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INTRODUCTION

The capacity of natural systems to maintain diversity 
(e.g. genetic polymorphism and coexistence of multi-
ple competing species) poses a major challenge to the 
theory of population genetics and community ecology 
(Chesson,  2000; Dempster,  1955). Interspecific inter-
actions in diverse communities reflect many complex 
factors, and their effects are intertwined with strong 
fluctuations caused by environmental and demographic 
stochasticity (Kalyuzhny et al., 2014; Lande et al., 2003). 
A generic method that provides a simple metric to quan-
tify persistence properties is therefore highly desirable.

Turelli's (1978, 1981) approach to this problem focuses 
on mutual invasibility, that is, on the ‘conditions under 
which a rare invading species will tend to increase when 
faced with an array of resident competitors in a fluctu-
ating environment’. This approach greatly simplifies the 
analysis of the complicated dynamics of a community by 
reducing it to a series of single-species invasion problems. 

All complex interactions are encapsulated in a few effec-
tive parameters that reflect the overall influence of the 
resident species and the environmental fluctuations on 
a given rare population. The rarity of the focal species 
allows one to neglect nonlinear (density dependent) ef-
fects, facilitating the analysis even further. An analogous 
approach is taken in permanence (uniform persistence) 
theories (Hofbauer,  1981; Hutson & Schmitt,  1992; 
Schreiber et al., 2011; Schuster et al., 1979).

Chesson's modern coexistence theory (Barabás 
et al.,  2018; Chesson,  1982, 1994, 2000; Chesson & 
Warner, 1981) bases its invasibility analysis on a single pa-
rameter, the mean growth rate of the invading species �[r] 
(Chesson, 1994; Lewontin & Cohen, 1969; Turelli, 1978). 
The mean is taken over all the instantaneous growth 
rates r(t) where t denotes time. The same parameter, �[r] , 
is employed in the adaptive dynamics theory of evolu-
tion (Brännström et al.,  2013; Metz et al.,  1995), in the 
study of epidemics and in many other fields [see Table 1 
of Grainger et al. (2019)]. Consequently, ecologists have 
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Abstract

Invasibility, the chance of a population to grow from rarity and become established, 

plays a fundamental role in population genetics, ecology, epidemiology and 

evolution. For many decades, the mean growth rate of a species when it is rare has 

been employed as an invasion criterion. Recent studies show that the mean growth 

rate fails as a quantitative metric for invasibility, with its magnitude sometimes 

even increasing while the invasibility decreases. Here we provide two novel 

formulae, based on the diffusion approximation and a large-deviations (Wentzel–

Kramers–Brillouin) approach, for the chance of invasion given the mean growth 

and its variance. The first formula has the virtue of simplicity, while the second one 

holds over a wider parameter range. The efficacy of the formulae, including their 

accompanying data analysis technique, is demonstrated using synthetic time series 

generated from canonical models and parameterised with empirical data.
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developed a collection of techniques to infer �[r] from 
empirical time series or from models parameterised 
using empirical data (Grainger et al., 2019). Many con-
temporary studies of species coexistence and the main-
tenance of biodiversity analyse this ‘invasion criterion’ 
�[r] (Chesson, 2008; Grainger et al., 2019) and partition it 
between underlying mechanisms such as niche differen-
tiation, fitness differences and so on (Ellner et al., 2016, 
2019; Letten et al., 2018). Some authors employ �[r]-based 
criteria for mutual invasibility as a metric for stability in 
empirical studies (Usinowicz et al., 2012, 2017).

However, recent work has revealed that �[r] is not 
a reliable quantitative indicator of invasibility (Pande 
et al., 2020a). Systems with different underlying parame-
ters may yield different probabilities of invasion for a spe-
cies despite having the same numerical value of �[r]. Even 
worse, invasibility may decrease even as �[r] increases. 
Although �[r] provides a fair binary classification—when 
its value is positive (negative), the extinction state is a re-
peller (attractor), from which important asymptotic pre-
dictions follow (Chesson, 1982, 1994; Ellner et al., 2020; 
Hofbauer, 1981; Schreiber et al., 2011)—it does not reli-
ably measure invasibility.

The failure of �[r] as a metric reflects two problems 
(Ellner et al., 2020; Pande et al., 2020a; Pande et al., 2020b). 
First, since the growth rate r measures the logarithm of 
abundance ratios, zero-abundance (extinction) states lead 
to infinite negative contributions. To avoid this problem, 
�[r]-based analyses must neglect demographic stochas-
ticity, the intrinsic stochasticity arising from the birth 
and death of discrete individuals, despite its crucial im-
portance when the invading population is small. Second 
(Szilágyi & Meszéna, 2010), �[r] does not fully include the 
effect of environmentally induced variation in abundance 
over time—that is, environmental stochasticity—which 
affects entire populations collectively.

Thus, given the limitations of �[r], a better metric is 
required. Following former studies (Lande et al., 2003), 
Dean and Shnerb (2020) suggested such a metric for sys-
tems with environmental stochasticity. However, they 
did not take demographic stochasticity into account, and 
assumed that environmental fluctuations are weak such 
that the diffusion approximation (Crow & Kimura, 1970; 
Karlin & Taylor, 1981) is valid.

