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A B S T R A C T   

Microplastics (MPs) and pharmaceuticals and personal care products (PPCPs) are ubiquitous in aquatic envi
ronments. Algae play an important role in aquatic environments. Thus, it is important to study the response of 
algae to combined exposure of MPs and PPCPs. Here, we review the effects of MPs and PPCPs on algae. First, the 
individual effects of MPs and PPCPs on algae were summarized. Second, the combined effects of MPs and PPCPs 
on algae were systematically analyzed. (1) Antagonism: ① when the MPs are too large to enter the algal cells, the 
adsorption of PPCPs onto MPs results in decreased the contact of MPs and PPCPs with algae; ② PPCPs and MPs 
have opposing actions on the same biological target; ③ MPs increase the activity of metabolic enzymes in algae, 
thus promoting the PPCP degradation. (2) Synergy: ① when the MPs are small enough to enter algal cells, the 
adsorption of PPCPs on MPs promotes the entry of PPCPs; ② when MPs are negatively charged, the adsorption of 
positively charged PPCPs by MPs decreases the electrostatic repulsion, increasing the interaction between algae 
and MPs; ③ complementary modes of action between MPs and PPCPs show combined effects on the same 
biological target. Third, the relative importance of the factors that impact the combined effects are evaluated 
using the random forest model decreased in the following order: PPCP types > algal species > MP size > MP 
concentration > MP types > exposure time. Finally, future directions for the combined effects of MPs and PPCPs 
are proposed, which will facilitate a better understanding of the environmental fate and risks of both MPs and 
PPCPs.   

1. Introduction 

Plastics have long been utilized because of their abundance, afford
ability, lightness, strength, and adaptability (Bhagat et al., 2021). Plastic 
manufacturing has expanded tremendously over the past four decades, 
with the quantity growing from approximately 60 million tons in 1980 
to 390 million metric tons in 2021 (Martín et al., 2022). Plastics may 
progressively break down into small fragments because of environ
mental and biological actions (Mao et al., 2020). Microplastics (MPs) are 
plastic pieces that are smaller than 5 mm in diameter (Mammo et al., 
2020). Owing to their high production, persistence, exploitation, and 
disposal, MPs are frequently observed in aquatic environments 
(Table S1), including rivers (McCormick et al., 2014; Sanchez et al., 

2014), lakes (Su et al., 2016; Wang et al., 2017) and ocean (Hu et al., 
2022; Huang et al., 2021a; Su et al., 2022). 

Pharmaceuticals and personal care products (PPCPs), comprise a 
range of compounds, such as prescription and non-prescription medi
cations, veterinary pharmaceuticals and illicit drugs (Singh and Li, 
2012). PPCPs have been detected in sediments and surface waters 
worldwide (Table S2). Trace amounts of PPCPs in aquatic environments 
can cause severe ecotoxicological issues and pose major risks to eco
systems and organisms (Zhou et al., 2020). Studies have revealed that 
PPCPs, which are residues in water, can accumulate in living organisms, 
potentially causing endocrine disruption (Czarny et al., 2019), drug 
resistance development (Wilkinson et al., 2017), primary productivity 
inhibition (Mackay et al., 2010), and long-term damage to aquatic 
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ecosystems (Li et al., 2010). 
MPs and several other contaminants share similar exposure routes, 

such as home sewage discharged from cities, wastewater and residues 
from chemical factories (Arshad and Zafar, 2020), mining and smelting 
industries (Nkoom et al., 2018). Additionally, the small size, large spe
cific surface area, and diverse surface properties of MPs enable them to 
adsorb a variety of contaminants, making them be a vector for 
contaminant dissemination and altering their environmental behaviors 
(Du et al., 2021). Therefore, a complete understanding of their com
bined effects is required for ecological risk assessment. 

Algae are vital to the aquatic environment. They play crucial roles in 
the functioning and structure of ecosystems, serving as essential primary 
producers in aquatic food chains (Xin et al., 2021). These organisms are 
involved in the nitrogen cycle and the synthesis of organic carbon (Chen 
et al., 2020). They are also sensitive to environmental stress, particularly 
to toxic substances present in the environment (Li et al., 2022; Zhang 
et al., 2017). Therefore, to assess the ecological risk of MPs and PPCPs, it 
is critical to investigate the response of algae to MPs and PPCPs. The 
effects of MPs on algae have been widely reported (Nguyen et al., 2023; 
Yang et al., 2024b), and mainly include heterogeneous-aggregation, 
photosynthetic inhibition and oxidative stress. The effects of PPCPs on 
algae have also been extensively studied (Fu et al., 2017; Mao et al., 
2021; Miazek and Brozek-Pluska, 2019). For instance, Lee et al. (2024) 
reviewed the effects of triclosan on algae, including cellular structureal 
damage and photosynthetic inhibition. Miazek and Brozek-Pluska 
(2019) revealed the effects of sulphonamides on algae, including 
membrane destruction, genotoxicity and photosynthetic inhibition. The 
interaction between MPs and PPCPs can alter their respective environ
mental behaviors, thereby influencing their harmful effects (Ding et al., 
2018). For example, polystyrene (PS) reduces the harmful effects of the 
triphenyltin (TPT) on algae. The 50% growth rate inhibition (IC50) of 
TPT for algae was found to be 0.56 μg/L and increased to 0.85 μg/L with 
PS (Greven et al., 2016; Li et al., 2020a). Conversely, Prata et al. (2018) 
argued that PS enhances the harmful effects of procainamide. The 50% 
effective concentration (EC50) of procainamide for algae was 143 mg/L, 
which decreased to 31 mg/L after PS treatment. Algae are diverse in 
terms of their species and structure, resulting in varying sensitivities to 
contaminants. Variations in the size and type of MPs and PPCPs will 
result in multiple interactions between coexisting pollutants and algae, 
influencing the combined effects of MPs and PPCPs on algae. Therefore, 
it is necessary to systematically analyze the combined effect and 
mechanism of MPs and PPCPs on algae. 

