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A B S T R A C T

Nutrient enrichment and climate change promote algal blooms, leading to many lakes being characterized as
eutrophic (i.e., green) worldwide. We examined recent eutrophication trends of freshwater lakes at a national
scale by collating 32 years (1990–2021) of growing season (July-September) in situ chlorophyll-a, nutrient,
transparency, and climate data for 1,082 lakes across 32 freshwater ecoregions in the United States. Based on
chlorophyll-a, 78.2 % (427/546) of lakes initially exhibited eutrophic conditions and have remained eutrophic.
Moreover, non-eutrophic lakes converged toward a eutrophic state, with oligotrophic (i.e., clear) or mesotrophic
(i.e., moderately clear) lakes becoming greener, and hypereutrophic (i.e., very green) becoming less green.
Optimized Hot Spot Analysis suggests lakes in the Appalachian Piedmont and Apalachicola freshwater ecoregions
eutrophied more rapidly than other locations. Results suggest nutrient management targeting eutrophic lakes has
hindered further degradation, but poor preventative management of clear lakes has led to their eutrophication.

1. Introduction

Cultural eutrophication, the acceleration of nutrient inputs from
anthropogenic activities such as agriculture, industrial practices, at-
mospheric deposition, and sewage, has degraded aquatic ecosystems
worldwide since the industrial revolution (Paerl and Huisman, 2008;
Taranu et al., 2015). Cultural eutrophication coupled with global
climate variations promote freshwater algal blooms (Glibert, 2020;
O’Neil et al., 2012; Paerl and Huisman, 2008; Taranu et al., 2015).
While algal blooms are a natural phenomenon, some algae can produce
toxins that threaten human, livestock, and ecosystem health
(Carmichael, 2001). Due to the extensive and potentially severe
ecologic, economic and public health impacts related to nutrient
enrichment and algal blooms, legislation has been passed in several
countries to improve research, monitoring, and management of blooms
(Dodds et al., 2009; Hudnell, 2010; Zhou et al., 2017). However, how
such management efforts have affected eutrophication, and conse-
quently algal bloom trends, of lakes of various in recent decades at a
national level is not well understood. This study examines whether
eutrophication has continued to affect freshwater lakes in the

contiguous United States (U.S.) since 1990, by considering the initial
trophic state of each lake at the beginning of sampling and focusing on
the trajectory of eutrophication. Additionally, the study explores how
chlorophyll-a trends are connected to various lake parameters, such as
nutrient concentration, transparency, climate trends and region, fresh-
water (FW) ecoregion, and surface area.

Eutrophication is determined by various water quality parameters. A
common way to classify lakes is through Carlson’s Trophic State Index
(TSI) (Carlson, 1977; Fernandez-Figueroa et al., 2021; Meyer et al.,
2024), which categorizes lakes into four categories (Table 1) based on
their algal biomass (measured as chlorophyll-a) or potential algal
biomass (based on nutrient concentration, or transparency measured as
Secchi disk depth). Oligotrophic (TSI<40, clear) lakes have low nutrient
concentrations, resulting in low productivity and clear water. Mesotro-
phic (TSI 41–50) lakes have moderate nutrient and productivity levels.
Eutrophic (TSI 51–70, green) lakes are productive and have high
chlorophyll-a, giving them a green appearance. Hypereutrophic (TSI
>70, very green) lakes have an overabundance of nutrients and algae,
leading to hypoxic conditions and posing a threat to the health of the
ecosystem. Eutrophic lakes tend to remain stable despite a decrease in
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nutrient input due to internal nutrient loading and other feedback
mechanisms that maintain high nutrient availability (Jeppesen et al.,
2005; Scheffer and van Nes, 2007; Solomon et al., 2015).