To provide a more general metric, here we present two 
new formulae that predict, quantitatively, the chance 
of invasion. The first of these is based on the diffusion 
approximation, differing from the work of Dean and 
Shnerb  (2020) in its inclusion of demographic stochas-
ticity. As is usual with the diffusion approximation, this 
formula is valid only for small levels of stochasticity. 
Our second formula is based on the large-deviations 
WKB (Wentzel–Kramers–Brillouin) approximation, 
and works for weak as well as strong levels of both de-
mographic and environmental stochasticity. The WKB 
approach leads to more accurate results over a wide pa-
rameter range, and we recommend its use except in cases 

of very weak stochasticity, where the diffusion approxi-
mation formula may work better.

Moreover, our WKB formula converges to the 
known classical results for establishment probability 
(Gillespie, 2004; Haldane, 1927; Kimura, 1962) when the 
environment is fixed through time, and to the expression 
suggested in Dean and Shnerb (2020) when the diffusion 
approximation holds. Additionally, our analysis clarifies 
how the effect of demographic stochasticity may be taken 
into account indirectly by introducing an ‘extinction 
threshold’ at the right density. This allows one to extract 
quantitative predictions from infinite population mod-
els, like those used in permanence (uniform persistence) 
theories (Hofbauer,  1981; Hutson & Schmitt,  1992; 
Schreiber et al., 2011; Schuster et al., 1979).

Below we derive our two formulae, discuss their accu-
racy, explain how to extract the parameters required for 
their use from abundance time series, and finally compare 
their predictions to simulations of a few canonical models.

DERIVATION OF 
IN VASION FORM U LAE

The backward Kolmogorov equation and the 
diffusion approximation

In a community of N individuals, we define the 
chance of a species of n individuals to grow in abun-
dance and reach a target abundance nf ≪ N as Πn→nf

 (or, 
in shorter notation, Πn). Πn satisfies the following back-
ward Kolmogorov equation,

where Wn→n+Δn are the transition probabilities from n to 
n +Δn individuals during a given period of time �. This 
equation reflects the fact that the chance of a population 
of abundance n to ultimately reach a target abundance nf 
is equal to the chance to jump from n to any other desti-
nation, Wn→n+Δn, multiplied by the chance to reach nf from 
this destination. Normalisation requires 

∑
ΔnWn→n+Δn = 1 , 

which means Π
n
= constant is always a solution of 

Equation (1). The lower bound Δn = − n corresponds to 
extinction and the upper bound Δn = N − n to ultimate 
fixation. The boundary conditions are Π0 = 0 (reflect-
ing no chance of invasion from the extinction state) and 
Πnf

= 1 (because n ≥ nf implies successful invasion).
In Equation (1), Wn→n+Δn are time-averaged transition 

probabilities, with the average taken over all the states of 
the environment. This averaging assumes the time period 
�, unspecified so far, to be larger than or equal to the dwell 
time of the environment (the typical duration for which 
the environment stays constant before changing), other-
wise the transition probabilities are correlated. From here 

(1)Πn =

N−n∑

Δn=−n

Wn→n+ΔnΠn+Δn,
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on we assume � to be the dwell time. We also assume that 
the typical time to invasion is much larger than �; in the 
opposite case the environment varies only slightly over 
the time required for the population to reach nf (Cvijović 
et al., 2015; Mustonen & Lässig, 2008) and the chance of 
invasion may be found by averaging over fixed environ-
ments, as explained in the discussion section.

The diffusion approximation (Karlin & Taylor, 1981) 
replaces the complicated difference Equation (1) by the 
following simpler differential equation that regards Πn as 
a continuous function of n (writing it as Π(n); throughout 
this paper, discrete arguments of functions are written as 
subscripts and continuous ones are put in parentheses),

Here primes represent derivatives with respect to n. �[Δn] is 
the mean of the displacement Δn during the time �, equal-
ling 

∑
ΔnWn→n+ΔnΔn. Var[Δn] is the variance of Δn during 

the period �. Both �[Δn] and Var[Δn] may depend on n.
In the invasion regime, the invading population is 

rare, so we can neglect density-dependent effects: dif-
ferent individuals of the invading species do not inter-
act with each other, and the reproductive success of an 
invader, its chance to produce m offspring, is dictated 
solely by the environment (including abiotic factors and 
the effect of the resident species). The total growth in 
the entire invading population is thus n times �[m], the 
expected net growth associated with a single individual, 
that is, �[Δn] = �[m]n. The variance of this quantity is 
made up of two terms: demographic stochasticity, which 
is proportional to n and appears even if the environment 
is fixed, and environmental stochasticity, which is pro-
portional to n2 and appears only when the environment 
fluctuates (Lande et al., 2003). We employ ℰ, d and e as 
the relevant constants of proportionality, defined by

Putting the forms of �[Δn] and Var[Δn] from Equation (3) 
in Equation (2), the two independent solutions of the dif-
ferential equation are found to be.

where

The boundary conditions Π(0) = 0 and Π
(
nf
)
= 1 must be 

satisfied by a linear combination of ΠI(n) and ΠII(n), and 
this yields (see Supplement S1) the invasion formula under 
the diffusion approximation (DA),

Beyond the diffusion approximation: 
A large-deviations (WKB) formula

The diffusion approximation is based on two assump-
tions. It requires Δn to be small with respect to n (so 
Π(n +Δn) is approximated by terms up to (Δn)2 in a 
Taylor series), and it assumes that the mean displace-
ment in each step is negligible with respect to its stand-
ard deviation (technically, nℰ2

