. Therefore, care should be taken to select a statistically 
relevant and strategic locations within a drinking water supply or intake. 

Commercially available ATP test kits are easy-to-use, relatively 
inexpensive, and have fast turnaround times (<10 min). Also, online 
ATP analyzers have emerged that would allow continuous measure-
ments of source water, although they are relatively expensive. 
Furthermore, sampling depth can be optimized for both grab and online 
samples to monitor both pelagic and benthic niches. For ATP to be 
implemented, protocols need to be developed for determining site- 
specific thresholds that trigger additional monitoring or mitigative ac-
tions, but these are currently lacking due to the limited use of ATP for 
monitoring algal activity in drinking water sources. For example, 
Greenstein and Wert (2019) derived an ATP threshold of 175 pg/mL 
corresponding to 5 µg/L chlorophyll a in samples dominated by Plank-
tothrix agardhii/suspensa, which is the standard for controlling disin-
fection byproduct (DBP) formation in the state of Colorado, USA. In 
addition, Bochdansky et al. (2021) established a correlation between 
molar ATP concentration and the concentration of Thalassiosira weiss-
flogi in cells/mL, which suggests that a threshold ATP concentration can 
be derived for a cell concentration threshold for that species. Additional 
research is needed into using ATP to indicate the onset of blooms in 
source waters and drinking water intakes containing mixed assemblages 
of species. 

2.1.3. General water quality parameters 
Several general water quality parameters may be simple indicators of 

algal activity, including Secchi disc depth, turbidity, and optical density. 
Secchi disc depth is a measure of water transparency, which is impacted 
by phytoplankton abundance as well as turbidity and humic substances 
(Chorus and Welker, 2021). Waters with Secchi disc depths >2–3 m (i.e. 
are highly transparent) are unlikely to contain algae or cyanobacteria at 
concentrations that may adversely affect water quality. Secchi disc 
depth is the depth at which a disc is no longer visible while being sub-
merged into a water body (Bowers et al., 2020). Thus, it simply repre-
sents water clarity, and low transparency (e.g., <2–3 m) can be used to 
trigger sample collection for determining whether the cause is due to 
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Table 1 
Summary of first-tier monitoring tools for detecting biological activity.  

Parameter Analytical Method Target Alert Thresholds Advantages Disadvantages 

Visual 
inspection 

Surface water quality 
assessment by operators, 
citizen scientists, etc.  

• Visible algal or 
cyanobacterial scum or 
floating mats on the 
water surface;  

• Changes in surface water 
transparency and color 

No established alert thresholds  

• Simple to conduct;  
• No cost;  
• Rapid visual assessment of 

the severity and extent of a 
bloom  

• Visual inspection can be 
subjective;  

• Limited to sites that are 
visually accessible;  

• Camera installations can 
be challenging for some 
sites;  

• Flying drones is 
prohibited in some 
jurisdictions;  

• Battery capacity limits 
drone flight range, image 
quality, and payload 
weight;  

• Does not capture 
spatiotemporal variations 
in water quality;  

• Cyanobacteria 
confirmation needed  

• No indication of 
metabolite production 

Fixed cameras  • Option for continuous 
surface water quality 
surveillance and imagery 
data logging 

Drones fitted with cameras  • Capture conditions at 
inaccessible locations;  

• Easy to deploy;  
• Can be equipped for sample 

collection;  
• Can be equipped with 

multispectral sensors to 
detect chlorophyll a or 
phycocyanin 

Water 
transparency 
or turbidity 

Secchi disk  

• Changes in surface water 
transparency and color 

Secchi depth below 2 m with 
green discoloration indicates 
algal growth; (Chorus and 
Welker, 2021)  

• Simple to conduct;  
• Relatively low cost  

• Changes in clarity may 
originate from non-bloom 
related factors  

• Cyanobacteria 
confirmation needed  

• No indication of 
metabolite production 

Handheld Turbidimeter or 
online turbidity analyzers 

No established alert thresholds  

• Simple and rapid 
measurement  

• Relatively low cost  
• Online analyzers allow for 

high frequency real-time 
source water 
characterization  

• Changes in clarity may 
originate from non-bloom 
related factors  

• Cyanobacteria 
confirmation needed  

• No indication of 
metabolite production 

Optical density No established alert thresholds  

• Established surrogate for 
algal biomass;  

• Simple and rapid 
measurement  

• Relatively low cost  

• Susceptible to 
interference by turbidity;  

• Requires external 
calibration to estimate 
biomass concentration;  

• Cyanobacteria 
confirmation needed;  

• No indication of 
metabolite production 

Chlorophyll a 

Lab-based pigment 
extraction and analysis 
using spectrophotometry  

• Changes in pigment 
concentration 

Medium: 1 µg/L (Initiate toxin 
monitoringHigh: 12 µg/L ( 
Chorus and Welker, 2021)  

• Established surrogate for 
algal biomass;  

• Robust against cell 
morphologies and colonies;  

• Low detection limit  

• Laborious laboratory 
process;  

• Potentially long 
turnaround time if 
outsourced  

• Cyanobacteria 
confirmation needed  

• No indication of 
metabolite production 

Fluorescence spectroscopy 
probes  

• Online analyzers allow for 
high frequency real-time 
source water 
characterization  

• Easily deployable to assess 
pigments at different 
depths  

• Handheld probes are field- 
ready  

• Susceptible to 
interference by turbidity;  

• Readings affected by cell 
morphology (colonial and 
filamentous);  

• Cyanobacteria 
confirmation needed  

• No indication of 
metabolite production 

ATP 

Handheld luminometers 
and ATP test sticks  

• Changes in biological 
activity 

175 pg/ml and 5 µg/L 
Chlorophyll a (Initiate 
additional monitoring) ( 
Saunders et al., 2015)  

• Simple and rapid 
assessment  

• Low cost;  
• Handheld meters and kits 

are field-ready  

• Non-specific measure of 
biological activity;  

• Limited adoption and 
little guidance available 
for best practices  

• Cyanobacteria 
confirmation needed  

• Analytical reagents can be 
costly for online analyzers  

• No indication of 
metabolite production 

Online analyzers  • High frequency real-time 
source water 
characterization  
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algae or cyanobacteria, or turbidity and humic substances. Turbidity 
measurements may be interpreted in a similar way. Drinking water 
utilities routinely measure turbidity in influent raw water, but elevated 
turbidity may be due to inorganic particulates in addition to algae 
(Chorus and Welker, 2021). A more specific indicator of phytoplank-
tonic biomass that is commonly used is optical density (absorbance) 
between 680 and 750 nm, although the presence of other organic 
compounds that absorb light at these wavelengths may interfere with 
this measurement (Baptista et al., 2009; Greenstein and Wert, 2019; Lv 
et al., 2018). 

2.1.4. Chlorophyll a extraction 
Chlorophyll a is a green pigment found in photosynthetic organisms 

that is responsible for photosynthetic activities (Weiqi Zhou et al., 
2004). The concentration of chlorophyll a in a sample can be positively 
but not proportionally correlated with algal biovolume, so algal biomass 
in water bodies is typically estimated by chlorophyll a concentration 
(Ergun et al., 2004). Chlorophyll a extraction is widely used for this 
purpose because the extraction methods are well understood and rela-
tively inexpensive and because it can be measured using spectrophoto-
metric or fluorometric techniques (American Water Works Association, 
2010). One common procedure involves measuring the absorbance of a 
filtered extract at 665 nm produced by dissolution in a solvent, such as 
methanol or acetone, or physical extraction, such as freeze-and-thaw or 
homogenization (Ergun et al., 2004; Iwamura et al., 1970). This process, 
however, can take up to 30 h to complete or longer if the measurement is 
made by a third-party lab (Bowling et al., 2016; Kasprzak et al., 2008). 
One of its main advantages is that unlike visual inspection, chlorophyll a 
extraction can be applied to pelagic or benthic samples to quantify algal 
biomass from samples collected from a raw water intake, throughout a 
water column, or in sediments (Smith et al., 2019). 