Therefore, the objectives of this review were to (1) summarize the 
effects of MPs and PPCPs on algae respectively; (2) discuss the action 
mechanism of the MPs - PPCPs complex on algae elaborately; (3) 
examine the impact factors for the combined effects of MPs and PPCPs 
on algae using a random forest (RF) model; (4) identify the knowledge 
gaps in comprehending the combined impacts of MPs and PPCPs on 
algae. 

2. Materials and methods 

2.1. Literature screening 

We performed a literature search on Web of Science, Scopus, and 
Elsevier and selected all the search results before June 2024. The 
following are keywords and their combinations used to identify appro
priate studies: (microplastic OR nanoplastic OR plastic debris OR plastic 
polymers OR plastic particle) AND (PPCPs OR antibiotic OR pharma
ceuticals OR herbicide OR drug OR biocide) AND (algae OR microalgae 
OR phytoplankton) AND (combined effect OR combined exposure OR 
joint OR mixture). A total of 160 articles were initially retrieved. To 
obtain the most representative literature and the most reliable data sets, 
all collected papers were further screened based on the following 
criteria.  

(1) The study included the combined effects of MPs and PPCPs on 
algae;  

(2) The data were related to the inhibition rate, PPCP types, algal 
species, MP size, MP types, MP concentration and exposure time;  

(3) The units of all articles were uniform and could be converted to 
uniform units;  

(4) The results were supported by reliable statistical analyses. 

Based on the criteria mentioned above, 21 articles were selected for 
the RF model (Fig. S1, Table S3). 

2.2. Data extraction 

In this study, the data were extracted from the literature. The inhi
bition rate, PPCP types, MP size, MP types, MP concentration, algae 
species and exposure time were recorded for each study. Data were 
classified in the following manner.  

(1) PPCP types: sulfamethoxazole (SMX), triclosan (TCS), ibuprofen 
(IBU), azithromycin (AZI), clarithromycin (CLA), ciprofloxacin 
(CIP), tetracycline (TC), triphenyltin chloride (TPTCl), triphe
nyltin (TPT), dibutyl phthalate (DBP) and chloramphenicol 
(CAP);  

( ) 2Algal species: M. aeruginosa, S. costatum, C. pyrenoidosa, C. 
reinhardtii, Anabaena sp., C. meneghiniana, Synechocystis sp., T. 
chuii, Dictyosphaerium sp., Chlorella sp., C. fluminea;  

(3) MPs size: <0.1, 0.1–0.5 μm, 0.5–1 μm, 1–5 μm, 5–10 μm and >10 
μm;  

(4) MPs types: polystyrene (PS), polyvinyl chloride (PVC), polyamide 
(PA), polyethylene (PE), polypropylene (PP), polyethylene glycol 
terephthalate (PET), and polylactic acid (PLA);  

(5) MPs concentration: 0.5 mg/L, 5 mg/L, 10 mg/L, 20 mg/L, 50 mg/ 
L, 100 mg/L;  

(6) Exposure time: 72 h, 96 h and 168 h. 

2.3. Analysis of the RF model 

RF is a machine learning method based on the decision tree, which 
has high prediction accuracy, high tolerance to outliers, and a good 
fitting effect (Mahmoudzadeh et al., 2020). This method involves 
randomly dividing the data into a training set and a testing set, which is 
predicted by constructing a model consisting of multiple decision trees. 
When a prediction is made for a sample, the final result is then derived 
by counting the prediction results for each tree in the RF model (Kong 
et al., 2021). In addition, the RF model quantifies the relative impor
tance of the influencing factors to reveal the deep relationships and 
underlying mechanisms within (Mao et al., 2024a). 

In RF, each tree is built by a bootstrap sample from the overall data 
and the best partitions among a subset of attributes that are randomly 
selected for each node. The RF algorithm performs the predictions by 
aggregating the predictions of each tree, using the majority vote for 
classification and the average for regression (Ban et al., 2018). To 
measure the relative importance of factors, the percent increase in the 
RF mean square error (MSE) was calculated using the R package random 
forest. RF, as a data-driven model, includes two important parameters: 
Ntree, the number of trees in the forest; and Mtry, the number of attri
butes randomly selected for a subset at each node. The values of ntree 
and mtry for each study were adjusted to obtain the best predictive 
accuracy (Yang et al., 2024a). During tree construction, approximately 
63% of the raw data were used to build the trees in each RF bootstrap 
sample, and the remaining out-of-bag data (not in the bootstrap sam
ples) were used to validate the performance of the model. To measure 
the performance, the correlation coefficient (R2) and root mean square 
error (RMSE) between the predictions and observations were calculated 
as predictive accuracy metrics (Li et al., 2023b). Training datasets (from 
20% to 100%) were randomly selected from original datasets, with ten 
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repetitions, and the R2 and RMSE were then calculated. 
In this study, the RF model was employed to analyzed the relative 

importance of factors affecting the combined effects of MPS and PPCPs 
on algae. Theoretical framework and method route of the research 
process are detailed in the Supplementary Materials (Fig. S1). From the 
available research, we extracted data on inhibition rate of algae, MP 
size, MP concentration, MP types, PPCP types, algal species and expo
sure time. The inhibition rate of algae was used as the output variables, 
and the remaining variables were used as input variables. These data are 
provided in the Supplementary File (Table S3). By adjusting the values 
of Mtry and Ntree to optimize the model, the final set of the two random 
forest model hyperparameters were Ntree = 3 and Mtry = 480. The RF 
model was constructed using Python 3.10 and plot the relative impor
tance of the influencing factors was plotted using Origin 2018. 