≪ d + ne) (Karlin & 
Taylor,  1981). When abundance fluctuations and/or ℰ 
are large, as occurs in many biological scenarios, the 
diffusion approximation may fail. To overcome this 
difficulty, it is necessary to take recourse to a large-
deviations technique. In recent years, such techniques, 
based often on the WKB (Wentzel–Kramers–Brillouin) 
approximation, have been used in several studies (Assaf 
& Meerson,  2017; Kamenev et al.,  2008; Kessler & 
Shnerb,  2007; Ovaskainen & Meerson,  2010). Here we 
employ the WKB technique with the two-destination 
approximation (Pande & Shnerb, 2020) scheme that fa-
cilitates the analysis and allows us to derive the required 
invasion formula.

In this analysis, it is more convenient to use the log-
arithmic parameters z ≡ ln n and Δz ≡ ln(n +Δn) − ln n. 
On the logarithmic axis, Equation (1) becomes

where the bounds of the sum are simply those of 
Equation (1) transformed to the z-space. Below we switch 
between the n- and z-notations or even mix them as conve-
nient, bearing in mind the reciprocal relations z = ln n and 
n = exp(z).

To use the WKB technique, it is helpful to sim-
plify Equation  (7) while retaining its character as a 
difference equation. Our strategy for doing this em-
ploys the two-destination approximation (Pande & 
Shnerb, 2020), wherein we replace the actual random 
process in Equation  (7) by a simpler process that al-
lows, for each initial location z, only two values for 
the destination z +Δz. Despite this drastic reduction 
in the process complexity, no significant errors arise 
in the dynamical quantities of interest, as long as the 
first two moments of each jump are preserved (Pande 
& Shnerb,  2020). The first moment is the mean jump 
size �[Δz] during the dwell time �, and the second 
moment is �

[
(Δz)2

]
. Note that �[Δz] is related to the 

invasion growth rate by the relation �[r] = �[Δz]∕� 
(Chesson, 1982).

Here we stipulate that the two possible destinations 
lie on equal distances to the right and left of the initial 
position z, though the probability of jumping to the right 
and to the left may differ (see Supplement S2 for alterna-
tive formulations). Under this scheme, which treats Π as 
a continuous function of z, Equation (7) yields the sim-
pler equation

(2)

�[Δn]Π�(n) +
Var[Δn]

2
Π��(n) = 0, Π(0) = 0, Π

(
nf
)
= 1.

(3)�[Δn] = ℰn, Var[Δn] = dn + en
2.

(4)ΠI(n) = constant, ΠII(n) = (1+nℛ),

(5)ℛ = e∕d,  = 1 − 2ℰ∕e.

(6)ΠDA
n→nf

=
1 − (1+nℛ)

1 −
(
1+nfℛ

) .

(7)Πz =
∑

Δz

Wz→z+ΔzΠz+Δz,
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where � is the jump size in z-space and � is the forward 
jump probability. � and � are in general functions of z, and 
must satisfy the following relations to leave the first two 
moments unchanged,

Here the mean jump in the two-destination process is 
found by summing the product of the forward jump (�) 
and the forward jump probability (�) with the product of 
the backward jump (− �) and the backward jump proba-
bility (1 − �), and similarly for the second moment of the 
jump. Equations (9) imply

To solve for Π(z) in this two-destination process, we apply 
our WKB-based approach. The basic idea is simple: the 
diffusion approximation requires Π(z) to be smooth over 
z, so one may expand Π(z +Δz) in a Taylor series and 
keep only the lowest orders. The large-deviations tech-
nique is based on a less restrictive assumption, that the 
logarithm of Π, that is, S(z) ≡ ln Π(z), is smooth over z. 
Therefore, we express Π(z) as eS(z), and expand S(z +Δz) 
as S(z +Δz) ≈ S(z) + ΔzS�(z), where a prime denotes a 
derivative with respect to z. For brevity of notation, we 
define q ≡ S�(z). Equation (8) then gives

where sinh is the hyperbolic sine function. This equation 
has two solutions. The trivial one, q = 0, yields the trivial 
constant solution ΠI. The nontrivial solution for q, given 
by 
 

determines the nontrivial solution 
ΠII(z) = exp[S(z)] = exp

[
∫ q(z) dz

]
. A linear combination 

of these two solutions must satisfy the appropriate bound-
ary conditions.

Since � and � are both z dependent, it is difficult to 
integrate q(z) over z. To obtain an analytic expression, 
we therefore interpolate between two limits: the large-n 
(outer) region where demographic stochasticity is neg-
ligible and q is constant, and the small-n (inner) region 
where environmental stochasticity is negligible.

The outer regime: We have everywhere assumed the in-
vading population to be small (n≪ N) such that there are 

no density-dependent effects and the only influence of n on 
the displacement Δz is through demographic stochastic-
ity. Therefore, if n is large enough such that demographic 
stochasticity is negligible—this condition defining the 
outer regime—Δz is z-independent and we can define the 
constants E0 = �[Δz] and Ve ≡ �

[
(Δz)2

]
− E2

0
. The non-

trivial solution Πout

II
(z) is, thus,

Here q is obtained by substituting the expressions for � and 
� from Equation (10) in Equation (12).