Some jurisdictions, such as the World Health Organization (WHO), 
recommend alert levels for cyanobacteria based on chlorophyll a con-
centrations: 1 µg/L and 12 µg/L for Alert Levels 1 and 2, respectively 
(Chorus and Welker, 2021). It is estimated that chlorophyll a comprises 
1.5% of dry algal organic matter, so algal biomass can be indirectly 
estimated from it (Method 10,200 I. in Baird et al. (2017). Various 
environmental and physiological factors affect chlorophyll a concen-
trations within organisms, and chlorophyll a cell quotas vary among 
species, making the correlation to algal or cyanobacterial biomass site- 
specific (Carvalho et al., 2009; Poikāne et al., 2010). A correlation 
may be established between chlorophyll a and cyanobacterial bio-
volume (Ahn et al., 2002), but the proportion of cyanobacteria in 
phytoplanktonic biomass can vary significantly with total biomass, so a 
constant conversion factor may not be reliable (Kasprzak et al., 2008). 
Moreover, chlorophyll a cell quotas display diurnal patterns, posing 
another challenge for correlating chlorophyll a to cell concentrations 
(Masuda et al., 2018). Consequently, a fixed concentration threshold of 
chlorophyll a, such as 1 µg/L, may correspond to significantly different 
biomasses in different water bodies. Additionally, correlations between 
chlorophyll a and cyanobacteria are generally weaker than correlations 
with more precise cyanobacteria metrics, such as phycocyanin (Ahn 
et al., 2007; Brient et al., 2008; Zamyadi et al., 2012b). Therefore, 
because chlorophyll a represents algal biomass in general it is a first-tier 
monitoring tool and additional testing is necessary to confirm the 
presence of cyanobacteria. 

2.2. Remote sensing and fluorometry for detecting biological/bloom 
activity 

2.2.1. Chlorophyll a fluorescence 
Another method for quantifying chlorophyll a is using optical sensors 

that measure its fluorescence. chlorophyll a has excitation and emission 
maxima of 431 nm and 670 nm, respectively (Moberg et al., 2001). 
Several commercially-available products have been developed that 
leverage this feature to estimate chlorophyll a in situ and in real time 

and are reviewed in Zamyadi et al. (2016). Correlations between chlo-
rophyll a determined by submersible fluorometers and conventional 
methods are generally high (R2 > 0.8) but can be affected by water 
temperature, excitation and emission band widths, and the presence of 
colonial and filamentous cells (Gregor and Maršálek, 2004; Izydorczyk 
et al., 2009). Despite strong linearity, the slopes of such correlations are 
not 1, meaning that in situ fluorometry may over- or underestimate the 
concentration of chlorophyll a. Consequently, sensors need to be cali-
brated periodically using extracted chlorophyll a or otherwise be used 
qualitatively (Almuhtaram et al., 2021b). Regardless, chlorophyll a 
fluorescence, like chlorophyll a extraction, represents only total algal 
biomass. 

2.2.2. Drones 
The use of drones for source water monitoring and sample collection 

is an innovative approach that overcomes some of the limitations of 
other monitoring tools and sample collection practices. Drones can be 
equipped with cameras and sensors to quantify surface water conditions 
far from the shoreline, so while monitoring at a drinking water intake 
reveals the water quality entering a plant, drones can be used to assess 
the spatial distribution of algal blooms in a water source. Similarly, 
sample collection at a drinking water intake in response to elevated 
biological activity does not reflect the spatial and temporal variations of 
water quality in the source and cannot be used to forecast future con-
ditions (Gholizadeh et al., 2016). Drones can be equipped with appa-
ratuses for both sample collection and sensors for water quality 
measurement (Koparan, 2016; Koparan et al., 2018; Wu et al., 2019). 
For example, Kwon et al. (2020) equipped a drone with a fluorescence- 
based monitoring probe for in situ fluorescence measurements up to a 
depth of 5 m as well as sample collection. Levy et al. (2020) mapped 
microbial mats in the Arctic using a drone equipped with a high- 
resolution hyperspectral camera. For collecting surface water samples, 
Benson et al. (2019) 3D-printed a device to hold a conical tube and 
tethered it to a drone for sample collection up to 50 m away from the 
shore. 

When employing drones for sample collection, one limitation is the 
thrust it can produce because it determines the payload that it can carry 
(Aguirre-Gómez et al., 2017; Koparan, 2016; Koparan et al., 2018). For 
source water monitoring, other important considerations are the 
compromise between battery capacity and image resolution, airspace 
restrictions in some jurisdictions, and undesirable weather (Wu et al., 
2019). Because capturing high quality images and collecting large 
payloads require substantial battery power, drones may be suitable for 
short flights to otherwise inaccessible locations without sacrificing 
either aspect. A possible solution is to utilize a fleet of drones with some 
designed for capturing images or measuring water quality using sensors 
and others for sample collection, although this has yet to be reported in 
the literature. 

Another important consideration when using drones for source water 
monitoring is the regulatory framework governing the use of unmanned 
aerial vehicles (UAVs). In some jurisdictions, it is not permitted to fly 
UAVs over drinking water intakes or other sensitive areas such as power 
stations that may be in proximity to a drinking water treatment facility. 
More restrictive prohibitions at the utility level might include not flying 
drones over open water at all to prevent the risk of losing them. In 
addition to local restrictions, the International Civil Aviation Organi-
zation (ICAO) is developing guidance for countries to adopt regarding 
UAVs that includes recommendations for registration, inspection, 
operator certification, and UAV operating conditions. Therefore, utili-
ties considering using drones for source water monitor should be aware 
of the requirements specific to their jurisdictions. 

3. Second Tier: Confirming the presence of cyanobacteria 

The objective of this monitoring tier is to confirm the presence of 
cyanobacteria and the potential for toxin or taste and odor production to 
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determine whether metabolite analysis is needed. Tools for monitoring 
cyanobacteria include microscopic enumeration, phycocyanin extrac-
tion, real-time monitoring probes, hyperspectral remote sensing, pho-
tonic systems, biosensors, next-generation sequencing (NGS), and 
automated cell imaging. They may be implemented following the 
detection of elevated biological activity by a first-tier tool, but some can 
be used to take measurements at high frequencies, avoiding the need for 
monitoring biological activity entirely. High frequency monitoring 
tools, however, are associated with higher capital costs than grab sam-
pling techniques. Cyanobacteria monitoring tools also vary significantly 
in the detail they provide, which ranges from basic assessments of total 
cyanobacterial biovolume to species identification. Monitoring probes 
and pigment extraction techniques measure the fluorescence or con-
centration of phycocyanin, which is found in all cyanobacteria, so these 
techniques cannot be used to determine whether taste and odor and 
toxin producers are present. In contrast, microscopic enumeration and 
automated cell imaging can identify cyanobacteria at the genus or spe-
cies level and determine if the potential to produce adverse metabolites 
exists. NGS provides even more detail by identifying species that are 
otherwise difficult to differentiate visually using genetic markers. 

Table 2 summarizes the advantages and disadvantages of second-tier 
tools. The decision to use one or more of these techniques depends on 
the specific monitoring needs as well as cost, onsite expertise, and use-
fulness of the results to other components of the monitoring system. 