Cultural eutrophication is a leading cause of waterbody impairment
in the U.S. In 2012, the U.S. Environmental Protection Agency (U.S.
EPA) reported 40 % and 35 % of U.S. lakes show excessive levels of
phosphorus and nitrogen, respectively (U.S. Environmental Protection
Agency, 2016). The U.S. has invested significant money and resources
into managing nutrient loading in lakes, particularly those exhibiting
eutrophic and hypereutrophic conditions (U.S. Environmental Protec-
tion Agency, 2021). Such nutrient management efforts have largely
targeted phosphorus, as phosphorus has historically been considered the
limiting nutrient of algal bloom species growth when compared to ni-
trogen (Schindler, 1974; Smith and Schindler, 2009). Moreover,
point-sources of phosphorus can be targeted through remediation efforts
such as improved wastewater treatment, development of
phosphorus-free detergents, and agricultural run-off management.
Despite these efforts, low phosphorus (<10 µg/L) lakes in the U.S. are
becoming rarer (Stoddard et al., 2016). Nitrogen, however, can be more
challenging to manage as it can also enter aquatic systems through at-
mospheric deposition or groundwater inputs, which cannot be regulated
using point-source management techniques (Elser et al., 2009; Paerl
et al., 2016). Moreover, national-level annual agricultural phosphorus
fertilizer use has remained stable since 1990, whereas nitrogen fertilizer
application has continued to increase nationwide (USDA, 2019). There
is evidence that phosphorus management has led to recovery from
eutrophication in many lakes (Smith and Schindler, 2009), but Quinlan
et al. (2021) highlight the difficulties associated with simply decreasing
nutrient inputs to manage eutrophication in lakes worldwide. However,
others contend that reducing both phosphorus and nitrogen inputs is
necessary to prevent algal bloom intensification in lentic systems (Finlay
et al., 2013; Paerl et al., 2016).

Previous water quality syntheses have focused on creating databases
to study correlations between commonly measured parameters
(Filazzola et al., 2020; Quinlan et al., 2021) or the eutrophication trends
of large (>100 km2) (Fang et al., 2022; Ho et al., 2019; Wagner et al.,
2008) and/or temperate lakes (Oliver et al., 2017; Taranu et al., 2015;
Wilkinson et al., 2021), which respond differently to climate variations
and eutrophication than shallow and smaller lakes (Downing et al.,
2006; Scheffer and van Nes, 2007) and sub-tropical lakes (Sarmento,
2012), respectively. This study aims to examine recent national-level
eutrophication trends of lakes and reservoirs by collating open-source
surface water quality data (Table S1) from lakes of various surface

areas and FW ecoregions. The outcomes of this study have important
implications for enhancing our understanding of the impacts of nutrient
management on lake ecosystems and for informing future research
efforts.

2. Methods

To explore recent eutrophication trends across a wide geographic
region, a 32-year time series (1990–2021) was collated from median
growing season (July-September) in situ chlorophyll-a (µg/L), total ni-
trogen (TN, µg/L), and total phosphorus concentrations (TP, µg/L), as
well as Secchi disk depth (i.e., transparency, m) of 1082 natural lakes
and artificial reservoirs throughout 32 FW ecoregions in the contiguous
U.S. (Figs. 1-3). All data used in this study were collated from the open-
access sources described in Table S1. Data collation was finalized in
September 2021, therefore no additional data published after this time
were included in this study. Whereas phytoplankton and cyanobacterial
biovolume, phytoplankton toxin (i.e., microcystins), and nitrogen and
phosphorus forms are important parameters of eutrophication, these
data were beyond the scope of this study due to limited availability.

Lakes were included in the study if the lake was sampled: 1) for at
least 10 years (Kendall, 1975), 2) had less than a three-year gap between
samples for the first 10 years of sampling, and 3) the most recent sample
was collected in or after 2016. Long-term consistent sampling was
required to ensure the lakes were being sampled regularly, rather than
only when visible discoloration and scum was present, or illnesses were
reported. Water samples collected before 1990 were not included, as
sampling was inconsistent and sporadic before this time. Additionally,
chlorophyll-a data had to be reported as concentrations based on in situ
samples, rather than raw fluorescence units or remote sensing chloro-
phyll estimates. A total of 1082 lakes met such criteria, with an average
of 19 (7.0 SD) sample years (Table S2). Fifty-four percent (54%) of study
lakes (585) had in situ data from 1990 to 2021. Forty-six percent (46 %)
of study lakes (n = 497) had in situ data for shorter time frames, but still
met the three inclusion criteria specified above and were deemed
essential to the study as they increased the spatial distribution of the
study lakes. Lake surface area ranged from 0.003 to 82,000 km2

