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Abstract
1.	 Aquatic invasive species (AIS) are a global threat to freshwater biodiversity and 

ecosystem services. Documenting AIS prevalence at broad spatial scales is critical 
to effective management and early detection. However, conventional monitor-
ing for AIS is costly and is rarely applied at the resolution and scale required for 
effective management. Monitoring of AIS using environmental DNA (eDNA) has 
the potential to enable broadscale surveillance at a fraction of the cost of conven-
tional methods, but key questions must first be addressed related to how eDNA 
detection probability varies among environments, seasons, and multiple species 
with different life histories.

2.	 To quantify spatiotemporal variation in the detection probability of AIS using 
eDNA sampling, we surveyed 20 lakes with known populations of four aquatic 
invasive species: common carp (Cyprinus carpio), rusty crayfish (Faxonius rusticus), 
spiny waterflea (Bythotrephes longimanus), and zebra mussels (Dreissena polymor-
pha). We collected water samples at 10 locations per lake, five times throughout 
the open water season resulting in a total of 1,000 water samples. Quantitative 
polymerase chain reaction was used with species-specific assays to determine 
the presence of each species' eDNA in water samples. With Bayesian occupancy 
models, we quantified the effects of lake and site characteristics and Julian date 
on eDNA detection probability.

3.	 The probability of eDNA detection varied seasonally, and the seasonal variation 
was species-specific and related to species life histories. Zebra mussel eDNA was 
generally the most detectable among the species we targeted, and detection 
probability peaked in midsummer when only six water samples were required 
to achieve a 95% probability of detection (80% Bayesian credible interval: 3–12 
samples). Spiny waterflea eDNA detections also peaked in mid to late summer, 
but were overall the most difficult species to detect, requiring 160 samples for 
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1  |  INTRODUC TION

Aquatic invasive species (AIS) can alter the ecosystems they in-
vade and cause significant ecological and economic impacts 
(Ehrenfeld, 2010). Species invasions can decrease native biodiver-
sity; decrease the abundance, growth, and survival of recreation-
ally important native species; and shift ecosystems to undesirable 
conditions (Gallardo et  al.,  2016). To mitigate these negative ef-
fects, billions of dollars have been spent on AIS management in 
the U.S.A. (Cuthbert et al., 2021), primarily on reactive manage-
ment once a species has become established. Prevention of spe-
cies invasions is a more effective and efficient use of resources 
(Simberloff et al., 2013), which requires monitoring to determine 
if prevention methods are working and to identify new invasions. 
Early detection of new invasives can be a fail-safe when preven-
tion efforts fail (Reaser et  al.,  2020). Although broadscale mon-
itoring of AIS presence is important for early detection of new 
invasions, widespread, coordinated monitoring programmes are 
uncommon (Lodge et al., 2016; Vander Zanden et al., 2010). Most 
regions lack information on the true prevalence and distribution 
of AIS due to a lack of statistically valid sampling across the land-
scape, instead relying on opportunistic reporting, which almost 
certainly underestimates prevalence (Latzka et al., 2016; Vander 
Zanden et al., 2010).

Effective and inexpensive monitoring techniques capable of de-
tecting multiple AIS are needed to establish a baseline of AIS prev-
alence and to rapidly respond to new invasions (Reaser et al., 2020; 
Vander Zanden et al., 2010). However, physical surveys using con-
ventional collection and identification methods require consider-
able effort and expertise (Bonar et al., 2009; Trebitz et al., 2017), 
and physical detections may still lag many years behind a species' 
first arrival to a new habitat (Branstrator et  al.,  2017). These sur-
veys often miss species when they are at low abundances, are time 
and resource intensive, and are species or taxa-specific (Borrell 
et al., 2017; Evans, Li, et al., 2017; Evans, Shirey, et al., 2017). Invasive 

species frequently occur at low abundances, particularly early in 
their invasion status (Spear et  al.,  2021), making them difficult to 
detect (McCarthy et al., 2013). However, the detection of invasions 
when the species is at a low abundance provides a greater chance 
of successful management or eradication (Hulme,  2006; Myers 
et al., 2000; Simberloff, 2009). Robust and inexpensive monitoring 
procedures capable of detecting diverse AIS are therefore required 
to establish baselines of AIS prevalence and monitor for new inva-
sions (Lodge et al., 2016).