3.1. Analytical methods for confirming cyanobacteria presence 

3.1.1. Microscopic enumeration 
Cyanobacteria enumeration by light microscopy is a conventional 

and widespread technique employed by drinking water utilities and 
other stakeholders. Species are identified by their morphology and 
characteristics under magnification and counted following established 
algae counting protocols using counting chambers or hemocytometers 
(De Gelder and Nollet, 2013). The WHO alert level framework recom-
mends utilities to enhance their monitoring activities for cyanotoxins if 
cyanobacterial biovolume exceeds 0.3 mm3/L (Alert Level 1). Addi-
tionally, utilities should consider ways to prevent cells from entering the 
plant or apply measures to treat potential cyanotoxins, which may occur 
at the lifetime guidance value for microcystins, anatoxin-a, or saxitoxin. 
Alert Level 2 occurs when biovolume exceeds 4 mm3/L and indicates 
there is the potential for an acute toxin risk based on the short-term 
guidance values for cyanotoxins in drinking water (Chorus and 
Welker, 2021). The alert level framework is less applicable to cylin-
drospermopsin as it may be actively released by cyanobacteria cells so 
cyanobacterial biomass is a poor indicator of this toxin. Thus, micro-
scopic enumeration provides an unambiguous measure of microcystin, 
anatoxin-a, and saxitoxin risk upon which well-defined response actions 
are based. Consequently, this technique is the gold standard for moni-
toring cyanobacteria. 

This method provides accurate information about the species and 
concentrations of cyanobacteria in a sample, but it is time consuming 
and requires highly qualified personnel to perform analysis, which may 
not be available at all utilities. Consequently, this analysis is often 
conducted by third-party laboratories, resulting in turnaround times of 
up to a week. Therefore, the results may not reflect current concentra-
tions of cyanobacteria in a water body. Furthermore, changes in cell 
biovolume due to preservation by Lugol’s iodine solution can cause 
measurement errors (Hawkins et al., 2005). Other important limitations 
are that light microscope methods do not provide information about cell 
integrity, the potential for toxin release, or the toxigenicity of cyano-
bacterial blooms (Fan et al., 2014; Newcombe, 2009; Zamyadi et al., 
2013). Nonetheless, the results of light microscopy can be correlated 
with other measurements, such as pigment concentrations (Horváth 
et al., 2013), optical density (Greenstein and Wert, 2019), and fluores-
cence (Almuhtaram et al., 2018), to estimate cell counts or cyano-
bacterial biovolume on a more frequent basis. 

3.1.2. Phycocyanin extraction 
Phycocyanin is a photosynthetic pigment found in cyanobacteria 

species, and its concentration can be used to estimate the presence and 
relative abundance of cyanobacteria (Horváth et al., 2013). It also oc-
curs, however, in rhodophytes and cryptophytes in addition to cyano-
bacteria, and this may result in an overestimation of cyanobacterial 
biomass by phycocyanin, especially when low cell concentrations of 
cyanobacteria are present (Zamyadi et al., 2016). Phycocyanin is 
extracted using techniques similar to chlorophyll a extraction, but its 
absorbance is measured at 615 nm and 652 nm instead of 665 nm 
(Hodges et al., 2018; Horváth et al., 2013; Patel et al., 2005; Soni et al., 
2006). Additionally, extraction is usually achieved using a phosphate 
buffer (0.001 M to 0.05 M) to rupture cell walls (Furuki et al., 2003), 
although extraction efficiency can be significantly improved if phos-
pholipid mixtures such as asolectin are used instead (Zimba, 2012). Like 
chlorophyll a, phycocyanin can be measured using spectrophotometric 
and fluorometric techniques, and interference caused by the presence of 
chlorophyll a can be corrected for (Lauceri et al., 2017). Apart from 
these considerations, phycocyanin extraction as a monitoring tool is 
characterized by the same limitations as chlorophyll a: sample analysis 
can take 30 h to complete or more if a third-party lab is used; it can be 
applied to pelagic or benthic samples; and it represents mainly total 
cyanobacterial biomass. Correlations between extracted phycocyanin 
and cyanobacterial biomass generally have higher coefficients of 
determination than correlations between chlorophyll a and cyano-
bacterial biomass over large ranges (Horváth et al., 2013). Thus, 
extracted phycocyanin is a better indicator of cyanobacteria than chlo-
rophyll a. 

3.1.3. Automated cell imaging 
Automated cell imaging is the identification of cyanobacteria using a 

microscope, a camera, and image recognition software. Cyanobacteria 
can be discriminated from other algal species by their unique fluorescent 
signatures or by matching sample images to reference databases. One 
commercially-available system allows the pairing of different magnifi-
cation levels with different flow cell depths to achieve a desired taxo-
nomic resolution (Graham et al., 2018). For example, a high 
magnification (x20) paired with a shallow depth (50 µm) provides the 
highest taxonomic resolution, enabling the detection of picocyanobac-
teria, and a low magnification (x4) paired with a large depth (100 µm) 
provides resolution limited to the morphotype level (Graham et al., 
2018). An example system might pump a sample through the flow cell at 
a rate of 0.03 mL/min while images are captured at 80 frames/s, by 
default, so thousands of images are generated for a single 0.2 mL sample, 
although individual system configurations may vary. A subset of the 
images can be selected for sorting and counting, and although identifi-
cation at the species level based on the particle properties of the cells in 
the captured images is possible (Camoying and Yñiguez, 2016), this can 
be challenging in practice (Graham et al., 2018). Nonetheless, 
enumerating total cyanobacteria and identifying cyanobacterial genera 
are possible using automated cell imaging (Álvarez et al., 2012; Wang 
et al., 2015) and can have strong correlations to the results of traditional 
light microscopy (Álvarez et al., 2014; Camoying and Yñiguez, 2016; 
Graham et al., 2018). Although this is largely an imaging-based 
approach, some models come equipped with a laser for detecting chlo-
rophyll a and phycocyanin fluorescence, providing another means to 
discriminate cyanobacteria from algae. 

Although not commercially available, another image-based 
approach has been proposed that is specifically designed to measure 
five filamentous cyanobacterial genera: Aphanizomenon, Raphidiopsis, 
Dolichospermum, Limnothrix, and Planktothrix (Gandola et al., 2016). In 
this system, images of samples at x10 magnification are taken manually 
and pre-processed and processed using two algorithms. The resulting 
data are evaluated in terms of 17 numerical parameters extracted from 
the images using a random forest-based machine learning algorithm 
trained on samples with known genera (Gandola et al., 2016). Compared 
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Table 2 
Summary of second-tier monitoring tools for detecting cyanobacteria.  

Parameter Analytical Method Target Alert Thresholds Advantages Disadvantages 

Microscopic 
enumeration 

Cell counting and biovolume 
methods  

• Cell density and species 
identification 

Medium: 0.3 mm3/L cyanobacteria biovolume(initiate toxin monitoring) 
High: 4 mm3/L cyanobacteria biovolume (Chorus and Welker, 2021)  

• Identifies species and quantifies 
cell concentrations or 
biovolumes;  

• Time-consuming;  
• Requires expertise in 

phycology;  
• Susceptible to errors from 

counting and preservation  
• No indication of metabolite 

generation 
Automated cell imaging  • Automatic identification and 

enumeration of cyanobacteria;  
• Reduces need for onsite expertise;  

• Expensive;  
• Accuracy of identification 

depends on quality of 
calibration 

Phycocyanin 

Lab-based pigment extraction 
and analysis using 
spectrophotometry  

• Changes in pigment 
concentration 

Medium: 0.1–5 µg/LHigh: 5–40 µg/L (Izydorczyk et al., 2005; Srivastava 
et al., 2013; Zamyadi et al., 2016)Other site-specific thresholds based on 
correlations to cell counts or biovolume have been reported (Macário 
et al., 2015; McQuaid et al., 2011; Thomson-Laing et al., 2020)  

• Established surrogate for 
cyanobacterial biovolume;  