(mean=248.6, S.D. = 3769.9) and lakes were further classified into five
lake size categories for statistical analysis (Figure S4) (Kalff, 2001). The
five lake size categories were: small (<1 km2), medium (1–100 km2),
large (101–10,000 km2), and great lakes (>10,000 km2). The surface
area distribution of the 1082 study lakes was representative of global
lake surface area distributions (Downing et al., 2006; Kalff, 2001):

Table 1
Lake eutrophication trends by initial trophic status. Number of lakes classified as each trophic state at the beginning (T0 n) and end (TF n) of the study period
(1990–2021), based on chlorophyll (Chl), total phosphorus (TP), total nitrogen (TN), and Secchi disk depth (Secchi) surface samples, and TSI rate of change (Sen’s
Slope) from year to year, grouped by T0 TSI status. TSI: trophic state index.

TSI description TSI status change Sen’s Slope TSI

T0 TSI
status

Variable Variable
range

T0
n

TF
n

%
Change

Mean
(±95 % CI)

p-value

Hypereutrophic
(very green lake)

Chl >56 µg/L 66 67 1.5 − 0.31 (0.14) <0.0001
TP >96 µg/L 52 38 − 26.9 − 0.50 (0.13) <0.0001
TN >2940 µg/L 10 2 − 80.0 − 0.33 (0.20) 0.001
Secchi <0.5 m 37 40 8.1 − 0.30 (0.11) <0.0001

Eutrophic
(green lake)

Chl 6.41–56 µg/L 546 559 2.4 − 0.08 (0.05) 0.0004
TP 24.1–96 µg/L 204 169 − 17.2 − 0.28 (0.06) <0.0001
TN 740.1–2940 µg/L 215 214 − 0.47 − 0.10 (0.04) <0.0001
Secchi 0.5–2.9 m 262 261 − 0.4 − 0.04 (0.04) 0.06

Mesotrophic
(moderately
clear lake)

Chl 2.61–6.4 µg/L 330 312 − 5.5 0.11 (0.06) 0.0003
TP 12.1–24 µg/L 118 154 30.5 − 0.06 (0.08) 0.15
TN 370.1–740 µg/L 136 161 18.38 0.03 (0.05) 0.23
Secchi 2–3.9 m 105 101 − 3.8 0.06 (0.07) 0.05

Oligotrophic
(clear lakes)

Chl ≤2.6 µg/L 140 144 2.9 0.23 (0.09) <0.0001
TP ≤12 µg/L 109 122 11.9 0.22 (0.09) <0.0001
TN ≤370 µg/L 49 33 32.65 0.29 (0.09) <0.0001
Secchi ≥4 m 101 103 2 0.02 (0.07) 0.64
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overwhelmingly skewed towards small (<1 km2, n = 539) and medium
(1–100 km2, n = 420) sized lakes, with relatively few large (101–10,000
km2, n = 38) and great lakes (>10,000 km2, n = 4; Figure S4). Large
lakes account for more total surface area, but small and medium lakes
are far more abundant in number and spatial range (Downing et al.,
2006; Kalff, 2001).

Carlson’s TSI values were calculated to standardize and normalize
the water quality parameters, which were non-normally distributed and
measured in different units, and categorize the lakes based on initial
trophic status (T0, average first 3 years of sampling). Chl (1), TP (2), TN
(3), and Secchi disk depth (4) measurements were converted to TSI
values based on the following formulas(Carlson, 1977; Kratzer and
Brezonik, 1981):

(1) Chl TSI = 9.81 ln(Chl) + 30.6
(2) TP TSI = 14.42 ln(TP) + 4.15
(3) TN TSI = 54.45 + 14.43 ln(TN)
(4) Secchi TSI = 60 – 14.41 ln(SD)

where Chl = chlorophyll-a pigment concentration (μg/L), TP = total
phosphorus concentration (μg/L), TN = total nitrogen concentration
(mg/L), and SD = Secchi disk depth (m).