Environmental DNA (eDNA) is a promising focus for AIS moni-
toring (Ficetola et al., 2008; Jerde et al., 2011). Environmental DNA 
is DNA collected and identified from environmental samples such 
as soil, water, or air, without requiring collection of target organisms 
(Barnes & Turner,  2016). In aquatic systems, eDNA is usually col-
lected by taking water samples, filtering the water to capture DNA, 
extracting DNA, and then using genetic tools to detect and quan-
tify the target DNA (for more see Ruppert et al., 2019). The use of 
eDNA has numerous advantages over conventional sampling meth-
ods. For instance, samples can be analysed using molecular methods 
to detect multiple species from broad taxonomic groups (Dysthe 
et al., 2018; West et al., 2020), which may only be possible using mul-
tiple sampling methods with conventional monitoring. Furthermore, 
eDNA can detect species at low abundances (Goldberg et al., 2015; 
Jerde et al., 2011). Additionally, eDNA sampling methods are inex-
pensive relative to traditional sampling (Davy et al., 2015; Evans, Li, 
et al., 2017), particularly when sampling for multiple species (Andres 
et al., 2023; McColl-Gausden et al., 2021). Collectively, these advan-
tages mean eDNA is conducive to effective and widespread multi-
species monitoring efforts (Jeremy et al., 2015).

Although eDNA monitoring offers many potential benefits, its 
application requires an understanding of factors that influence 
species detectability (Bylemans et  al.,  2019; Troth et  al.,  2021). 
Seasonal trends of eDNA concentrations can have a large impact 
on detection probability (Erickson et  al.,  2017), which can vary 
due to a species' life history or annual cycle (Collins et al., 2022; 

a 95% probability of detection (80% Bayesian credible interval: 67–1,616 sam-
ples). Common carp eDNA was most detectable in the spring and rusty crayfish 
eDNA was most detectable in the early autumn, corresponding to key life history 
events.

4.	 Sampling for eDNA during the optimal time of the year for each species de-
creased the number of samples required to reach a 95% probability of detection 
by an order of magnitude or more.

5.	 Our results are relevant for decision makers interested in using eDNA as a multi-
species monitoring tool and highlight the importance of life history in the efficacy 
of eDNA monitoring.

K E Y W O R D S
Bayesian hierarchical models, Bythotrephes longimanus, Cyprinus carpio, Dreissena polymorpha, 
Faxonius rusticus, life history, multi-species monitoring, occupancy model, seasonality
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de Souza et  al.,  2016; Dunn et  al.,  2017; Milhau et  al.,  2021). A 
well-documented example of seasonally varying eDNA detectabil-
ity is greater detection probability during spawning events (Bayer 
et al., 2019; Takahashi et al., 2018; Takeuchi et al., 2019; Tsuji & 
Shibata, 2021). When sampling for more than one species, particu-
larly species with vastly different life histories, the effects season-
ality and species life history have on eDNA detection probability 
may obfuscate optimal sample timing. The effect of species life 
history on eDNA detectability is particularly important for me-
tabarcoding studies, where detection probabilities are typically 
lower than single species detection methods (McColl-Gausden 
et al., 2023), therefore timing samples to correspond with periods 
of highest detection probabilities is critical. Environmental con-
ditions (e.g., water clarity, temperature, pH) also influence eDNA 
detection probability, and the occurrence of unfavourable condi-
tions may require increased sampling effort for species detections 
(Barnes et  al.,  2014; Jo & Minamoto,  2021; Wang et  al.,  2021). 
Understanding how life history and environmental factors affect 
eDNA detections can inform allocation of sampling efforts to infer 
species presences.

The objective of our research was to quantify the influence of 
seasonality and environmental conditions on the detectability of 
multiple species using eDNA. We sought to determine the opti-
mal timing of eDNA sampling for four important AIS: common carp 
(Cyprinus carpio), rusty crayfish (Faxonius rusticus), spiny waterflea 
(Bythotrephes longimanus), and zebra mussel (Dreissena polymorpha). 
We estimate the eDNA detection probability of these four species 
over the open water season and the number of samples required 
to detect each species at a given probability threshold using eDNA. 
Additionally, we show how the clarity of a lake, stratification status, 
and sampling site water depth affect eDNA detection probabilities. 
Although our work focuses on four species, our methodology is rele-
vant for designing effective eDNA sampling for diverse assemblages 
of organisms across any landscape.

2  |  METHODS

2.1  |  Study species

We sampled 20 lakes in Minnesota, U.S.A. with known populations 
of common carp, spiny waterflea, rusty crayfish, and zebra mussels 
(Figure  1a; Table  1). These species were chosen because they are 
widespread high-priority invasive species in Minnesota with dif-
ferent life histories that we hypothesised would lead to different 
seasonal patterns of eDNA detections (Figure 1b). The lakes were 
chosen based on the known occupancy of one or more of the target 
species, and to span a range of physical and chemical characteristics 
(i.e., lake size, maximum depth, ecoregion; Table 1). The in-lake oc-
cupancy of common carp was determined using previous Minnesota 
Department of Natural Resources (MNDNR) fisheries surveys, spiny 
waterflea and zebra mussel occupancy was determined using the 
MNDNR Infested Waters List (Minnesota Department of Natural 

Resources, 2023), and rusty crayfish occupancy was determined by 
prior EDDMapS detections (EDDMapsS, 2023).