3. Effects of MPs and PPCPs on algae 

3.1. Effects of MPs on algae 

The primary manifestation of the effects of MPs on algae is their 
restriction of algal growth, as shown in Table S4. The inhibition of the 
algal growth increased with increasing MP concentrations. The widely 
acknowledged toxic mechanisms primarily involved heterogeneous- 
aggregation, photosynthetic inhibition and oxidative stress (Lagarde 
et al., 2016; Sjollema et al., 2016; Yang et al., 2024b). 

3.1.1. Heterogeneous aggregation 
Heterogeneous aggregation of algal cells and MPs has been 

frequently observed in previous studies (Huang et al., 2021b). The for
mation of heterogeneous aggregates is attributed to the secretion of 
extracellular polymeric substances (EPS) on the cell surface as a 
self-defense response to exogenous stimuli (Long et al., 2017). The for
mation of heterogeneous aggregates leads to the following outcomes: 
First, it results in close contact that easily causes mechanical damage to 
algal cells, e.g., cell wall damage and cell fragmentation, thereby 
compromising the integrity of the cell structure (Baudrimont et al., 
2020). The adsorption of smaller-sized MPs on the surface of algae could 
cause membrane transport disorders and harm the cell structure, e.g., 
cytoplasmic separation, vacuolization, and distortion of the cell mem
brane structure (Lagarde et al., 2016). Second, the secreted EPS create a 
new layer on the surface of the MPs, known as the eco-corona, altering 
the surface charge and aggregation kinetics of the MPs and serving as a 
form of physical shielding (Su et al., 2023; Yang et al., 2021). Third, it 
hinders the entry and exit of substances into the cell, thereby blocking 
the exchange of substances and energy inside and outside the cell. For 
instance, the entry of oxygen and carbon dioxide into cells decreases and 
the elimination of harmful substances metabolized in cells becomes 
challenging, ultimately leading to algal cell death (Su et al., 2023). 

3.1.2. Photosynthetic inhibition 
Photosynthesis is a critical physiological mechanism for algal growth 

and reproduction. Previous studies have shown that the secondary 
KEGG pathway classification most frequently mentioned in algae 
affected by MPs was photosynthesis (Gao et al., 2023; Jin et al., 2022; 
Yang et al., 2021). Algal photosynthesis involves processes like light 
absorption, electron transfer, photosynthetic phosphorylation, and car
bon assimilation (Gao et al., 2023; Jin et al., 2022). The partial size of 
MPs could have a shadowing impact on the water column, thereby 
diminishing light exposure to algae and thus affecting photosynthesis 
processes (Bhattacharya et al., 2010; Wang et al., 2017). In addition, 
MPs can decrease photosynthetic gene expression, resulting in a 
decrease in chlorophyll concentration (Zhang et al., 2019). Further
more, by altering the electron transport chains, the photosystem II re
action center, and the electron donor site, MPs can hinder 
photosynthesis (Bhattacharya et al., 2010; Mao et al., 2018). 

3.1.3. Oxidative stress 
MPs induce oxidative stress in algal cells, causing an increase in the 

reactive oxygen species (ROS) content. Increased intracellular ROS 
levels result in lipid peroxidation and cell membrane structure disrup
tion. These effects affect normal growth and metabolic processes, 
including the exchange of materials and energy inside and outside the 
cell (Mao et al., 2024b). The antioxidant systems of algae counteract 
MP-induced oxidative stress. When ROS damage algal cells, antioxidant 
activities are enhanced to eliminate ROS and maintain a dynamic bal
ance to ensure normal algal growth (Venâncio et al., 2019). Addition
ally, algal cells reduce oxidative damage by upregulating arginine and 
proline metabolism. Arginine inhibits the increase in ROS and delays 
lipid peroxidation in cell membranes, whereas proline regulates cell 
membrane stability and balances osmotic pressure under exogenous 
stress (Fan et al., 2022). 

3.2. Effects of PPCPs on algae 

As shown in Table S5, PPCPs significantly inhibit algal growth. 
Widely acknowledged toxic mechanisms include membrane destruction, 
cell structure damage, genotoxicity, and photosynthetic inhibition. 

3.2.1. Membrane destruction 
PPCPs have been widely reported to cause algal cell death by 

damaging algal cell membranes. Some PPCPs specifically attack their 
membranes. Aminoglycosides interfere with bacterial protein synthesis 
by binding to the 30S subunit of the bacterial ribosome (Seoane et al., 
2014), thereby causing the production of mistranslated proteins and, 
consequently, membrane damage and death. Furthermore, certain 
PPCPs target specific molecules (lipids). Exposure to specific PPCPs may 
either boost or impede the synthesis of certain biomolecules. For 
example, triclosan can affect the algal gene FabI and inhibit fatty acid 
synthesis (Lee et al., 2024). Carbamazepine can expand algal phospho
lipid bilayers, disturb membrane functions, and inhibit Na+ and K+

permeation (Suwalsky et al., 2006). Additionally, PPCPs can cause lipid 
peroxidation and damage the cell membranes of algae. The presence of 
organic components in PPCPs increases the ROS levels and can cause 
lipid peroxidation. Lipid peroxidation can, in turn, exacerbate oxidative 
stress through lipid-derived radical production, damaging algal cell 
membranes. 