• Specific to cyanobacteria  

• Laborious multi-step 
procedure;  

• Pigment concentrations per 
cell are variable;  

• Correlations to cell 
concentrations are site 
specific  

• No indication of metabolite 
generation 

Fluorescence spectroscopy 
probes  

• Surrogate measurement for 
cyanobacterial biovolume;  

• Real-time monitoring;  
• Easily deployable in the field  

• Correlations to cell 
concentrations are site 
specific;  

• Susceptible to interference 
by chlorophyll a and 
turbidity  

• No indication of metabolite 
generation 

Photonic systems  

• Changes in pigment 
concentration  

• No established alert thresholds  

• Simple, rapid, and near real-time 
analysis;  

• High sensitivity even with low 
cell concentrations;  

• Not commercially available  
• Cannot differentiate toxic 

vs nontoxic species;  
• Cannot quantify 

cyanobacteria without 
external calibration 

Remote sensing 
Sentinel 3 Ocean Land Color 
Imager (OLCI) and other 
satellites  

• Changes in pigment 
concentration No established alert thresholds  

• Satellite data is freely available;  
• Identifies bloom extent and 

movement;  
• Band algorithms available to 

determine phycocyanin and 
chlorophyll a concentrations  

• High detection limit (e.g., 
≥20,000 cells/mL);  

• Detects surface conditions 
only;  

• Revisit time of 1–2 days;  
• Pre-processed data not 

available for all locations  
• Limited to sources with 

large surface areas  
• Impacted by environmental 

conditions  
• Infrequent source 

characterization 

Biosensors Fluorescence plate reader  
• Gene counts representing 

cyanobacteria or specific 
cyanobacteria species 

No established alert thresholds  

• Species-level identification of 
cyanobacteria;  

• Detection limits ranging from 
102-104 cells/mL;  

• Can target genes that encode for 
cyanotoxins  

• Detects species based on 
primer selection;  

• Cannot quantify 
cyanobacteria without 
external calibration 

NGS Gene sequencing platform  
• Identification of all gene 

sequences in a sample No established alert thresholds  
• Detects all species in a sample;  
• Differentiates species more 

accurately than cell counting  

• Long turnaround times;  
• Provides only relative 

abundance of cells; 

Automated cell 
imaging 

Image recognition software to 
process images of cells under 
magnification  

• Identification of cell genus or 
species and cell counts 

Medium: 0.3 mm3/L cyanobacteria biovolume(initiate toxin monitoring) 
High: 4 mm3/L cyanobacteria biovolume (Chorus and Welker, 2021)  

• Automatic identification and 
enumeration of cyanobacteria;  

• Reduces need for onsite expertise;  

• Expensive;  
• Accuracy of identification 

depends on quality of 
calibration  
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to conventional microscopy, the samples are accurately characterized in 
terms of filament lengths and widths, cell lengths, and cell abundance 
over the range of 5000 to 50,000 cells/mL (Gandola et al., 2016). 
Another system that utilizes a camera-equipped microscope uses sample 
fluorescence to identify and enumerate cyanobacteria cells (Jin et al., 
2018). Microcystis and Dolichospermum cells could be differentiated in 
the presence of a non-cyanobacterial species and enumerated with a 
high degree of accuracy. The proposed process is as follows: a sample is 
excited at 365 nm, a binary classifier separates foreground and back-
ground objects in the image field of view, and seven morphological 
parameters are evaluated and used to classify cells into one of the three 
genera (Jin et al., 2018). Although promising, this approach needs to be 
expanded to include other important cyanobacterial genera before it can 
be adopted in practice. 

3.2. Remote sensing and fluorometry for confirming cyanobacteria 

3.2.1. Phycocyanin fluorescence 
Real-time monitoring probes are available that measure the fluo-

rescence of pigments like chlorophyll a, phycocyanin, and phycoery-
thrin to detect algae and cyanobacteria cells. Optical sensors make use of 
each pigment’s unique excitation/emission spectra to accurately detect 
it by measuring near its peak emission wavelength. Chlorophyll a is 
excited using 410–430 nm wavelengths and has a peak emission at 685 
nm; phycocyanin is excited by 590–630 nm light and has a maximum 
emission at 650 nm; and phycoerythrin is excited by 550–570 nm light 
and emits at 578 nm (Asai et al., 2001; Beutler et al., 2003). Despite 
these unique signatures, measurement errors can occur for sensors with 
wide measurement band widths that measure emission wavelengths 
from multiple pigments (Bertone et al., 2018). Light scattering by 
turbidity above 50 NTU has also been shown to cause errors (Bowling 
et al., 2013). Zamyadi et al. (2016) reviewed and quantified the impacts 
of sources of interference on phycocyanin fluorescence including chlo-
rophyll a, turbidity, cell morphology, and sensor calibration. The au-
thors show that the overlapping chlorophyll a emission spectrum is the 
most significant source of interference, affecting phycocyanin fluores-
cence by up to 600%. However, correction factors have been derived for 
specific probe models that limit the impact of chlorophyll a interference 
(Choo et al., 2019). Thus, monitoring phycocyanin fluorescence has the 
potential to be an especially accurate approach. 

Commercially available real-time phycocyanin monitoring probes 
have limited sensitivity below 103 cyanobacteria cells/mL (Ezenarro 
et al., 2021). Furthermore, these systems can be costly to utilities with 
limited resources, creating the need for low-cost, near real-time, in situ 
fluorescence analysis systems. One novel system concentrates cells from 
field samples onto 0.2 µm nitrocellulose filters and measures phycocy-
anin fluorescence of retained cells via a low-cost portable apparatus 
comprising a filtration unit, a peristaltic pump, a control board, and a 
computer (Ezenarro et al., 2021). This system was reported to achieve a 
low detection limit of <435 cells/mL in aquaponic samples containing 
mixtures of cyanobacteria and other eukaryotic algae. Thus, if made 
commercially available, it may be a useful tool in future early warning 
systems as an initial rapid, low-cost cyanobacteria screening tool with 
high sensitivity. Such a low detection limit, however, might be suscep-
tible to interference by other phycocyanin-producing species such as 
cryptophytes (Zamyadi et al., 2016). 

A lab-based photonic system that overcomes this limitation employs 
light microscopy coupled with a hyperspectral camera to determine the 
reflectance of a sample in 4.69 nm band widths in the range 400 to 1000 
nm (Paine et al., 2018). It was found that Aphanizomenon flos-aquae and 
Microcystis aeruginosa have unique reflectance derivatives at three 
wavelengths (468, 509, and 628 nm) that can be used to determine 
whether either species is present in a sample (Paine et al., 2018). These 
findings are promising, but further research is needed to characterize the 
reflectance derivatives of other toxic and nontoxic cyanobacteria 
species. 

Phycocyanin fluorescence is typically correlated to microscopically- 
enumerated cell counts or biovolume (Bertone et al., 2018; Macário 
et al., 2015). This correlation can be used to derive site-specific 
threshold values that correspond to alert levels for implementing HAB 
response strategies (Chorus and Welker, 2021). Attention must be given 
to the species present in samples used to establish such correlations 
because pigment concentrations vary among cyanobacteria species, so a 
correlation established for one cyanobacterial community may not 
apply to another (Chang et al., 2012; Loisa et al., 2015; Thomson-Laing 
et al., 2020). Consequently, periodic sample analysis is needed to ensure 
the correlation is valid as species dynamics change (Symes and van 
Ogtrop, 2016). The detection of the presence of cyanobacteria through 
phycocyanin analysis needs to be followed up with other monitoring 
tools because it does not differentiate between potential toxin-producing 
species and non-toxic species. 