FW ecoregions were used in this study to identify watershed-level
trends, as FW ecoregions largely correspond to major watersheds and
are designed to spatially divide areas based on freshwater biodiversity
(Abell et al., 2008). FW ecoregion percent land cover calculations were
based on 30 m land cover data provided by the North American Land
Change Monitoring System (The North American Land Change Moni-
toring System, 2020). Climate division (n = 138) scale annual mean and
maximum growing season (July-September) air temperature ( ◦C),
growing season precipitation (mm), and annual drought (Palmer Z
Index) data were accessed through the Climate at a Glance National
Oceanic and Atmospheric Administration (NOAA) application (NOAA,
2021). Mean andmaximum summer air temperature values were used in
place of lake surface temperatures, as these values were not available for
most lakes and summer air temperatures are a significant predictor of
surface water temperatures (O’Reilly et al., 2015).

The Mann-Kendall (M-K) statistics were calculated to test for the
presence of monotonic time trends, as this non-parametric test does not
require data to be normally distributed and has low sensitivity to
missing values (Gilbert, 1987; Kendall, 1975; Mann, 1945). The test
provided information about trend direction (M-K S), significance (M-K z,

p < 0.05), and rate of change (Sen’s slope β). When lakes had multiple
observations per year, annual growing season medians were calculated
and used as the representative annual value, which is standard practice
to reduce the effects of autocorrelation and conform to the required
single observation per time period for the M-K test (Gilbert, 1987). M-K
trend statistics were also generated from 1990 to 2021 growing season
climate data (i.e., mean and maximum temperature, precipitation, and
drought) for the 183 climate subdivisions in which the lakes were
located, to determine if there was a relationship between water quality
and climate trends. For climate parameters, the M-K values were
calculated based on the average 5-year increments rather than annual
median values, to better represent long-term changes in climate rather
than modest annual variations. Statistical analyses were executed uti-
lizing the trend and Kendall packages of R version 4.1.2 (Supplemental
Information 1) (McLeod, 2011; Pohlert, 2020; R Core Team, 2021).

Spearman rank correlations were used to determine the relationship
between observed water quality and climate trends, as the data were not
normally distributed and contained outliers (Schober et al., 2018). The
non-parametric Kruskal-Wallis test was used to identify between M-K
trend significance classification, initial trophic state, and FW ecoregion
differences, as the data were non-normally distributed and contained
outliers. Post hoc analysis was conducted using the Dunn test for mul-
tiple comparisons, as this test is not sensitive to groups with different
numbers of observations (Dunn, 1964).

An Optimized Hot Spot Analysis (OHSA) was performed in ArcGIS Pro
2.9 to determine if there were statistically significant clusters of lakes
displaying increasing or decreasing median growing season chlorophyll
concentrations anywhere across the study area. The OHSA tool uses the
Getis-Ord Gi* statistic (Ord and Getis, 1995) to measure spatial auto-
correlation between values across space and provides information about
if and where high or low values cluster spatially.

3. Results

Results from this study demonstrated that most study lakes remained
in, or converged to, a eutrophic (i.e., green) state in the past 32 years.
Hypereutrophic and eutrophic lakes were significantly less green, but
remained green throughout the study period, whereas oligotrophic and
mesotrophic lakes were significantly greener toward the end of the study
(Fig. 1, Figure S1, Table 1). Chlorophyll-a trends were closely correlated
to phosphorus and nitrogen trends, as well as transparency (i.e., Secchi
disk depth) trends (Figure S2, Table 1 and S2). There was no clear

Fig. 1. Average annual median growing season chlorophyll (a), total phosphorus (b), total nitrogen (c), and Secchi depth (d) trophic state index (TSI) values based on
surface samples collected from 1082 lakes between 1990 and 2021, grouped by initial (average of first 3 sampling years) TSI status. Dashed horizontal lines indicate
TSI value categories: Oligotrophic (clear, TSI 0–40), mesotrophic (moderately clear, TSI 40–50), eutrophic (green, TSI 50–70), hypereutrophic (very green, TSI >70).
Gray shading represents 95 % confidence intervals and trends are displayed using LOWESS smoothing.
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relationship between chlorophyll-a trends and lake surface area, climate
region, climate trends (i.e., precipitation, temperature), or lake
impairment status (Supplementary Information Section 2, Figure S4,
Tables S2–3).