3.2.2. Cell structure damage 
Morphology and ultrastructure can be used to observe and assess the 

interactions and sensitivity of algae to pollutants (Villain et al., 2016). 
The structural integrity of cells is essential for the successful execution of 
cellular activities (Guo et al., 2020), and PPCPs can impede the synthesis 
and metabolism of algae by disrupting the integrity of their plasmid 
structure. A previous study reported that the morphology and ultra
structure of Phaeodactylum tricornutum cells were seriously damaged by 
fungicides, with the pyrenoid and nucleus becoming severely blurred, 
the thylakoid and mitochondria disappearing, and large vacuoles 
appearing in the cells (Xin et al., 2017). Vacuoles are frequent reactions 
of algal cells to stress and have been detected in Scenedesmus obliquus 
under ibuprofen (IBU) stress (Xie et al., 2022). Damage to the thylakoid 
indicates that the photosynthetic enzyme system is compromised, thus 
preventing energy conversion and consequently inhibiting photosyn
thesis. This was further corroborated by the toxicity of tetracycline in 
freshwater green algae (Atugoda et al., 2021). 

3.2.3. Genotoxicity 
Several PPCPs are genotoxic compounds that can affect the mutation 

frequency and cause gene pool alterations. These alterations can change 
the population size and affect ecosystem sustainability (Česen et al., 
2016). If algae are persistently exposed to genotoxic compounds, 
cracking may occur during normal homeostasis, causing irreversible 
damage and even death (Torres et al., 2008). Cyclophosphamide (CP), 
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carboxy-cyclophosphamide (CPCOOH) and their mixture caused gene 
pool alterations on Pseudokirchneriella subcapitata and Synechococcus 
leopoliensis (Česen et al., 2016). Quinolones interfere with DNA repli
cation by inhibiting DNA gyrase and topoisomerase IV in Prokaryota 
(Aderemi et al., 2018). Sulfonamides inhibit dihydropteroate synthase, 
thereby interfering with the conversion of p-aminobenzoic acid to folic 
acid and consequently inhibiting DNA synthesis (Eguchi et al., 2004). 
Trimethoprim inhibits dihydrofolate reductase, thereby interfering with 
the conversion of dihydrofolic acid to tetrahydrofolic acid and conse
quently inhibiting DNA synthesis (Xiong et al., 2017). 

3.2.4. Photosynthetic inhibition 
Evidence has demonstrated that PPCPs can inhibit the rate of algal 

growth due to their effects on photosynthesis (Lee et al., 2024). First, 
PPCPs can impair the regular process of photosynthesis by reducing light 
absorption potential of algae. Chlorophyll is a key measure of photo
synthetic potential (Villain et al., 2016). Previous studies have shown 
that PPCPs exposure can cause a reduction in the chlorophyll a content 
in algae, which impair the photosynthetic potential of algae (Zheng 
et al., 2021). Second, PPCPs can reduce the photosynthesis-related gene 
expression, which may reduce the amount of energy required for carbon 
assimilation (Gomaa et al., 2021). Third, the abnormal expression of 
rbcL, psaB, and psbD in diatoms exposed to a fungicide causes a reduction 
in photosynthetic electron transmission (Xin et al., 2017). Furthermore, 
transcriptomics were utilized to evaluate the toxicity of triclosan to 
Raphidocelis subcapitata (Fu et al., 2017), demonstrating that electron 
transport are sensitive targets for the effect of TCS on R. subcapitata 
photosynthesis system and further induced the generation of ROS. 

4. Combined exposure to MPs and PPCPs 

4.1. Growth effect 

The interactions between MPs and PPCPs have been widely studied. 
Studies have shown that MPs can act as carriers by adsorbing hydro
phobic pollutants (Wang et al., 2021), which is crucial to their combined 
effects. The adsorption mechanisms include hydrophobic interactions, 
hydrogen-bonding interactions, electrostatic interactions, partitioning, 
van der Waals interactions, π− π interactions, and microporous filling 
mechanisms (He et al., 2022; Wang et al., 2021). The interaction of MPs 
with PPCPs varies, modifying the compound effects on algae. Table 1 
provides an overview of the toxicity of mixtures of MPs and PPCPs on 
algae, including antagonism and synergism. On the one hand, MPs and 
PPCPs have a synergistic effect on algae. Prata et al. (2018) reported that 
the Tetraselmis chuii growth rate was not significantly affected by MPs 
alone. However, the EC50 of doxycycline for T. chuii was 22 mg/L, which 
decreased to 11 mg/L with PS, demonstrating that the inhibitory effect 
of PS and doxycycline on algal growth was greater than the sum of their 
individual effects, inducing a synergistic effect. Qu et al. (2022) found 
that exposure to methamphetamine and PS caused more growth inhi
bition (42%) to algae than the sum of their individual effects, revealing 
the synergistic effects of MTA and PS on algae. However, several studies 
have shown antagonistic effects of MPs and PPCPs on algae. For 
example, PS and IBU showed antagonistic effects against C. pyrenoidosa. 
(Wang et al., 2020). The EC50 of IBU for C. pyrenoidosa was found to be 
45.7 mg/L and increased to 63.9 mg/L with PS, revealing that the 
inhibitory impact of PS and IBU on algal growth was less than the sum of 
their individual effects. The complex interactions between MPs and 
PPCPs have different effects on the growth of algae. Therefore, the 
modes of action and influencing factors of MPs and PPCPs on algae were 
further studied in the following aspects. 