3.2.2. Applying anomaly detection algorithms to phycocyanin data 
Utilities that monitor phycocyanin fluorescence but do not collect 

cell count data are unable to adopt the conventional threshold approach 
because no phycocyanin-cell count correlation can be made. A novel 
way to interpret phycocyanin fluorescence without the need for cell 
count data is to use machine learning for anomaly detection (Almuh-
taram et al., 2021b). This approach involves training unsupervised 
machine learning algorithms on historical fluorescence data to identify 
anomalies in current monitoring data. Anomalies identified this way 
may be due to interference (i.e., false positives) or elevated cyanobac-
teria activity (i.e., true positives). Upon detection of an anomaly, sample 
collection and analysis is necessary to confirm the presence of harmful 
cyanobacteria and to initiate mitigative measures such as modifications 
to the treatment process to target cyanobacteria cell and metabolite 
removal. Almuhtaram et al. (2021b) demonstrated that three algo-
rithms, One-Class Support Vector Machine, elliptic envelope, and 
Isolation Forest, are able to accurately identify cyanobacterial blooms in 
four datasets when trained on standardized historical phycocyanin data 
and tested on more recent data. Similarly, Cao et al. (2016) applied a 
multi-objective hybrid evolutionary algorithm to successfully identify 
the onset of cyanobacterial blooms using water quality parameters, and 
Chen et al. (2015) developed an autoregressive integrated moving 
average model to predict chlorophyll a concentrations and provide early 
warning of algal blooms. Thus, these and other machine learning algo-
rithms can potentially be implemented as part of a utility’s harmful algal 
bloom monitoring strategy. Additionally, the potential exists for such 
algorithms to be adopted by monitoring probe manufacturers and 
included directly in monitoring software. 

3.2.3. Satellite remote sensing 
Satellites capture images of the Earth’s surface in daily, 2–3 day, or 

weekly intervals that can be used the same day they are captured for 
near real-time monitoring (Chorus and Welker, 2021). Many satellites 
equipped for remote sensing are operated by governments, so the data 
they collect is generally available to the public for free. In contrast to 
fluorescence-based monitoring probes, satellite sensors quantify the 
reflectance of a pixel (i.e., the smallest unit of surface area measured by 
the sensor). Satellites are equipped with various sensors that measure 
different spectral bands, each representing a parameter (Schlundt et al., 
2010). Choosing which sensor to use requires consideration for their 
spatial resolutions, bands, correlated spectral resolution, turnaround 
time, available indices, historical data, and academic research con-
ducted using them. Each sensor consists of different numbers of bands or 
different numbers of spectral ranges, which each have various functions 
including measuring absorbance and reflectance. The band functions of 
the commonly used Sentinel-3 satellite Ocean and Land Color Instru-
ment (OLCI) sensor are summarized in Donlon et al. (2012). In addition 
to the bands available, another important consideration is the spectral 
width of the band. For example, phycocyanin has an absorption peak at 
620 nm, but chlorophyll a and other accessory pigments also absorb 
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light near that wavelength and can potentially obscure the phycocyanin 
signal (Hunter et al., 2010; Mishra et al., 2009). Thus, the ability of a 
satellite to detect algal blooms in general or cyanobacteria specifically 
depend on its spectral bands and their spectral widths. 

Yan et al. (2018) show that only a few satellite sensors have spectral 
bands centered on 620 nm with widths narrow enough (e.g., 5–10 nm) 
to measure phycocyanin including Sentinel-3A OLCI and the non- 
operational Envisat satellite with the Medium Resolution Imaging 
Spectrometer (MERIS) sensor. OLCI is an improvement to MERIS, with a 
new channel at 673 nm for better chlorophyll fluorescence measure-
ment, improved signal to noise ratio, improved atmospheric corrections, 
faster revisit time, and reduced sun glint (Donlon et al., 2012; Lunetta 
et al., 2015). Heritage MERIS data, however, can be included in time- 
series analyses of OLCI data. For comparison, OLCI has a spatial reso-
lution of 300 m and its satellite has a revisit time of less than two days 
while Landsat series satellites have spatial resolutions of 15 m and revisit 
times of 16 days. Thus, there is a tradeoff between data resolution and 
data frequency, although the Landsat spectral band widths are wider 
than those of OLCI. 

Another important decision following the choice of sensor is the 
method for processing its spectral data (Beck et al., 2017). For cyano-
bacteria monitoring, the simplest approach would be to use data from a 
single spectral band at 620 nm, but this wavelength is affected by sus-
pended sediment in addition to phycocyanin, so single band approaches 
are inadequate. Therefore, algorithms that process multiple bands have 
been proposed. Early algorithms used spectral band ratios but were 
susceptible to interference from chlorophyll a, turbidity, water absorp-
tion, and did not take into account variable chlorophyll a:phycocyanin 
ratios (Schalles and Yacobi, 2000; Vincent et al., 2004). Mishra et al. 
(2009) developed a single band ratio algorithm using 600 nm and 700 
nm wavelengths to avoid the interference of chlorophyll a at 620 nm, 
although 600 nm wavelengths are still susceptible to interference by 
turbidity. This limitation was overcome by decomposing remote sensing 
reflectance to determine phytoplankton absorption coefficients from the 
620 nm:665 nm band ratio, but this process requires adjustment and 
calibration (Mishra et al., 2013; Yacobi et al., 2015). Nonetheless, 
several promising models are capable of accurately estimating cyano-
bacterial biovolume or pigment concentrations (Duan et al., 2010; 
Hunter et al., 2010; Tebbs et al., 2013; Wolny et al., 2020; Zhang et al., 
2017). 

Band ratio algorithms are particularly suited for sensors with fewer 
bands, such as MERIS and Landsat (Sun et al., 2015), and can be used to 
establish strong correlations to chlorophyll a (Binding et al., 2011). Two- 
and three-band algorithms for MERIS data have been used to estimate 
chlorophyll a concentrations accurately (R2 > 0.94) by minimizing the 
effect of scattering by inorganic particles (Gurlin et al., 2011; Yacobi 
et al., 2011). A hybrid model was developed that assesses each pixel in 
remote sensing data using three models then selects the model that re-
sults in the best chlorophyll a estimation (Matsushita et al., 2015). Other 
algorithms that employ atmospheric correction factors, such as the 
Rayleigh-corrected reflectance, can be effective (Tao et al., 2017) but 
are often site-specific because the corrections need to be readjusted for 
other datasets (Shi et al., 2019). 

Beck et al. (2017) evaluated the ability of 27 algorithms to determine 
cyanobacterial biovolume using data from multiple sensors and showed 
that high accuracy can be achieved by both chlorophyll a- and 
phycocyanin-based algorithms, although the performance of the 
phycocyanin algorithms is slightly better. Yan et al. (2018) conclude 
that data from only the OLCI sensor, due to its narrow band width, are 
suitable for measuring phycocyanin in large-scale applications and 
stress the need for research on and validation of algorithms using OLCI 
data. Recently, Mishra et al. (2021) showed that the existing Cyano-
bacteria Index algorithm, which uses OLCI and MERIS data, is up to 84% 
accurate for determining cyanotoxin-producing cyanobacteria in data 
collected across the United States. 

In general, compared with other monitoring techniques, the 

advantages of satellite remote sensing are that vast areas of water bodies 
can be covered at once; low or no costs are associated with data 
acquisition; no maintenance is required; reliable and long-term moni-
toring is possible; bloom extent and movement can be determined; and it 
requires comparatively less personnel training than manual sampling 
techniques. However, an important limitation is that it captures only 
surface water conditions whereas drinking water utilities typically have 
intakes deep below the water surface. Thus, the detection of cyano-
bacterial activity in a water body may not indicate that a utility drawing 
from that water body is at risk of experiencing cyanobacteria or cya-
notoxins. Instead, sample collection and analysis by one or more of the 
methods described in Section 2 is necessary. In this way, the function of 
remote sensing data is similar to fluorescence-based monitoring probes, 
although there is a compromise between detecting local conditions (e.g., 
at a drinking water intake) and broader cyanobacteria activity (e.g., 
movement of a bloom through a lake or reservoir). 