Lakes that were classified as hypereutrophic at the beginning of the
study period (i.e., first three sample years) showed significant decreases
in summertime chlorophyll-a (Chl TSI, − 0.31 ± 0.14 95 % C.I.; p <

0.0001; Fig. 1 and Table 1), total phosphorus concentration (TP TSI,
− 0.50 ± 0.13 95 % C.I., p < 0.0001), and total nitrogen concentration
(TN TSI, − 0.33 ± 0. 95 % C.I., p < 0.0001), while also becoming
significantly clearer (Secchi TSI, 0.30 ± 0.11 CI, p < 0.0001). Notably,
48.1 % (n = 25) of lakes that were initially classified as hypereutrophic
based on total phosphorus became eutrophic by the conclusion of the
study period. Of those 25 lakes, seven were identified as nutrient
impaired in 2002 by the CleanWater Act (CWA) Section 303(d) Program
(U.S. Environmental Protection Agency, 2021) (Figure S4). This pro-
gram identifies systems impaired by pollutants and establishes pollutant
Total Maximum Daily Loads values to guide management and moni-
toring efforts.

Half (n = 546) of the study lakes were eutrophic based on chloro-
phyll-a at the beginning of the study period. Eutrophic lakes signifi-
cantly decreased in chlorophyll-a (Chl TSI, − 0.08 ± 0.05 95 % C.I.; p =

0.0004; Fig. 1 and Table 1), phosphorus concentration (TP TSI, − 0.28 ±

0.06 95 % C.I., p < 0.0001), and nitrogen concentration (TN TSI, − 0.10
± 0.04 95 % C.I., p < 0.0001) by the conclusion of the study period.
While the observed decreases were statistically significant, they were
generally not sufficient to cause a trophic state shift from green to clear,
with 78.2 % of lakes remaining in a eutrophic state based on chloro-
phyll-a throughout the study.

Mesotrophic lakes were significantly greener (Chl TSI, 0.11 ± 0.06
95 % C.I.; p = 0.0003; Fig. 1 and Table 1) and marginally more trans-
parent (Secchi TSI, 0.06 ± 0.07 95 % C.I.; p = 0.05) at the end of the
study. Although phosphorus concentrations have not significantly
changed in mesotrophic lakes (TP TSI, − 0.06 ± 0.08 95 % C.I.; p =

0.15), there is an optimistic decreasing trend after 2015 (Fig. 1).
Lakes initially classified as oligotrophic significantly increased in

summertime chlorophyll-a (Chl TSI, 0.23 ± 0.09 95 % C.I.; p < 0.0001),
total phosphorus concentrations (TP TSI, 0.22 ± 0.09 95 % C.I., p <

0.0001), and total nitrogen concentrations (TN TSI, 0.29 ± 0.09 95 % C.
I., p < 0.0001; Fig. 1 and Table 1). Oligotrophic lakes remained clear
throughout the study period (Secchi TSI, 0.02 ± 0.07 95 % C.I.; p =

0.64), suggesting that increasing productivity and nutrients did not
significantly affect transparency.

Chlorophyll-a (Chl) trends were significantly correlated with TN (rho
= 0.53, p < 0.0001), TP (rho = 0.40, p < 0.0001), and TN:TP (rho =

− 0.13, p = 0.007) trends (Sen’s Slope, Table S3). Chlorophyll-awas also

associated with transparency (Secchi TSI) trends (rho = 0.51, p <

0.0001, Figure S2, Table S2).
Lakes exhibiting significant increasing (n = 170, 15.7 %) and

decreasing (n = 129, 11.9 %) chlorophyll-a (Chl TSI) trends were
comparable in number and spatial distribution in this study (Fig. 2,
Table S2). An Optimized Hot Spot Analysis was utilized to identify
clusters of lakes that were largely increasing or decreasing in chloro-
phyll-a (Fig. 3). Lakes within the northern portion of Middle Missouri
(ID=15) and Upper Mississippi (ID = 27) were generally decreasing in
chlorophyll-a. These results agree with findings of static or decreasing
trends in north temperate U.S. lakes (Oliver et al., 2017; Wilkinson et al.,
2021). Lakes within the Appalachian Piedmont (ID = 2) FW ecoregion,
as well as the northern portion of the Apalachicola (ID = 1) and Mobile
Bay (ID = 16) FW ecoregions, are not commonly considered high-risk
areas for algal blooms. However, we found that most lakes (67 %, n =

34) within Appalachian Piedmont are becoming greener, regardless of
initial TSI status (Figure S4, Table S4). This suggests that lakes in this
area are exhibiting eutrophication trends that should be addressed to
prevent further degradation and ultimately trophic state shifts. Notably,
arid and semi-arid climate regions, such as the southwest of the United
States, were not well-represented in the dataset because monitoring
effort duration or frequency did not satisfy the study’s criteria.