The inner regime: If the invading population is very 
small, birth–death events (among the invaders) are 
rare, and the environment changes a few times between 
two successive such events. Since the birth of different 
individuals in a species takes place in different environ-
ments, there are no species-wide, collective responses 
to the environment. Accordingly, although environ-
mental variations can still affect the mean growth in 
the abundance (such as through the storage mecha-
nism; Chesson & Warner,  1981; Chesson,  2000), their 
effect on random fluctuations in the abundance is in-
herently demographic in nature. The net effect is that 
in the inner regime the dynamics are those of a popu-
lation in a constant environment, characterised by the 
mean growth rate E0 and the strength of demographic 
stochasticity Vd.

For such a system, with an effectively constant environ-
ment, the diffusion approximation is known to be highly 
accurate (Parsons et al., 2010). In the n-space, the demo-
graphic stochasticity enters Equation (2) (the equation gov-
erning the dynamics under the diffusion approximation) 
only in the second term, (Var[Δn]∕2)Π��(n) . Substituting 
Var[Δn] = Vdn, this second term takes the form,

where the last equation is derived using z = ln n and the 
chain rule. Combining this term with the drift term, 
E0�Π∕�z, we get the diffusion approximation equation 
valid in z-space,

where E0 and Vd are z-independent constants. Again, there 
are two solutions to Equation  (15), the trivial solution 
ΠI(z) = constant and the nontrivial solution

(8)Π(z) = �Π(z + �) + (1 − �)Π(z − �),

(9)
��−(1−�)�=(2�−1)�=�[Δz],

��2+(1−�)�2=�2=�
[
(Δz)2

]
.

(10)� =

√
�
[
(Δz)2

]
, � =

1

2
+

�[Δz]

2

√
�
[
(Δz)2

] .

(11)
eS =�eS+q�+(1−�)eS−q�

⇒1=2�sinh(q�)+e−q� ,

(12)
q =

ln
(

1−�

�

)

�
,

(13)Πout
II

(z)= eqz, where q≡

ln

�√
Ve+E

2
0
−E0√

Ve+E
2
0
+E0

�

�
Ve+E

2
0

.

(14)

Var[Δn]

2

�2Π(n)

�n2
=
Vdn

2

�2Π(n)

�n2
=
Vde

−z

2

(
�2Π(z)

�z2
−

�Π(z)

�z

)
,

(15)
(
E0 −

Vde
−z

2

)
�Π(z)

�z
+
Vde

−z

2

�2Π(z)

�z2
= 0,

(16)Πin
II
(z) = e

−2E0e
z∕Vd = e

−2E0n∕Vd .
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Because z = ln n, integration over dz equals integration over 
dn∕n, therefore ∏in

II
(z) = exp

�
∫ q(z) dz

�
= exp

�
∫ qin(n)∕n dn

�
, 

where qin(n) ≡ − 2E0n∕Vd.
Interpolation: Equations (13) and (16) give ΠII(z) when 

n is large and small, respectively. To interpolate between 
these two solutions, we interpolate between their corre-
sponding values of q, using

Clearly, qinter(n) approaches qin at small n and q at large n 
values, as desired. Therefore,

where

Combining this solution with the trivial (constant) so-
lution so that the boundary conditions (Πn=0 = 0 and 
Πn=nf

= 1) are satisfied, we obtain the final WKB-based 
invasion formula,

with R and q defined in Equations (19) and (13).
Importantly, when nR≫ 1 (which also means nfR≫ 1 , 

as n ≤ nf), the chance of invasion tends to 1 if q < 0 and 
to 

(
n∕nf

)q
 if q > 0. Since sign(q) = − sign

(
E0

)
, when the 

invading population is large (n≫ 1∕R) and has a fitness 
advantage (E0 > 0) it is certain to establish. If nf ≫ n, then 
the opposite statement also holds: an invading popula-
tion with negative E0 cannot establish. Therefore, only 
when 1∕R≪ n≪ nf does invasibility become a binary 
property for which the mean invasion growth rate �[r] is 
a proper metric (Ellner et al., 2020; Pande et al., 2020b).

IN FERRING TH E PARA M ETERS 
FROM A BU N DA NCE TIM E SERIES

Our invasion formulae, Equations (6) and (20), each re-
quire three parameters, reflecting the mean and the vari-
ance of abundance variations during the dwell time of 
the environment. Here we explain how to infer these pa-
rameters and the value of the dwell time from abundance 
time series.

We start by considering cases in which artificial time 
series can be generated using simulations of a commu-
nity dynamics model parameterised using empirical 
data. The length and the accuracy of such time series 
are, in principle, unlimited. Later, we discuss the case of 

empirical time series, which may be short and plagued 
by observation errors and thus difficult to accurately es-
timate the relevant parameters from.

The starting point of our analysis is a time series 
of the abundance nt (Figure  1a). To ascertain the pa-
rameters required for the diffusion approximation for-
mula, the mean and the variance of Δn (the change in 
n during the duration �) are measured, as in panels (b) 
and (c), and from these ℰ, d and e are determined 
as illustrated in the insets in these panels. Likewise, 
to find the parameters for the WKB-based formula, 
the abundance series nt is first transformed to a series 
for z

t
= ln n

t
 [panel (d)], from which the mean and the 

variance of Δz are found [panels (e) and (f)], and the 
parameters E0 , Vd and Ve determined [insets in panels 
(e) and (f)].