3.3. Molecular methods for monitoring cyanobacteria 

3.3.1. Next-Generation sequencing (NGS) 
The most widespread technique for identifying what species are 

present in a sample is to sequence 16S ribosomal RNA (rRNA) amplified 
using polymerase chain reaction (PCR) from genomic DNA (Deng et al., 
2017). Sequencing is traditionally accomplished by measuring the 
fluorescence of DNA fragments size-separated by capillary gel electro-
phoresis, a labor-intensive process. Instead, (next-generation 
sequencing) NGS significantly simplifies this process while increasing 
the throughput by parallelizing the sequencing reactions (Deng et al., 
2017). In NGS, 16S rRNA amplicons of multiple samples are analyzed at 
once, and oligonucleotide barcodes are added to the primers of the 
amplicons to identify which samples they belong to. Then, bioinfor-
matics is used to extract detailed genetic information about the species 
present in a sample. Consequently, NGS is the standard technique for in- 
depth analyses of community compositions in microbial surveys. 

A typical NGS workflow can take 2–3 days or more to complete and 
involves generating 16S rRNA amplicons by qPCR amplification of 
genomic DNA using target-specific primers (e.g., for cyanobacteria) 
(Kurmayer et al., 2017). Then, target regions of the 16S rRNA are 
amplified and purified to remove excess nucleotides. Next, a sequencing 
platform is used to provide reads spanning a pre-determined number of 
16S rRNA base pairs. The data generated is processed using software 
packages to remove problematic sequences, and the remaining se-
quences are compared against reference databases (Balvočiūtė and 
Huson, 2017; Huo et al., 2018; Zamyadi et al., 2019). Thus, NGS is a full 
scan of all the gene sequences in a sample that identifies a wide range of 
species, including those that may be missed by light microscopy, such as 
melainabacteria and other indicators of fecal contamination (Gaget 
et al., 2020; E. Lee et al., 2017b; Vadde et al., 2019; Zamyadi et al., 
2019). 

Monitoring cyanobacteria and other bacteria to assess species di-
versity is based primarily on operational taxonomic units (OTUs) 
derived from 16 s rRNA amplicons (Casero et al., 2019). For example, 
Berry et al. (2017) showed that cyanobacterial blooms disturb bacterial 
community compositions by monitoring cyanobacterial and non- 
cyanobacterial OTUs over the course of a bloom. Similarly, Wood-
house et al. (2016) used OTUs to demonstrate that changes in the 
abundance and diversity of cyanobacteria species are linked to bacteria 
species, establishing that biotic factors in addition to abiotic factors 
affect cyanobacteria growth. NGS has also been used to identify cya-
notoxin biosynthesis genes allowing researchers to determine whether 
the potential for toxin production exists in a sample (Kim et al., 2018; 
Lezcano et al., 2017; Liao et al., 2016; Scherer et al., 2017). Therefore, 
NGS is both a second and third-tier monitoring tool. 

3.3.2. Biosensors 
Using immunological techniques, a microarray-based biosensor, 
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CYANOCHIP, was developed for identifying 17 cyanobacteria species 
that occur in European waters in situ using polyclonal antibodies 
(Blanco et al., 2015). In this assay, environmental samples are concen-
trated on 3 µm polycarbonate filters and reconstituted into 1 mL of 
modified Tris-buffered saline Tween 20-reinforced buffer (TBSTRR). 
Then, 50 µL of the 1 mL solutions are added to microarray wells, which 
contain antibodies and air-dried bovine serum albumin, and incubated 
for 1 h. Next, wells are washed, and an antibody solution is added and 
incubated for another hour. Finally, wells are washed, dried, and scan-
ned for fluorescence at 635 nm using a portable plate reader (Blanco 
et al., 2015). Important advantages of this biosensor are that it is a low- 
cost way to identify specific cyanobacteria species in situ with detection 
limits as low as 102 to 104 cells/mL, although it cannot measure cya-
nobacteria concentrations without a correlation to cell counts. Thus, like 
the photonic systems described above, cyanobacteria detected with this 
method may need to be validated by other means. 

Detection limits as low as 50 cells/mL for M. aeruginosa have also 
been achieved by a cantilever-based 16S RNA biosensor. Johnson and 
Mutharasan (2013) immobilized a 27-base DNA strand complimentary 
to a target region of M. aeruginosa 16S RNA in a flow-based cantilever 
sensor. As a sample flows through the sensor, 16S RNA binds to DNA, 
increasing its effective mass. This mass change is detected by the sensor 
and is proportionate to an increase in M. aeruginosa concentrations 
(Johnson and Mutharasan, 2013). This procedure has a total run time of 
about 2–3 h. 

Another biosensor for M. aeruginosa that has been reported utilizes 
the existing NanoGene assay (E.-H. Lee et al., 2017a). The authors tar-
geted the M. aeruginosa mcyD gene, which encodes for microcystin 
production. This approach resulted in a very low detection limit of 9 
cells/mL and was not impaired by the presence of up to 2 × 107 algal 
cells/mL (E.-H. Lee et al., 2017a). The workflow duration is likely 2–3 h 
long. In contrast, a flow-through biosensor for another common cya-
nobacteria species Planktothrix agardhii has been reported with a 25 min 
assay time after DNA extraction (Ölcer et al., 2015). The assay involves 
injection of DNA extracted from sample into a microfluidics integrated 
electrode array that is connected to a potentiostat that relays data to a 
computer for processing. Samples containing the target sequence of 
P. aragdhii are injected to the electrode array and immobilized by a 
capture probe sequence. Then, biotinylated detection probes join the 
immobilized target sequence to modified Au nanoparticles, emitting 
electrochemical signals. The signals are measured using a Real-time 
Electrochemical Profiling™ assay and reflect the concentration of the 
P. agardhii DNA in the sample (Ölcer et al., 2015). 

4. Third Tier: Monitoring cyanobacteria metabolites 

Following the detection of biological/bloom events in the first tier 
and the confirmation of cyanobacteria presence in the second tier, the 
goal of the third tier monitoring is to confirm weather the cyanobacteria 
species detected produce toxic or odorous metabolites or have the genes 
necessary to do so. Factors triggering the production of metabolites are 
unclear, however variability in nutrients, temperature, and light in-
tensity can influence the production and subsequent external release of 
cyanotoxins and taste and odor compounds to the surrounding water 
(Clercin and Druschel, 2019; Oh et al., 2017; Zhang et al., 2009). Toxin 
production can be expressed as a function of the rate of cell division, 
which varies depending on the stage of bacterial growth, which is in turn 
impacted by environmental conditions (Orr et al., 2018). Extracellular 
metabolites are often released toward the later bloom growth stages i.e., 
stationary phase or during cell death. Therefore, it is arguable that 
monitoring for extracellular taste and odor compounds and cyanotoxins 
are not ideal parameters to be implemented as first indicators of a 
cyanobacterial bloom as they may be produced once the bloom is 
established. Monitoring for total metabolites (which includes intracel-
lular metabolites) may provide improved early warning compared to 
measuring extracellular concentrations. 

Various qualitative and quantitative analytical tools are available for 
the metabolite detection. The semi-quantitative enzyme-linked immu-
nosorbent assay (ELISA) screening tools are often used to establish the 
presence or absence of cyanotoxins. Cyanotoxin and taste and odor 
producing genes in source water samples can also be quantified using 
quantitative polymerase chain reaction (qPCR) methods. Quantitative 
results for cyanotoxins and taste and compounds can also be obtained 
through liquid chromatography-mass spectrometry (LCMS) analysis. 