4. Discussion

Considering the initial trophic state is critical to identify eutrophi-
cation trends, as recent (>1980 CE) observations do not provide context
of the pre-industrial prevalence of algal blooms in these lakes (Taranu
et al., 2015; Waters et al., 2021). This study addresses these research
needs by analyzing eutrophication trends in lakes of various surface
areas across 32 FW ecoregions in the U.S. based on initial trophic state.
Our findings suggest that most lakes exhibited eutrophic conditions at
the start of the sampling period (~1990 CE, n = 546, 50 %) and have
remained eutrophic in recent decades (Fig. 1).

There has been a growing interest in the creation of water quality
databases from diverse systems around the world, especially those
related to algal blooms (Filazzola et al., 2020; Meyer et al., 2024; Oliver
et al., 2017; Quinlan et al., 2021). For example, freshwater lake eutro-
phication studies conducted at the regional scale based on in situ data
(Oliver et al., 2017; Taranu et al., 2015; Wilkinson et al., 2021) or global
satellite observations of large lakes (Fang et al., 2022; Ho et al., 2019;
Topp et al., 2021; Wagner et al., 2008) report decreasing, static, and
increasing eutrophication trends. A global 28-year (1984 - 2012)
satellite-based study of 71 large lakes (> 100 km2) found surface algal
blooms have become more intense since the 1980′s (Ho et al., 2019).
Conversely, a satellite-based study of 344 globally-distributed large

Fig. 2. Spatial distribution of the 1082 study lakes. Fill colors indicate median growing season chlorophyll trophic state index trend significance (M-K z, significance
level 0.05) from 1990 to 2021, with lakes showing increasing trends in the left panel (a) and lakes showing decreasing trends in the right panel (b). Sig.: significant.
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lakes found 56 % of lakes show no change in chlorophyll-a from 1997 to
2020 (Kraemer et al., 2022). Similarly, regional surveys of 323
temperate lakes in the Northeast and Midwest U.S. (Wilkinson et al.,
2021), 527 lakes in the U.S. Rocky Mountains from 1984 to 2020
(Oleksy et al., 2022), and 2913 temperate lakes in the Northeast U.S.
from 1990 to 2013 (Oliver et al., 2017) show stable or decreasing
chlorophyll, nutrient, or lake color trends. While such reports provide
crucial insight of recent lake trophic trends, they often lack initial lake
trophic state data, hindering assessment of reported changes and trophic
state trajectories. New databases (e.g., Filazzola et al. 2020; Meyer et al.
2024; this study) create exciting opportunities for exploring trends and
drivers of water quality changes over time (e.g., Stoddard et al. 2021;
Topp et al., 2021).

Lake morphology has been shown to significantly affect how lakes
respond and recover from eutrophication and climate variations (Finlay
et al., 2013; Scheffer and van Nes, 2007). While lake size can influence
multiple drivers of trophic state and algal dynamics, such as internal
loading, residence time, and lake turnover, the high variation in small
and medium lake size categories was problematic for the analysis con-
ducted in this study. However, it was evident that the systems catego-
rized as great lakes (>10,000 km2, n = 4) became significantly greener
throughout the study period (Figure S4). Finlay et al. (Finlay et al.,
2013) noted that systems with high residence times, such as the Great

Lakes, promote algal growth through nutrient sequestration thus
furthering the importance of dual nutrient management. Additional lake
characteristics, such as lake volume, depth, residence time, and lake
type (i.e., natural lakes, reservoirs) can also significantly affect algal
bloom trends. While large lakes can demonstrate eutrophication het-
erogeneity (Kutser, 2004), limited sample collection location data (i.e.,
geographic coordinates) availability or skewed data distributions pre-
vented statistical analysis of the effect of these parameters on the
observed eutrophication trends.