4.2. Influence mechanism 

4.2.1. Antagonism 
The antagonistic effects of PPCPs and MPs on algae can be attributed 

to the following factors. First, when the MPs are too large to enter algal 
cells, the adsorption of PPCPs by MPs leads to their antagonistic effect on 
algae (Hao et al., 2022). The adsorption of hydrophobic contaminants 
by MPs enhances their hydrophobicity, thereby promoting their aggre
gation (Li et al., 2023a; Thiagarajan et al., 2022). MPs can aggregate and 
be deposited in aquatic environments, which reduces the likelihood of 
contact with algae (Wang et al., 2020). Furthermore, the adsorption of 
PPCPs by MPs decreases the intake of PPCPs by algal cells, decreasing 
the direct toxicity of PPCPs (Cao et al., 2022; Ru et al., 2022). In addi
tion, combined exposure to MPs and PPCPs promotes the secretion of 
EPS by algal cells (Qu et al., 2020). EPS can facilitate the accumulation 
of MPs around algal cells (Li et al., 2022). EPS and MPs around algal cells 
can form a barrier and reduce PPCPs exposure (Castro-Castellon et al., 
2022; Li et al., 2020a). Second, certain PPCPs and MPs have opposing 
effects on the same biological targets. Heterogeneous aggregation is an 
important effect of MPs on algae and can downregulate the membrane 
lipid metabolism of algal cells. However, although quinolones can 
induce algal membrane disorders (Khondker et al., 2021), the resistance 
of microalgae cells to quinolones usually occurs through the upregula
tion of lipid metabolites (Redgrave et al., 2014). The opposing effects of 
MPs and quinolones on membrane targets lead to antagonistic effects 
For example, You et al. (2021b) found that phospholipids and glycer
olipids are upregulated in response to CIP stress. Therefore, the inhibi
tion caused by the combined exposure of algae to CIP and MPs was 
mitigated (the inhibition rate decreased to 18%) because of the adaptive 
responses of algae to CIP stress. Finally, low concentrations of MPs can 
induce hormesis in algae, which can increase the activity of metabolic 
enzymes, thus promoting the degradation of several PPCPs (Li et al., 
2023a). The degradation of PPCPs reduces their accumulation in algae, 
thereby reducing their effects. For instance, 5 mg/L of PS upregulates 
the gene encoding the P450 enzyme in algae (You et al., 2021a). 
Research has indicated that P450 is a key catalyst in the breakdown of 
antibiotics by algae (You et al., 2021a). Therefore, the up-regulation of 
CYP enzyme promotes the degradation of sulfadiazine (SDZ). 

4.2.2. Synergy 
The synergistic effects of PPCPs and MPs on algae can be attributed 

to the following reasons (Fig. 2) (see Fig. 1). First, when the MPs are 
sufficiently small to enter algal cells, the adsorption of PPCPs by MPs 
creates a synergistic effect. MPs can carry PPCPs to algae through the 
adsorption of PPCPs, thereby increasing the bioaccumulation of PPCPs 
in algal cells (Lee et al., 2024; Li et al., 2023a). Second, when MPs are 
negatively charged, the adsorption of positively charged PPCPs by the 
MPs can reduce the electrostatic barrier between the MPs and algal cells. 
The reduction in electrostatic repulsion increases the likelihood of 
cell–particle interactions, leading to a synergistic combined effect 
(Zhang et al., 2022). Feng et al. (2020) reported that the addition of TC 
increased the zeta potential of PS-SO3H from − 27.33 to − 10.00 mV. 
Thus, the electrostatic repulsion between PS-SO3H and the algal cells 
was decreased, resulting in an increase in binary toxicity. Compared 
with S. costatum exposed to single PS-SO3H system, the percentage of 
cell membrane damage in joint systems of tetracycline-saturated 
PS-SO3H increased to 53.5%. Third, the combined effects of certain 
PPCPs and MPs on a same biological target could result in their synergy. 
At the boundary of algal cells, the contact between MPs and algae with 
weak barrier (e.g., green algae and cyanobacteria are more vulnerable 
than diatoms with silicate cell walls) can cause physical or oxidative 
damage to the cell membrane. Damage to the membrane makes it easier 
for PPCPs and MPs to enter cells (Prata et al., 2018), thereby enhancing 
the combined effects of PPCPs and MPs. For example, Yi et al. (2019a) 
reported that the presence of PS increased the toxicity of TPT-Cl, which 
could be attributed to the facilitated uptake of TPT-Cl by green algae 
after damaging the cell structure. Inside the algal cells, when MPs and 
PPCPs have similar or complementary toxic mechanisms, MPs and 
PPCPs show synergistic effects on the same biological target. ROS were 
confirmed to be an important mechanism by which MPs inhibit cell 
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Table 1 
Effect of mixture of MPs and PPCPs on algae.  

Algal species MPs types MPs size MPs 
concentration 

PPCPs Exposure 
time 

Effects Maximum 
inhibition 
rate 

Major findings Ref 

S. costatum PS,PE and PVC 74 μm 50 mg/L TCS 96 h Antagonistic 21 % (96 h) The adsorption of TCS by 74 μm MP decreases the intake of TCS 
by algal cells, decreasing the direct toxicity of TCS. 

Zhu et al. (2019) 

T. chuii Red fluorescent 
polymer 
microspheres 

1–5 μm 1.5 mg/L Procainamide/ 
doxycycline 

96 h Synergistic 57% (96 h) The contact between MPs and algae can cause physical damage 
to the cell membrane. Damage to the membrane makes it easier 
for doxycycline/procainamide and MPs to enter cells. 

Prata et al. 
(2018) 

S. costatum PS-SO3H 96.05 nm 20 mg/L, 200 
mg/L 

TC 24 h Synergistic 53.5% (24 h) The addition of TC increased the zeta potential of PS-SO3H 
from − 27.33 to − 10.00 mV. Thus, the electrostatic repulsion 
between PS-SO3H and the algal cells was decreased, resulting 
in an increase in binary toxicity. 