4.1. Enzyme-Linked immunosorbent assays (ELISAs) 

For semi-quantitative determination of cyanotoxin concentrations, 
enzyme-linked immunosorbent assays (ELISAs) are routinely used in 
cyanobacteria monitoring programs. Commercially available ELISAs 
have been developed for microcystins and other cyanotoxins (Weller, 
2013). Microcystin ELISAs can be specific to the congeners that the 
antibodies were raised against (Zeck et al., 2001a) or broadly react to 
the Adda side chain, which is the type of ELISA typically used in routine 
monitoring (Fischer et al., 2001; Khreich et al., 2009; Zeck et al., 2001b). 
The Adda side chain is common to all microcystins and nodularins, so 
Adda ELISAs measure all congeners of both toxins, which is important in 
jurisdictions where health advisories are in place for total microcystins 
as opposed to microcystin-LR. However, the Adda ELISA has variable 
cross-reactivity among microcystin congeners and may be susceptible to 
interference due to Adda-containing chlorination byproducts (He et al., 
2017; Rapala et al., 2002). Limited comparisons have been made be-
tween anatoxin-a ELISAs and high-pressure liquid chromatography 
(HPLC) methods, although one study reports that anatoxin-a was 
detected in microbial mats by ELISA but not HPLC, suggesting that the 
ELISA may be susceptible to matrix interference (Khomutovska et al., 
2020). Similarly, significant differences have been reported between a 
commercially-available saxitoxin ELISA and HPLC, possibly due to poor 
cross-reactivity with co-occurring ciguatoxins (Gaget et al., 2017). The 
same study reports comparable measurements of cylindrospermopsin 
using ELISA and HPLC (Gaget et al., 2017), although variable cross 
reactivity among congeners has been reported (Loftin et al., 2016). 
Nevertheless, the cost and speed of the ELISA analysis make it a valuable 
tool for detecting the presence or absence of cyanotoxins to trigger 
quantification using an appropriate analytical method. 

Subsequent quantification is necessary to determine molecular 
toxicity associated with the cyanotoxins present, which varies signifi-
cantly among congeners of each class of cyanotoxins. Reported LD50 
values (the dose that kills 50% of exposed animals) in mice subjected to 
intraperitoneal injection are 50 µg/kg for microcystins -LR and -LA. For 
[(6Z)-Adda]microcystins -LR and -RR, which result from photo-
isomerization of MC-LR and MC-RR, respectively (Almuhtaram et al., 
2021a), LD50 values are >1200 µg/kg (Chernoff et al., 2020; Jang et al., 
2003). LD50 values in mice subjected to intraperitoneal injection for 
saxitoxin congeners similarly vary up to 17-fold, ranging from 0.028 to 
0.480 µmol/kg (Selwood et al., 2017). As a result, some jurisdictions 
consider both concentration and toxicity and regulate microcystins and 
saxitoxins in terms of microcystin-LR and saxitoxin equivalents (Chorus 
and Welker, 2021). 

4.2. qPCR 

A well-established technique for cyanobacteria monitoring is qPCR, 
which has been reviewed in detail by Pacheco et al. (2016). The concept 
behind qPCR is that there are certain gene clusters found in cyanobac-
teria species that contribute to the biosynthesis of cyanotoxins including 
mcy, cyr, sxt, and ana. Each cluster contains several operons that can be 
targeted by qPCR or NGS. For example, operons mcyA-E and mcyG are 
known to encode enzymes that are involved in microcystins synthesis 
(Pacheco et al., 2016). Moreover, the number of gene copies may 
correlate to the concentration of toxins, although this is not always the 
case because the presence of a gene does not imply that the toxin is being 
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produced. Secondly, this may be affected by the choice of gene because 
primer inefficiencies may result in one gene being amplified more than 
another. For example, in 80% of cases where mcyE was reported, there 
was a positive correlation to total microcystins concentration, but this 
occurred in only 60% of studies where other mcy genes were amplified 
(Pacheco et al., 2016). These and other genes involved in cyanotoxin 
biosynthesis are obtained from sequenced strains that produce the cor-
responding toxins and are present in one copy per cell. Therefore, the 
detection of a gene may additionally indicate the presence of Microcystis, 
Dolichospermum, Raphidiopsis, Lyngbya, or Aphanizomenon cells (Lou 
et al., 2017; Orr et al., 2010; Pacheco et al., 2016). Commercially 
available testing kits may also quantify 16S rRNA genes, which are 
multiple copy genes common to cyanobacteria. Thus, the ratio of a toxin 
gene to 16S rRNA may indicate the proportion of cells that are toxic, 
although this is prone to error due to the single copy vs multiple copy 
natures of the toxin and 16S rRNA genes, respectively (Pacheco et al., 
2016). 

Primers have been developed for geosmin and 2-methylisoborneol 
(MIB) to quantify genes responsible for the biosynthesis of taste and 
odor compounds in addition to cyanotoxins. Gaget et al. (2020) devel-
oped a qPCR primer for MIB using previously reported MIB synthase 
gene sequences and used it to identify a potential source of MIB in an 
urban reservoir. Similarly, Chiu et al. (2016) developed primers for 13 
sequences of MIB synthase genes and coupled them to a real-time qPCR 
system for rapid on-site monitoring of MIB. Other researchers have 
developed primers for taste and odor compound synthesis genes specific 
to certain producers (Devi et al., 2021). For example, Su et al. (2013) 
developed primers for Dolichospermum sp. and the geosmin synthase 
gene in Dolichospermum sp. to demonstrate the geosmin-producing po-
tential of samples containing that species. Other primers have been 
developed that target geosmin in other cyanobacterial genera including 
Nostoc, Geitlerinema, Aphanizomenon, Lyngbya, Phormidium, and Oscil-
latoria (Devi et al., 2021). Species-specific approaches can be applied in 
water bodies that are predictably dominated by one species, but they 
may underestimate the taste and odor production potential in more 
diverse communities. Consequently, universal primers that detect geo-
smin and MIB in all cyanobacteria are more desirable, such as those 
developed by John et al. (2018) for geosmin and Gaget et al. (2020) for 
MIB. In summary, although the availability of qPCR primers limits their 
application to specific genes, it may serve as a potential early warning 
indicator for the onset of a toxigenic bloom as results can be obtained 
within several hours (Gaget et al., 2017). 

4.3. Chromatography and separation methods 

Several analytical techniques exist for the determination of trace 
concentrations of toxins and taste and odor compounds including gas 
and liquid chromatography, capillary electrophoresis, and immunolog-
ical and antibody assays. These are described in detail in Meriluoto et al. 
(2016) and Kaushik and Balasubramanian (2013). In general, these 
techniques require the most sensitive and expensive analytical in-
struments to be used and consequently are not suitable for routine 
monitoring at high frequencies (e.g., daily). Moreover, sample prepa-
ration and concentration, calibration standards, and high quality re-
agents are often required. Due to practical requirements for sample 
collection, transportation (if contract laboratories are used), laboratory 
preparation and analysis, interpretation and reporting, these analytical 
methods may have long turnaround times. Given that cyanobacteria and 
the toxic and odorous metabolites present can change in abundance 
quite rapidly within a short period, delays in the procurement of results 
may subsequently delay necessary response actions to protect source 
and treated water quality as well as consumer health. 