We expected that the eDNA of common carp, a littoral and highly 
fecund fish, would be most detectable in spring and early summer 
based on the formation of large spawning aggregations (Bajer & 
Sorensen,  2010; Di Muri et  al.,  2022), and that eDNA detectabil-
ity would decrease later in the year. We predicted that peak eDNA 
detectability of rusty crayfish, a benthic decapod, would coincide 
with moulting events or ovigery in the late summer to early autumn 
(Crocker & Barr, 1968; Dunn et al., 2017; Somers & Green, 1993), 
and that eDNA detectability would be lower in the spring and early 
summer. Spiny waterflea, a large cladoceran zooplankton, were ex-
pected to be most detectable with eDNA in late summer to early 
autumn when they reach peak abundance (Walsh et al., 2019; Yan 
et al., 2001). Zebra mussel, a small freshwater mussel, was expected 
to reach peak eDNA detectability in mid-summer coinciding with re-
lease of their planktonic veligers (Haag & Garton, 1992).

2.2  |  Water sampling

We sampled each lake during a single year throughout the ice-free 
season. For each lake, we collected water samples from 10 sampling 
points. Eight points were split evenly between pelagic and littoral 
areas of the lake and were randomly selected based on existing state 
agency water sampling points. The remaining two points were at a 
boat launch and the deepest point of the lake. We visited each lake 
five times throughout the open water season (ice on to ice off) in 
2021 or 2022. Lakes were first sampled within 4 weeks of ice-off. 
The remaining sampling events occurred every 4–6 weeks, with the 
final sampling event occurring as close as possible to anticipated lake 
freeze-up.

During each lake visit, we collected 250 ml of surface water in 
high-density polyethylene bottles at each of the 10 sampling points. 
To prevent contamination, we rinsed bottles with 10% bleach pre-
sampling, wore gloves while taking samples, and switched gloves 
between samples. We brought a 250-ml field control to each lake as 
an indicator of field contamination (Morisette et al., 2021). The field 
control was filled with deionised water prior to sampling and opened 
for 5 s prior to the start of sampling. At the deepest point of each 
lake, we measured Secchi depth, pH, and conductivity at the surface 
and recorded a temperature and dissolved oxygen profile from the 
surface to the bottom of the lake at 1-m increments.

2.3  |  Molecular analyses

Water samples were kept in the dark and on ice between sample col-
lection and filtration (Curtis, Larson, & Davis, 2021). Water samples 
were brought back to the lab for filtration and preservation, which 
usually occurred within 12 hr but in some cases 36 hr of sample col-
lection, limiting eDNA degradation (Curtis, Larson, & Davis, 2021). 
Each water sample was prefiltered through a 75-μm stainless steel 
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mesh filter to remove large debris and reduce filter clogging (Wilson 
et al., 2014). The remaining water was filtered through a 1-μm, 47-
mm diameter cellulose-nitrate filter (Whatman Cytivia #7190004) 
using a vacuum pump. All water samples were able to filter with-
out clogging. Filters were preserved in 95% ethanol and stored at 
−20°C until DNA extraction. For each step of laboratory process-
ing, we wore clean gloves and used equipment that was soaked in 

10% bleach prior to use. Any physical workspace was cleaned with 
10% bleach between samples. Downstream laboratory processes 
were split between two separate academic labs, with both labs 
having demonstrated repeatable and reproducible results (García 
et al., 2024; Appendix S1: Section S1).

At the time of DNA extraction, filters were removed from their 
vials and cut in half with sterile razors. Half of the filter was used for 

F I G U R E  1  Conceptual model of environmental DNA sampling and life history events expected to correlate with peak environmental 
DNA detections. (a) We selected four aquatic invasive species with known populations in 20 different lakes throughout Minnesota. We 
sampled each lake five times by taking 10 water samples at fixed locations within lakes and analysed three quantitative polymerase chain 
reaction replicates from each water sample. (b) Species icon positions correspond to when peak detections were predicted to occur. Spiny 
waterflea detections should peak when they reach peak abundance and hatch in late summer. Common carp detections should peak 
between ice-off and early summer when carp spawn. Zebra mussel detections should peak near mid-summer when they release veligers. 
Rusty crayfish detections should peak in the summer or early autumn due to moults or ovigery. Icons were provided by the Minnesota 
Department of Natural Resources.
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extraction and analysis, and the remaining half was stored in 95% 
ethanol at −20°C as an archive. To isolate DNA from filters, we used 
the Qiagen DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany) 
following the manufacturer's spin-column protocols (Eichmiller 
et al., 2016), modified by running the final elute through the column 
twice and only using 50 μl of Solution C6. The PowerSoil Pro kit was 
chosen because it can reduce common polymerase chain reaction 
(PCR) inhibitors (Lear et al., 2018; Pearman et al., 2020) anticipated 
to occur in some of our study lakes (e.g., organic matter, algae, iron) 
although we did not test for inhibition explicitly. We conducted all 
DNA extractions in rooms separate from spaces with high copy DNA 
from PCR. Between extractions, we sterilised workspaces with 50% 
bleach and UV radiation for 30 min (Goldberg et al., 2016). Between 
samples, we switched gloves and used sterile equipment (Goldberg 
et  al.,  2016). Extractions were performed one lake visit at a time, 
and for each extraction, we used a lab blank (a sterile filter unex-
posed to any biological material) to assess lab contamination. The 
extracted genomic materials were stored at −80°C until quantitative 
PCR (qPCR) analysis.