Feng et al. 
(2020) 

C. pyrenoidosa PS 600 nm 1 mg/L IBU 96 h Antagonistic 28% (96 h) Low concentrations of MPs can induce hormesis in algae, 
which can increase the activity of metabolic enzymes, thus 
promoting the degradation of several IBU. The degradation of 
PPCPs reduces their accumulation in algae, thereby reducing 
their effects. 

Wang et al. 
(2020) 

C. pyrenoidosa and 
C.cathayensis 

PS 700 nm 20 mg/L Methamphetamine 96 h Synergistic 48% (96 h) MPs at 700 nm can carry methamphetamine to algae through 
the adsorption of methamphetamine, thereby increasing the 
bioaccumulation of methamphetamine in algal cells. 

Hao et al. (2022) 

Dictyosphaerium 
sp. 

PS 0.05–0.1 
μm 

50 mg/L Nonylphenol 96 h Antagonistic 26% (96 h) Nonylphenol and MPs have opposing effects on the same 
biological targets. PS induce a mechanism of self-regulation of 
the algae to repair damage inside and defend invasion outside. 

Jin et al. (2022) 

C. pyrenoidosa PS 0.55 μm, 5 
μm 

5 mg/L Triphenyltin 96 h Synergistic 48 % (96 h) The exposure to 0.55 μm PS lead to damage on structure of 
algal cells, which could facilitated uptake of TPT-Cl 

Yi et al. (2019a) 

S. costatum PS 0.1 μm, 5 
μm 

20 mg/L Triphenyltin 96 h Antagonistic 31 % (96 h) The presence of PS might reduce the uptake of TPT by lowering 
the waterborne TPT levels, leading to the decreased toxicity of 
TPT. 

Yi et al. (2019b) 

Marine Chlorella 
sp. 

PS 200 nm 10 μg/L DCOIT 15 d Antagonistic 11% (72 h) Low concentrations of MPs can induce hormesis in algae and 
cause the inhibitory effect of DCOIT on marine Chlorella sp. to 
end early. 

Ru et al. (2022) 

Synechocystis sp. PS 0.5 μm, 5 
μm, 50 μm. 

5, 50, 100 mg/ 
L 

CIP 96 h Antagonistic 18 % (96 h) Heterogeneous aggregation is an important effect of MPs on 
algae and can downregulate the membrane lipid metabolism of 
algal cells. Phospholipids and glycerolipids are upregulated in 
response to CIP stress. The opposing effects of MPs and 
quinolones on membrane targets lead to antagonistic effects. 

You et al. 
(2021b) 

C. pyrenoidosa PS 0.1 μm, 
0.55 μm, 5 
μm 

0.5–64 mg/L DBP 96 h Synergistic and 
Antagonistic 

38 % (96 h) The interaction between PS and DBP was antagonistic at low 
concentrations of PS and synergistic at relatively high 
concentrations of PS 

Li et al. (2020b) 

M. aeruginosa PS-NH2 – 5 mg/L Glyphosate 96 h Antagonistic 21% (96 h) The adsorption of PS-NH2 decreased bioavailability of 
glyphosate for M. aeruginosa. 

Thiagarajan 
et al. (2022) 

C. meneghiniana 
and S. costatum 

PS 0.6–1 μm 50 mg/L Diuron 96 h Synergistic 38% (96 h) The adsorption behavior of MPs to diuron alleviated the 
intracellular damage to diatoms caused by diuron, and the 
oxidative stress induced by diuron enhanced the physical 
damage to diatoms caused by MPs. 

Garrido et al. 
(2019) 

Anabaena sp. PET, PLA, PS, 
POM 

– 20 mg/L AZI, CLA 72 h Antagonistic 16% (72 h) The more hydrophobic AZI showed the highest sorption on all 
MPs. 

González-Pleiter 
et al. (2021) 

C. pyrenoidosa PA6 75 μm 1.5 mg/L SMX, DCB 60 d Antagonistic 25 % (96 h) The adsorption of SMX by 75 μm PA6 decreases the intake of 
TCS by algal cells, decreasing the direct toxicity of TCS. 

Yang et al. 
(2020) 

M. aeruginosa PS 1 μm 10, 20, 50 mg/ 
L 

CAP 96 h Synergistic 44% (96 h) The synergistic effect of CAP and PS could be explained by the 
common photosynthetic toxicity target of CAP and MPs as well 
as oxidative stress. 

Li et al. (2023a) 

C. pyrenoidosa PS 3 μm 50 mg/L Amphetamine 96 h Synergistic 42 % (96 h) MPs were observed to increase the toxicity of amphetamine to 
algae and reduce algae cell growth. 

Qu et al. (2022) 

(continued on next page) 
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survival. Algal cells eliminate the adverse effects of excessive ROS pro
duction by producing antioxidant enzymes (Aderemi et al., 2018). 
However, inhibitors of protein synthesis, such as azithromycin, doxy
cycline, florfenicol, chloramphenicol, and oxytetracycline, can inhibit 
the synthesis of antioxidant enzymes. The complementary effects of MPs 
and PCPPs on the oxidative stress targets led to synergistic effects. For 
example, Li et al. (2023a) reported that PS induces algae to produce 
excess ROS. Proteomic analysis revealed that chloramphenicol inhibits 
SOD synthesis. Thus, the down-regulation of SOD caused by CAP 
enhanced the lipid peroxidation caused by PS. The complementary toxic 
mechanisms of PS and CAP result in their synergistic effects on oxidative 
stress. 

4.3. Factors 

To determine the relative importance of the different parameters for 
the combined toxicity, the relative importance of the parameters was 
ranked in the RF model (Fig. 3). The RF analysis identified PPCP types 
and algal species as the significant factors. 