Importantly, demographic stochasticity has negligi-
ble effect on our ability to measure ℰ. Demographically 
induced jumps are symmetric in the n-space, so they 
leave the value of �[Δn] unchanged. In contrast, demo-
graphic stochasticity does diminish the value of �[Δz] 
(because a symmetric, zero-mean change in n implies a 
net negative change in ln n). This effect becomes more 
pronounced as n decreases, so �[Δz] becomes nega-
tive at small values of n [see Equation (15)]. Moreover, 
because the logarithm of zero diverges, transitions to 
the state of zero abundance must be excluded from the 
time series, which generates an artificial bias towards 
invasion when n is very small. For these two reasons, 
if the available abundance time series has only a small 
number of invaders such that demographic stochas-
ticity plays an important role in the dynamics, then 
the inference of the parameters ℰ, d and e from the 
n-space analysis is more accurate than the inference of 
E0, Vd and Ve from the z-space. In such cases, the dif-
fusion approximation formula Equation (6) may work 
better than the WKB-based Equation (20).

On the other hand, once the relevant parameters 
are known, the WKB-based formula performs better 
than the diffusion approximation-based one. When the 
constant selection terms (either ℰ or E0) and the envi-
ronmental stochasticity terms (e or Ve) are small, both 
formulae estimate the chance of invasion well, but in 
cases of strong selection or large fluctuations the diffu-
sion approximation becomes inaccurate. The superiority 
of our WKB formula is demonstrated in Figure 2.

The preceding discussion assumes the existence of a 
long and accurate time series, which is rare when the rel-
evant datasets are empirical. We note nevertheless that 
the inference of the main parameter used in modern co-
existence theory, �[r] = E0∕�, encounters the same chal-
lenges as the inference of the three parameters required 
for our formulae (see Supplement S3). Moreover, it is 
often possible to estimate the typical number of prop-
agules per individual, say, or of hatchlings that reach 
maturity in a nest during a good or a bad year. From 
such estimates, approximate values for demographic and 

(17)qinter(n) ≡
− 2E0n

Vd − 2E0n∕q
.

(18)Π
II
= e∫

qinter
n

dn = (1−nR)q,

(19)R ≡ −
2E0

qVd

.

(20)ΠWKB
n→nf

=
1 − (1+nR)q

1 −
(
1+nfR

)q ,
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F I G U R E  1   Parameter inference. The raw data is an abundance time series (as obtained from direct observations or a numerical simulation 
of a properly parameterised model). Here this dataset of n

t
, n

t+�, nt+2�, … is illustrated in panel (a). Each pair of adjacent points yields a single 
value Δn = n

t+� − n
t
. The mean value �[Δn] is plotted against n in panel (b). As expected, �[Δn] grows linearly with n, and the constant ℰ is 

identified from its slope. A graph of �[Δn]∕n is shown in the inset, emphasising that this quantity is indeed n-independent. Var[Δn] is plotted 
against n in panel (c). As expected, it takes a quadratic form, Var[Δn] = nd + n

2e
, so Var[Δn]∕n is a straight line whose slope gives e

 and the 
intercept with the vertical axis provides d

. An analogous procedure leads to the parameters needed for the WKB-based formula. The starting 
point is the time series z

t+� , zt+2� , …, obtained from the time series for n
t
 by the transformation z

t
= ln n

t
 [panel (d)]. Each pair of points yields 

one value of Δz, and from these values one calculates �[Δz] [panel (e)]. Note that the parameter E0
, corresponding to the mean growth rate of a 

rare population in coexistence theories (more precisely, �[r] = E0 ∕�), is the value of �[Δz] when n≫ 1, that is, when demographic stochasticity 
is negligible. For smaller values of n, �[Δz] = E0 − Vd ∕(2n), as demonstrated in the inset. To extract the values of �[Δz], we filtered from the 
dataset all the cases where n

t+� = 0; this yields an artificial positive bias when n is very small. Finally, the variance of Δz is shown (in panel (f)) to 
increase as n decreases, and the inset shows that it satisfies Var[Δz] = Ve + Vd ∕n. All the datasets were obtained for the individual-based version 
of the lottery model (Chesson, 1982; Chesson & Warner, 1981) with � = 0.2, s0 = 0 and �e = 0.25 (see Supplement S4 for model details).
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environmental stochasticity may be determined (as in 
Sæther et al. (2004), for example), and then our formula 
may be used to obtain an order of magnitude estimate 
for the chance of invasion.

Finally, a note on �, the dwell time of the environment. 
In our model, the environmental conditions are fixed on 
average for periods of duration � and then take an arbi-
trary and uncorrelated new value. This means that the 
correlation time of the environment is the mean time be-
fore the next shift, that is, � ∕2. Therefore, � equals twice 
the value of the autocorrelation time of the environment.

TH E IN VASION FORM U LA 
IN ACTION

The results shown in Figure 2 (and, more expansively, in 
Supplement S5) indicate that our WKB-based formula 
estimates Πn well, and does so for a much wider range of 
parameters than our diffusion approximation formula. 
Henceforth, we treat the WKB-based formula as the rec-
ommended one. In this section, we examine its accuracy 
using a few model systems, and contrast it with quantita-
tive predictions based solely on the invasion growth rate.