Chlorophyll-a and transparency were closely related, although
brownification likely caused some of the discrepancies observed be-
tween TSI values calculated based on chlorophyll-a and Secchi disk
depth (Figure S2, Table S2) (Leech et al., 2018). Chlorophyll-a can affect
and be affected by transparency. High chlorophyll-a as well as browni-
fication associated with high chromophoric, or colored, dissolved
organic matter (CDOM) inputs from terrestrial systems can decrease
transparency. CDOM is known to both promote algal growth due to
increased nutrient input from run-off, as well as prevent algal prolifer-
ation due to reduced light attenuation, oxygen depletion, and decreased
mixing depth (Jeppesen et al., 2005; Solomon et al., 2015).

Research and management efforts often focus on eutrophic and
hypereutrophic lakes due to the potential ecological, economic, and
health risks associated with elevated nutrients and algal blooms (U.S.

Fig. 3. Clusters of lakes that are increasing (hot spot) and decreasing (cold spot) in growing season chlorophyll-a, based on Optimized Hot Spot Analysis, overlaid
over freshwater ecoregions (n = 32). Hot and cold spot color gradients represent confidence intervals at 90 % (p = 0.10), 95 % (p = 0.05) and 99 % (p = 0.01),
respectively.
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Environmental Protection Agency, 2021). Such management efforts
appear to have led to the observed decrease in chlorophyll-a and
phosphorus concentrations of initially eutrophic or hypereutrophic
study lakes. However, lake re-oligotrophication was rare, likely due to
non-point nutrient sources and internal loading from sediments
(Jeppesen et al., 2005; Scheffer and van Nes, 2007; Solomon et al.,
2015). Moreover, limited nitrogen management efforts are reflected in
the results of this study, with TN values remaining stable in 57 % (n =

235) of study lakes and a similar number of lakes exhibiting significantly
increasing (20 %, n = 83) and decreasing (22 %, n = 92) TN trends
(Sen’s Slope, Table S2).

A decrease in phosphorus, when not accompanied by a reduction in
nitrogen, can lead to elevated TN:TP ratios commonly associated with
less efficient denitrification processes that may exacerbate nitrogen
loading within the system (Elser et al., 2022; Finlay et al., 2013). Po-
tential ecological and management implications of high TN:TP ratios
include changes in phytoplankton, and ultimately consumer, growth
and diversity (Elser et al., 2022), elevated risk of nitrate polluted
drinking water sources, and downstream nitrogen transport to coastal
systems (Finlay et al., 2013; Paerl et al., 2016). Most lakes (68 %, n =

274) did not exhibit statistically significant changes in TN:TP, but more
lakes were significantly increasing in TN:TP values (22 %, n = 90), than
those significantly decreasing (10 %, n = 39, Table S2). Increasing TN:
TP trends indicate nitrogen loading is occurring in some study lakes and
highlights the importance of researching and implementing dual
nutrient management (Finlay et al., 2013; Paerl et al., 2016).

Many of the study lakes that were initially classified as oligotrophic
and mesotrophic are experiencing significant increases in chlorophyll-a
and phosphorus concentrations, potentially due to limited nutrient
management efforts being focused on less impaired lakes. Notably,
initially oligotrophic lakes such as the Laurentian Great Lakes (>10,000
km2 surface area) and those within the Appalachian Piedmont and
Apalachicola FW ecoregions (Fig. 3, Figure S3-S4) demonstrated con-
cerning increases in growing season chlorophyll-a. Increasing algal
bloom trends in these FW ecoregions are not reported in other large-
scale algal bloom trend studies (Ho et al., 2019; Oliver et al., 2017;
Wilkinson et al., 2021), which highlights the importance of considering
trends based on initial lake conditions at high spatiotemporal
resolutions.

5. Conclusion

This study provides important insights into the eutrophication trends
and trajectories of freshwater lakes in the United States over the past
three decades by considering the initial trophic state. The results suggest
that nutrient management efforts may have prevented further degra-
dation of eutrophic lakes, but limited preventative management may
have led to the eutrophication of previously clear lakes. While identifi-
cation of the specific management strategies or potential regional
drivers of the observed trends was beyond the scope of this study, our
goal is to provide national scale trends to inform future research that
explores the underlying drivers of regional trends. Particularly, identi-
fying the regional drivers of eutrophication observed in Appalachian
Piedmont lakes should be prioritized to identify targeted management
strategies.
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