Different PPCPs have different modes of action and the physico
chemical properties of different PPCPs affect their adsorption by MPs. 
Thus, the type of PPCP is a critical factor in determining the combined 
effects of MPs and PPCPs on algae. If certain types of PPCPs and MPs 
have similar modes of action, exposure to such combinations can result 
in synergistic overall effects. Yi et al. (2019a) found that PS and TPT-Cl 
have synergistic effects on algae because of the disruption of the cell 
structure, facilitating the uptake of TPT-Cl by algae (Yi et al., 2019a). 
However, the different modes of action of certain PPCPs and MPs on 
algae may lead to antagonistic effects (Yi et al., 2019b). According to 
You et al. (2021b), the combined action of CIP and MPs results in 
antagonistic effects because the adaptive responses of algae to CIP stress 
mitigated the attack of PS on algal membrane. Second, the physico
chemical properties of different PPCPs affect their interactions with 
MPs. González-Pleiter et al. (2021) reported that AZI exhibited stronger 
hydrophobicity and a higher adsorption ratio than clarithromycin (CLA) 
by MPs, resulted in more synergistic effects. 

Additionally, algal species are significant factors affecting the com
bined effects of MPs and PPCPs on algae (Fig. 3). This can be attributed 
to the following reasons. First, the metabolic activities of algae affected 
by MPs and PPCPs vary depending on the algal species. For example, 
Almeida et al. (2017) reported that ZnO nanoparticles induce higher 
oxidative stress in the diatom P. tricornutum than in the green algae 
Tetraselmis suecica. The malondialdehyde (MDA) content of P. tricornu
tum was 2.2 times higher than that of T. suecica. A high MDA content led 
to higher growth inhibition. The EC50 values of nano-ZnO were 1.09 mg 
Zn/L toward diatoms and 3.91 mg Zn/L toward green microalgae. 
Second, the effect of MPs on algae depends on the size of the algal cells. 
Larger algae are more susceptible to MP inhibition. For larger algae, 
more MPs are able to enter the cells, resulting in greater growth inhi
bition. For instance, Ye et al. (2023) investigated the response of 12 
species of algae (<8 μm; 8–15 μm; >15 μm) to PS MPs. The inhibition 
rates of Desmodesmus sp. (<8 μm), Scenedesmus sp. (8–15 μm) and 
Cyclotella sp. (>15 μm) were 1.09%, 2.10%, and 14.24% respectively. 
Therefore, the growth inhibition rate of large algae was significantly 
higher than that of small algae exposed to the same pollutant. Third, 
structural differences in algal cells may result in distinct responses to 
pollutant stress, which amplify the disparity in their combined effects. A 
recent study found that exposing C. pyrenoidosa to MPs could cause the 
cell wall to separate from the plasma membrane or direct physical 
damage to the membrane structure, resulting in cytotoxicity to algal 
cells (Mao et al., 2018). Nevertheless, the diatom cell wall consists of 
biogenic silica, which is thicker and denser than organic matter (Zhu 
et al., 2019). Therefore, green algae are more vulnerable to pollutants 
than diatoms. For example, Baudrimont et al. (2020) found that the 
growth-inhibition rates of the freshwater green alga S. subspicatus and 
marine diatom T. weissiflogii were 12.13% and 3.34%, respectively. The Ta
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unique effects of MPs and PPCPs on distinct algae amplify the disparity 
in their combined effects. For example, PS cannot destroy the cell walls 
of diatoms, but can damage those of C. pyrenoidosa. The damage caused 
by MPs to C. pyrenoidosa cell walls causes the MPs to carry more PPCPs 
into the algal cells, resulting in higher growth inhibition. Therefore, PS 
enhances the inhibition of TPT on C. pyrenoidosa but reduces the inhi
bition of diatoms by TPT (Yi et al., 2019a). 

It has been established that the size and concentration of MPs can 
also influence the combined effects of MPs and PPCPs on algae. 
Generally, smaller MPs have a greater combined impact than larger ones 
because smaller MPs have higher adsorption capabilities for PPCPs, 
which enhances their entry into algal cells. For example, PS (5 μm) does 
not considerably alter the harmful effects of TPT-Cl on C. pyrenoidosa, 
while PS (550 nm) enhances those effects (Yi et al., 2019a). Moreover, 
the concentration of MPs can influence these combined effects (Hong 
et al., 2022). When the PS concentration is below 10 mg/L, PS and 
dibutyl phthalate (DBP) exert antagonistic effects on C. pyrenoidosa. At a 
PS concentration of >10 mg/L, PS and DBP exert synergistic effects on 
C. pyrenoidosa (Li et al., 2020b). 

Differences in the chemical structures of different types of MPs (e.g., 
chemical bonds and chains) can affect the adsorption of PPCPs and thus 
affect joint toxicity (Pinto et al., 2023). PVC has a greater adsorption 
capacity for TCS, resulting in fewer harmful effects on S. costatum than 
those of PE and PS (Zhu et al., 2019). Nevertheless, the influence of MP 
type on co-toxicity is not as strong as that of MPs size and concentration, 
and the type of does not affect co-toxicity. Therefore, the type of PPCPs 
and algae and concentration and size of MPs are more important than 
the type of MPs when considering their relative importance. The toxic
ities of different types of MPs may vary over time, leading to different 

combined effects. Yang et al. (2020) found that the inhibitory effect in a 
48-h combined toxicity experiment decreased in the following order: NP 
> PE > PE1000 > PA > PA1000. However, in a 96-h combined toxicity 
trial, the inhibitory effect decreased in the order of: NP > PE1000 > PE 
> PA1000 > PA (Yang et al., 2020). The highest adsorption capacity of 
PA1000 significantly decreased the toxicity of NPs on algae; however, 
some MPs initially cause severe damage to algal cells. Nevertheless, with 
a prolonged exposure time, the toxicity of NPs to algae decreased, 
whereas the toxicity of PA1000 MPs to algae became more severe, 
resulting in lower algal density in the PA1000 group than in the PA 
group after 96 h. 