We use simulated data from three individual-based ver-
sions of canonical models: the discrete-time lottery model 
of Chesson and Warner (1981), its continuous-time (Moran) 
analogue, and the Leslie–Gower competition model for 
trees and saplings employed by Usinowicz et al. (2012) and 
Usinowicz et al. (2017). Detailed descriptions of these mod-
els and of our simulations are provided in Supplement S4. 
In all these models, there is a negative covariance between 
environment and competition, and thus environmental 

stochasticity may promote invasion via the storage mecha-
nism (Chesson, 2000; Chesson & Warner, 1981). This makes 
the relationship between the underlying process parame-
ters and the invasibility properties intricate and presents a 
demanding test to our formula.

Figure  3 compares the accuracy of the parameter 
�[r] = E0∕� and our ΠWKB

n→nf
 in reflecting the true chance 

of invasion as measured by simulations, for the case of 
a single individual trying to invade a community in the 
discrete-time lottery model. The different points rep-
resent different values of the dwell time � (in the range 
[0.1...1], indicated by circle size) and the amplitude of 
environmental stochasticity � (in the range [0...0.7], in-
dicated by colour).

Figure  3a highlights the inadequacy of �[r] as a 
quantitative indicator of the chance of invasion, since 
for any given value of �[r] the true chance of invasion 
may have a host of different values. More strikingly, it 
is possible to change the values of � and � in such a way 
that �[r] increases even though the true chance of in-
vasion decreases, such as along the trajectory marked 
by the grey arrow. This shows that even qualitatively 
a change in �[r] can fail to reflect the true trend in the 
invasibility.

In contrast, ΠWKB
n→nf

 reflects faithfully the true chance 
of invasion, qualitatively as well as quantitatively. This is 
seen by the fact that the points in panel (b) in Figure 3 lie 
on a straight line, of slope 45 degrees, showing that the 
horizontal and vertical values corresponding to a point 
match—in other words, the predicted chance of invasion 
(on the horizontal axis) equals, within small error, the 
measured chance of invasion (on the vertical axis), for 
all the values of � and � probed. The fact that the data 

F I G U R E  2   Comparing the formulae. The chance of invasion, Π1→200
, as obtained from Monte-Carlo simulations of the individual-based 

lottery model is plotted (blue circles, full lines) against the log amplitude of the environmental variations. These results are compared with 
the prediction of the diffusion approximation-based formula, Equation (6) (red circles, dashed-dotted lines) and the WKB-based formula, 
Equation (20) (yellow diamonds, dashed lines), with n0 = 1, nf = 200. The lottery model parameters were (a) � = 0.1, s0 = 0.1, N = 10

6, and 
(b) � = 0.3 , s0 = 0.2, N = 10

6, where s0 indicates the mean fitness advantage of the invading species (see Supplement S4 for model details) and 
N is the total size of the whole community. The parameters required for the use of each formula were inferred from abundance time series 
generated using the model, following the procedure described in Figure 1. As is visible, the formula based on the diffusion approximation works 
well only for low levels of selection and environmental variations. In contrast, the WKB-based formula agrees with the true chance of invasion 
for a much wider parameter range. Supplement S5 presents many other plots showing the same comparison for several values of � ∈ [0.1..0.7] 
and s0 ∈ [ − 0.2...0.4].
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collapse on to a line also means that in this case one can-
not choose a trajectory along which the predicted and 
observed values of the invasibility have different trends.

Figure 4 presents a similar picture for the continuous-
time (Moran) version of the lottery model. Here, the sim-
ulations measure the chance of a group of n individuals 

F I G U R E  3   The chance of a single invader (n = 1) to reach nf = 200. This chance was obtained from numerical solution of the discrete-time 
lottery model with demographic stochasticity (see Supplement S4) for various values of the model parameters � (the dwell time) and � (the 
amplitude of the temporal fitness variations). The colour of each filled circle indicates the value of �, while its size is proportional to its �-value 
(between 0.1 and 1). In the left panel, the true chance of invasion is plotted against �[r], demonstrating that �[r] is a poor metric: For a given 
value of �[r], the true invasibility may have many different values, and when the model parameters � and � change (e.g. along the path indicated 
by the grey arrow), the invasibility may even decrease while �[r] increases. In the right panel, the true chance of invasion is plotted against 
the predictions of Equation (20), showing not only a data collapse but also close agreement with the numerical values. All the results were 
obtained for the case where there is no mean fitness advantage of the invading species, that is, s0 = 0 (�[r] is positive even in this case due to the 
storage effect), and with N = 10

5. Similar graphs for nf = 500 and for nf = 20 are presented and discussed in Supplement S6, with the latter case 
providing a good example where Equation (6), based on the diffusion approximation, works better than Equation (20) based on WKB, due to 
higher accuracy of parameter extraction.