In many jurisdictions, drinking water utilities are required to submit 
samples to accredited laboratories for metabolite quantification on a 
weekly or biweekly basis. Sample collection at similar frequencies may 
also be required for recreational and agricultural waters. This frequency, 

however, is not high enough to capture short-lived blooms or sudden 
changes in the risk of exposure to cyanobacterial metabolites, such as 
bloom migration to an intake zone due to wind. Therefore, analytical 
methods need to be used strategically and in response to one or more 
indicators of the potential for adverse metabolite presence identified 
through multi-barrier early warning systems. Automated high- 
frequency characterization of metabolites in source and treated water 
are not established. Research and development are needed to establish 
sensitive and accurate real-time analytical tools for cyanotoxins and 
taste and odor compounds. 

5. Need for Multi-Barrier early warning systems 

Table 3 summarizes the capabilities of the cyanobacteria monitoring 
tools covered in this review in terms of cost, turnaround time, ability to 
quantify benthic or pelagic cyanobacteria, measurement accuracy, and 
susceptibility to interference. The cost column represents relative costs 
per sample, where low cost refers to a cost less than $10 USD, moderate 
refers to between $10 and $100, and high refers to greater than $100, 
although costs may vary depending on whether analyses are conducted 
onsite or by third party labs. Turnaround times represent the time to 
complete an analysis and are separated into <10 min, between 10 min 
and a day, and more than a day. Turnaround times can vary significantly 
if samples are shipped to and analyzed by third party labs due to ship-
ping time and position in analysis queues. The pelagic or benthic column 
describes to which form of algae or cyanobacteria each tool can be 
applied. The accuracy column describes the ability of a tool to be 
correlated to or indicate cyanobacterial biomass. Finally, the in-
terferences column describes any important drawbacks or sources of 
interference for each tool. 

A comprehensive early warning system needs to include a combi-
nation of monitoring tools as no single tool can provide information 
about all the important aspects of a cyanobacterial bloom (Gaget et al., 
2017). Spatial and temporal assessments of cyanobacteria in source 
waters using satellite- or drone-based remote sensing help forecast the 
movement of a bloom and allow drinking water utilities and other 
stakeholders to anticipate when they might experience it. Sample 
analysis by qPCR or NGS can be used to determine whether an 
advancing bloom is potentially toxic. Rapid raw water testing using 
automated imaging, probes, or photonic systems can detect the moment 
cyanobacteria begin entering a drinking water treatment plant or rec-
reational area of a water body. Samples that indicate an increase 
compared to baseline levels may be subjected to further analysis by 
microscopy or pigment extraction to quantify the concentration of cells 
to assess whether any thresholds are exceeded. Based on this informa-
tion, source water control, drinking water treatment, or agricultural and 
recreational water use strategies can then be implemented. 

To develop a source water monitoring system, users should consider 
which of the parameters described in Table 3 are the most pertinent to 
their system, in addition to the capability of personnel to conduct the 
analyses (Kibuye et al., 2021). For a small utility with limited funds 
available to purchase specialized equipment or automated monitoring 
tools, a low cost, rapid tier one tool such as ATP test sticks may be 
suitable. Then, for confirming the presence and relative abundance of 
cyanobacteria, microscopic imaging may be used as this involves min-
imal cost and operators can be trained to identify common cyanobac-
teria species using reference images, which are widely available 
(AWWA, 2010). Approximate cell counts determined by microscopy this 
way can be compared to local or international thresholds like those 
described in the WHO alert level framework, and, if they exceed those 
thresholds, samples can be collected for cyanotoxin measurement. For a 
utility with more funds available, opting for a real-time tier two moni-
toring tool for phycocyanin fluorescence, such as a probe, may be suit-
able. This removes the need for a tier one monitoring tool and eliminates 
the potential error associated with multiple operators performing mi-
croscopy because significant differences in microscopy results can occur 
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if multiple microscopists are used (Vuorio et al., 2007). Phycocyanin 
fluorescence may be used to trigger alerts by way of correlations to in-
dependent cell counts or anomaly detection algorithms, prompting 
sample analysis for cyanotoxins. Finally, a utility desiring a more 
comprehensive cyanobacteria monitoring system may benefit from 
implementing multiple tools that provide complimentary information. A 
second-tier automated cell imaging technology may be used at the 
intake to monitor cell concentrations entering a plant along with qPCR 
to determine the potential for metabolite production. In addition, source 
monitoring activities may be carried out using drones equipped with 
multispectral cameras to anticipate algal activity before it occurs. Thus, 
the three-tier framework may assist stakeholders in developing early 
warning systems for cyanobacteria based on resource availability and 
monitoring requirements. 

6. Future directions and research needs 

This review evaluates the existing tools for monitoring cyanobacteria 
and organizes them into three tiers based on their measurement targets. 
Further research is needed on evaluating early warning systems 
comprising different combinations of monitoring tools as well as to 
advance the state of individual tools. Specifically, ATP is a promising 
low cost, rapid indicator of biological activity but needs to be assessed in 
terms of its ability to identify the onset of an algal bloom. Cell quotas for 
ATP vary among species and throughout growth stages, so its use as a 
monitoring tool must be demonstrably robust against natural fluctua-
tions in concentration. The use of drones has emerged in recent years as 
an inexpensive way to rapidly assess water quality spatially, but drone 
designs need to be developed that balance battery life, payload size, and 
image quality before they can be easily adopted by drinking water 
utilities. Additionally, purpose-built sensors (e.g., for phycocyanin 
fluorescence or hyperspectral imaging) to be mounted on drones are 
needed. Further research is needed in applying data analytics to sensor 
data, such as phycocyanin fluorescence, to extract and utilize inherent 
patterns that occur in historical data, especially now that an increasing 
number of utilities have at least several years of monitoring data to 
analyze. Moreover, interferences caused by other parameters need to be 
considered to minimize false positives. Several photonic systems and 
biosensors have been developed and reported in the literature, but 

research is needed in the optimization and quality control of these sys-
tems before commercialization. Finally, existing qPCR workflows need 
to be standardized for different matrix types, and universal primers for 
biosynthesis genes for taste and odor compounds need to be evaluated in 
multiple water bodies to confirm their universality. 
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Ölcer, Z., Esen, E., Ersoy, A., Budak, S., Sever Kaya, D., Yağmur Gök, M., Barut, S., 
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Yacobi, Y.Z., Köhler, J., Leunert, F., Gitelson, A., 2015. Phycocyanin-specific absorption 
coefficient: Eliminating the effect of chlorophylls absorption. Limnol. Oceanogr. 
Methods 13 (4), e10015. https://doi.org/10.1002/lom3.10015. 

Yacobi, Y.Z., Moses, W.J., Kaganovsky, S., Sulimani, B., Leavitt, B.C., Gitelson, A.A., 
2011. NIR-red reflectance-based algorithms for chlorophyll-a estimation in 
mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 45 (7), 
2428–2436. https://doi.org/10.1016/j.watres.2011.02.002. 

Yan, Y., Bao, Z., Shao, J., 2018. Phycocyanin concentration retrieval in inland waters: A 
comparative review of the remote sensing techniques and algorithms. J. Great Lakes 
Res. 44 (4), 748–755. https://doi.org/10.1016/j.jglr.2018.05.004. 

Zamyadi, A., Choo, F., Newcombe, G., Stuetz, R., Henderson, R.K., 2016. A review of 
monitoring technologies for real-time management of cyanobacteria: Recent 
advances and future direction. TrAC Trends Anal. Chem. 85, 83–96. https://doi.org/ 
10.1016/j.trac.2016.06.023. 

Zamyadi, A., Fan, Y., Daly, R.I., Prévost, M., 2013. Chlorination of Microcystis 
aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection 
by-products formation. Water Res. 47 (3), 1080–1090. https://doi.org/10.1016/j. 
watres.2012.11.031. 

Zamyadi, A., MacLeod, S.L., Fan, Y., McQuaid, N., Dorner, S., Sauvé, Sébastien, 
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