5. Conclusion and future research recommendations 

In this review, we discussed the effects of PPCPs and MPs on algae in 
aquatic environments. First, the individual effects of MPs and PPCPs on 
algae were summarized. The effects of MPs on algae included hetero
geneous aggregation, and photosynthetic and oxidative damage. The 
effects of PPCPs on algae included membrane, cell structure, genotox
icity, and photosynthetic damage. Second, the effects and modes of the 
combined exposure of algae to MPs and PPCPs were then systematically 
reviewed. The antagonistic effect was attributed to the following factors: 
① when MPs are too large to enter algal cells, the adsorption of PPCPs on 
MPs reduces the contact of MPs and PPCPs with algae; ② PPCPs and MPs 
have opposing actions on the same biological target; ③ MPs increase the 
activity of metabolic enzymes in algae, thus promoting the PPCP 
degradation. The synergistic effect is attributed to the following factors: 
① when the MPs are small enough to enter algal cells, the adsorption of 
PPCPs on MPs promotes the entry of PPCPs; ② when MPs are negatively 

Fig. 1. Mechanism of antagonistic effect of MPs and PPCPs on algae.  
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charged, the adsorption of positively charged PPCPs by MPs decreases 
electrostatic repulsion, increasing the interaction between algae and 
MP; ③ complementary modes of action of MPs and PPCPs show a 
combined effect on the same biological target. Finally, the impact factors 
of the combined effects of MPs and PPCPs on algae were analyzed using 

the RF model. PPCP types and algal species are the important factors 
leading to different compound effects of MPs and PPCPs on algae. 
However, there remains a gap regarding the combined effects of MPs 
and PPCPs on algae. Further studies on the following aspects should be 
conducted. 

Fig. 2. Mechanism of synergy effect of MPs and PPCPs on algae.  

Fig. 3. Order of importance of the RF model variables of joint toxicity of MPs and PPCPs on algae.  
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1) This study indicates that the combined effects of MPs and PPCPs on 
algae include both antagonistic and synergistic effects. The syner
gistic effect of MPs and PPCPs can cause greater growth inhibition in 
algae, resulting in more serious harm to the aquatic environment. 
Therefore, it is essential to reduce the synergistic effects of MPs and 
PPCPs. Specific regulation and control measures could be as follows: 
First, previous studies have shown that high concentrations of MPs 
can significantly inhibit the growth of algae (Gao et al., 2023). 
Hormesis can be induced by exposure to low concentrations of MPs, 
which can increase the activity of metabolic enzymes in algae, thus 
promoting the degradation of several PPCPs and leading to antago
nistic effects (Wang et al., 2021). Therefore, additional strategies 
should be adopted to remove MPs, which more successfully reduce 
the combined effect of MPs and PPCPs on algae. Second, studies 
indicate that small MPs can transfer PPCPs to algae owing to the 
adsorption of PPCPs on their surfaces, thus increasing the bio
accumulation of PPCPs in algal cells (Yi et al., 2019a). Therefore, 
small MPs can induce a synergistic effect with PPCPs. However, 
recent studies have shown that plastic products can be continuously 
decomposed into small fragments that are difficult to completely 
degrade (Nava and Leoni, 2021). Although methods capable of 
analyzing MPs <10 μm are still lacking (Mishra et al., 2024), the 
particle size and abundance of MPs detected by now available 
methods are inversely proportional in aquatic environment (Yang 
et al., 2024a). Hence, small MPs are expected to widely distributed in 
aquatic environment. Therefore, for the removal of MPs, it is 
important to focus on the control of small-sized MPs released into 
aquatic environments. Third, RF model revealed that PPCP types are 
the significant factor affecting combined effect. Previous studies 
have shown that synergistic effects can occur with the combined 
exposure to MPs and specific PPCPs. For example, inhibitors of 
protein synthesis (e.g., azithromycin, doxycycline, florfenicol, 
chloramphenicol, and oxytetracycline) can inhibit the synthesis of 
antioxidant enzymes, which enhance the oxidative stress of MPs on 
algae, resulting in synergistic effects (Li et al., 2023a). Therefore, 
better management measures should be implemented to mitigate the 
co-emissions of MPs and these pollutants.  

2) Biodegradable plastics have gained popularity as a means to improve 
the efficiency of plastic waste treatment. Biodegradable polymers 
decompose more easily than ordinary plastics and totally disinte
grate during composting at high temperatures (55–175 ◦C) (Mala
feev et al., 2023). However, it is difficult to achieve complete 
deterioration under natural environmental conditions, particularly 
in aquatic habitats. Instead, they have a high probability of gener
ating a significant number of smaller MPs. (Podbielska and Szpyrka, 
2023). Therefore, the potential environmental impact of biode
gradable plastics remains unclear. Several algal species may use MPs 
as a carbon source via enzymatic breakdown, which promotes algal 
development. The effects of micro-sized biodegradable polymers on 
M. aeruginosa were investigated by Song et al. (2023). The results 
showed that, after extended contact, the chemicals in biodegradable 
plastic leachates promoted M. aeruginosa development. In addition, 
compared with non-biodegradable plastics, biodegradable plastics 
have different surface potentials and functional groups, thus 
changing their interactions with other pollutants (Shi et al., 2022). 
Therefore, the combined effects of biodegradable plastics and PPCPs 
on algae require further study. 
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