F I G U R E  4   For the continuous-time (Moran) version of the lottery model, the chance to reach nf = 200 starting from varying n, as obtained 
from Monte Carlo simulations (circles), is compared, in panel (a), with the predictions of ΠWKB

n→nf

 from Equation (20) (full lines) for different 
values of s0, the mean selection parameter. In panel (b), the chance of invasion as found from the simulations is plotted against �[r], with the 
colour of the points corresponding to their value of s0, and their size to the value of n. In panel (c), the same chance of invasion is plotted against 
ΠWKB

n→nf

. As in Figure 3, all the observed (in simulations) data points collapse on a line when plotted against Equation (20). Other parameters are 
� = 0.3, � = 0.1 and N = 5000. Similar graphs for different values of N are presented in Supplement S7. Even when s0 is negative, the curves in 
panel (a) may have the concave shape associated with a beneficial mutant. This happens because the storage effect (Chesson & Warner, 1981; 
Dean & Shnerb, 2020) may support invasion by an inferior species.
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to establish, with n varying. We allow the mean fitness 
of the invading species to differ from the mean fitness of 
the resident species, a property quantified by the param-
eter s0. Again, �[r] performs poorly as a quantitative pre-
dictor for the chance of invasion, whereas ΠWKB

n→nf
 predicts 

the true invasibility well. The limitations in �[r] are more 
prominent here, since �[r] is by definition oblivious to n , 
so all points for a given value of s0 have the same value 
of �[r] irrespective of n, despite being widely separated in 
their values of the observed invasibility.

In Figure 5, we show results for the individual-based 
version of the Leslie–Gower model for the dynamics of 
trees and saplings. We have used the recruitment rates 
for the species Spondias mombin and Spondias radlkoferi 
(scaled by a constant factor), as provided in Usinowicz 
et al. (2012). While in the models used for Figures 3 and 4 
the dwell time � is a model parameter, here it needs to be 
identified as well from the abundance time series (just 
like the parameters E0, Vd and Ve). As a run-through of 
our whole method, we have provided a full step-by-step 
analysis for this model, including the generation of the 
abundance time series and the identification of all the 
required parameters, in Supplement S8.

For this model, the two panels in Figure  5, like in 
Figures 3 and 4, compare the efficacy of �[r] and ΠWKB

n→nf
 

as quantitative indicators of invasibility. Each point rep-
resents a different set of sapling survival probability 
( f ∈ [0.5...0.9], indicated by symbol shape), adult tree 
survival probability (d ∈ [0.3...0.7], indicated by symbol 
colour) and initial abundance (n ∈ [1...200], indicated by 
symbol size). Like in Figure 4, since �[r] is insensitive to n , 
there are vertical bands, corresponding to different values 
of f  and d, of constant �[r] value and widely divergent val-
ues of the observed chance of invasion in panel (a). In con-
trast, the predicted and the observed chances of invasion 
[shown in panel (b)] agree as the points lie on a straight line 
of slope 45 degrees, to within experimental error.

DISCUSSION

The chance of an invading population to grow in abun-
dance to a large size governs many ecological and evo-
lutionary processes, and is one of the main metrics used 
to assess the stability of an ecological community. In this 
paper, we have provided formulae that quantify this 

F I G U R E  5   Chance of invasion in the Leslie–Gower forest dynamics model of Usinowicz et al. (2012) and Usinowicz et al. (2017), as 
described in Supplement S4. For a community size of N = 10000, we calculated the chance to reach nf = 1000, starting from varying n, and 
plotted the results against �[r] (panel a) and against the predictions of Equation (20) (panel b). The size of each point is proportional to the 
initial population n ∈ [1..200], different colours correspond to different chances of adult tree survival d ∈ [0.3..0.7] and different symbols 
represent different chances of sapling survival f ∈ [0.5..0.9]. In our simulations, we employed the empirical recruitment rates for Spondias 
mombin and Spondias radlkoferi, as provided in Usinowicz et al. (2012), scaled by a constant factor. A step-by-step description of the analysis is 
presented in Supplement S8.
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chance in fluctuating environments in terms of the dwell 
time of the abundance fluctuations, the mean and the 
variance of these fluctuations, and the initial and target 
densities.

In the existing literature, the sign or the numerical 
value of �[r] is used as a proxy for the chance of invasion 
(Ellner et al., 2016, 2019; Letten et al., 2018; Usinowicz 
et al.,  2012, 2017). However, as noted by Grainger 
et al. (2019), ‘demographic stochasticity can have import-
ant consequences for low-density invasion growth rates, 
but this is frequently overlooked … the impact of demo-
graphic stochasticity on outcomes predicted by (�[r]) re-
mains largely an open question’. As shown above, these 
are two independent and important problems. First, the 
estimation of �[r] from low-density time series yields re-
duced values for �[r] and may even invert its sign (see 
Figure  1e). Second, even if �[r] is known, it cannot be 
used as a quantitative metric unless the invading popula-
tion is large enough (1∕R≪ n≪ nf).

The formulae provided here, Equations  (6) and 
(20), facilitate a more informed analysis. First, the in-
vasibility may be calculated using these formulae for 
any size of the invading population, as our treatment 
takes demographic stochasticity into account. Second, 
the diffusion approximation formula Equation  (6) de-
pends on the parameters in the n-space, in particular, 
on ℰ = �[Δn]∕n, which is not affected by demographic 
stochasticity (and does not diverge upon transitions to 
the zero-abundance state, unlike �[r]). This formula 
may thus be used even when the relevant datasets are 
limited to small abundances. The WKB-based formula 
Equation (20) may be employed when �[Δz] is calculated 
in the regime where it is independent of the abundance.

The price one has to pay for using our formulae is 
the need to calculate two more quantities, Vd and Ve (or 
d and e). As illustrated in Figure 1, the calculation of 
these additional parameters is of a similar level of com-
plexity as that of �[r] (see Supplement S3). In some cases, 
even when the time series are not long enough, it may 
be possible to estimate these parameters to within ac-
ceptable error through heuristic means, in which case 
ΠWKB
n→nf

 (or ΠDA
n→nf

) is again a more informative metric of the 
chance of invasion than �[r].

Given the simplicity and accuracy of our formulae for 
Πn, we suggest that they replace �[r] as an invasion metric 
in ecological and evolutionary analysis. A larger Πn im-
plies a larger chance for a given population to invade or 
to recover from disturbances. Therefore, all other things 
(rate of disturbances, rate of migration from a regional 
pool, etc.) being equal, an increase in the value of Πn im-
plies more successful colonisation and lower extinction 
rates, unlike the case for �[r] (Pande et al., 2020a).

As an invasion parameter Πn may be used for the same 
purposes for which �[r] is currently employed. In par-
ticular, one may partition its numerical value to study 
the contribution of specific mechanisms, like covariance 
between the competition and the environment (Ellner 

et al., 2016). Moreover, our formulae allow a quantitative 
estimate of the invasibility even when a precise numer-
ical assessment through simulations is very difficult or 
computationally expensive, for instance, when nf is huge 
or when the chance of invasion is very close to 0 or to 1. 
This latter case is the situation in Usinowicz et al. (2017), 
where a comparison between the stability of different 
tree communities requires one to quantify the invasibil-
ity even though it is very close to 1.

Beyond their potential use in coexistence theory and 
related problems, our formulae provide some important 
insights.

First, they help to define a value of nf, the target abun-
dance at which a species may be said to have established 
successfully. Two simple alternatives are choosing nf to 
be some fixed large number (independent of the overall 
community size) or a fixed frequency (a given fraction 
of the community), but these choices are somewhat ar-
bitrary. Our WKB formula suggests that a natural defi-
nition for nf (when �[r] is positive, so q is negative) is the 
abundance above which the chance of extinction is small, 
that is, nf ∼ exp(1∕ |q|)∕R.

Second, because the incorporation of both demo-
graphic and environmental stochasticity in a model 
is a complicated task, many population models, like 
those used in permanence (uniform persistence) theo-
ries (Hofbauer, 1981; Hutson & Schmitt, 1992; Schreiber 
et al.,  2011; Schuster et al.,  1979), deal only with envi-
ronmental variations, whose effect is generally stronger 
than that of demographic variations (Lande et al., 2003). 
However, without demographic stochasticity, the system 
never reaches the zero-abundance state, so in these theo-
ries one must introduce an arbitrary threshold below which 
a population is considered extinct. In Supplement S9, we 
show that our formulae converge to the expressions ob-
tained in the literature when demographic stochasticity is 
neglected, if the extinction threshold is chosen at

that is, at the abundance level at which the strengths of de-
mographic and environmental stochasticity become equal. 
This result clarifies the range of parameters for which 
infinite population models are applicable: the total pop-
ulation has to be much larger than nth. Furthermore, by 
introducing an absorbing boundary at this threshold value 
nth, one may obtain quantitative approximations (for quan-
tities like the mean time to extinction) from models that 
disregard demographic stochasticity.

Our invasion formulae have a few limitations. First, 
to derive them we assumed that the dwell time � of the 
environmental variations is smaller than the time re-
quired for a population to successfully invade. When � 
is larger than the typical invasion time (the “quenched” 
scenario of Mustonen & Lässig, 2008), the actual value 
of � becomes insignificant, since the environment typi-
cally remains fixed throughout the invasion process (see 

(21)nth = Vd∕Ve,
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Supplement S6). Our formulae do not apply in this re-
gime, but they are not required either, since in this case 
one may use the well-known formula for the probabil-
ity of invasion in a fixed environment (Haldane,  1927; 
Kimura, 1962) and determine the overall invasibility by 
taking an appropriately weighted expectation value over 
all possible environmental states. This fixed-environment 
invasion formula is, by construction, the limit Ve → 0 of 
Equation (20) [and of e → 0 of Equation (6)].

Second, as mentioned earlier, Equation  (20) holds 
only if the parameters �[Δz], Vd and Ve are constant in 
the invasion regime, which requires the ratio nf∕N to be 
small, otherwise density-dependent effects appear.

Third, to use abundance time series, one must con-
tend with sampling errors, which are common in eco-
logical surveys (Clark & Bjørnstad,  2004). If these 
errors are unbiased, they do not affect �[r] (or �[Δz]), 
but they can overestimate Ve. In some cases, these errors 
may be filtered out using standard techniques (Clark & 
Bjørnstad, 2004; Kalyuzhny et al., 2014). Otherwise, an 
informed guess about their effect on Ve is required.

Species richness and genetic polymorphism reflect 
the balance between the rate of extinction and the rates 
(of colonisation, mutation, speciation, etc.) at which new 
types get established in the community. Invasibility, the 
chance of a population to invade or to recover from low 
densities, plays a crucial role in both kinds of processes. 
Consequently, our formulae should facilitate a more 
accurate and reliable assessment of these important as-
pects of life science systems.
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