To determine eDNA presence and concentration, we used 
species-specific triplicate qPCRs. We used primers targeting 

mitochondrial cytochrome oxidase subunit regions for each species 
based on existing assays developed and validated for the region they 
are used (Appendix S1: Table S1; common carp, Eichmiller et al., 2014; 
rusty crayfish, Coster et al., 2021; García et al., 2024; spiny water-
flea, Walsh et al., 2019; zebra mussel, Amberg et al., 2019). One labo-
ratory used a StepOnePlus™ Real-Time PCR System (Thermo Fisher 
Scientific, Waltham, MA, U.S.A.) and a QuantStudio™ 3 Real-Time 
qPCR machine (Thermo Fisher Scientific, Waltham, U.S.A.), whereas 
the other laboratory used a QuantStudio™ 3 Real-Time qPCR (for 
more information see García et al., 2024). We ran all samples from 
a lake-visit together. Detailed qPCR conditions can be found in 
Appendix S1: Section S1 and Appendix S1: Table S1. qPCR reactions 
were done in separate rooms from extractions, and we followed best 
practices to minimise contamination between samples (Goldberg 
et  al.,  2016). Each plate contained four non-template controls 
(1 μl molecular grade water). For each plate, we used species-specific 
gBlock fragments to create standard curves with 10-fold serial di-
lutions ranging from 0.1 to 100,000 copies per reaction (Integrated 
DNA Technologies, Coralville, IA, U.S.A.). We determined whether 
amplification occurred using qPCR software from each machine. We 
defined plate-level limits of detection (LOD) calculated following 

TA B L E  1  Summary of characteristics of our 20 study lakes, including geographic coordinates (lat, long), surface area (km2), and maximum 
depth (m) clarity 9 m, as well as species detected historically and with environmental DNA (eDNA) of the 20 lakes included in this study.

Lake Lat Long
Species 
present

Species 
missed with 
eDNA

New species 
detected 
with eDNA Area (km2)

Max depth 
(m) Clarity (m)

Bald Eagle 45.113 −93.015 CC, ZM ZM RC 42 11 2.3

Benedict 47.140 −94.695 RC, ZM – CC 19 27.7 3.2

Clear 44.088 −93.485 CC – – 26 10.4 1.4

Crane 48.289 −92.473 RC, SWF SWF – 118 24.4 1.7

Fish 46.994 −92.275 SWF SWF – 132 11 1.5

Forest 45.273 −92.952 CC, ZM – RC 92 11.3 2.6

Island 47.018 −92.178 SWF SWF – 324 28.7 1.2

Johanna 45.044 −93.171 CC, ZM ZM RC 9 13.1 3.1

Kabetogama 48.474 −92.996 SWF SWF CC, RC 973 24.4 2.1

Leech 47.160 −94.443 RC, ZM – CC 4170 45.7 2.7

McCaron's 44.998 −93.113 ZM CC RC 3 17.4 3.7

Mille Lacs 46.251 −93.646 CC, SWF, ZM SWF RC 5190 12.8 3.0

Owasso 45.036 −93.123 CC, ZM RC SWF 15 11.3 3.0

Phalen 44.989 −93.055 CC, RC – – 8 27.7 2.7

Pike 46.866 −92.302 ZM – – 20 18.3 2.9

Lower Prior 44.735 −93.414 CC, ZM – RC 39 18.3 5

Shagwa 47.916 −91.886 RC, SWF SWF CC 95 14.6 2.4

Ten Mile 46.970 −94.577 ZM ZM RC 206 27.7 5.1

Vermillion 47.861 −92.333 RC, SWF – ZM 1589 23.2 2.7

White Bear 45.083 −92.084 CC, ZM – RC 98 25.3 5.7

Note: The species present refers to which of the four AIS have been previously recorded in a lake. Species missed is the species not detected with 
environmental DNA sampling. New species detected is the species detected using environmental DNA sampling that were not previously known to 
exist in a lake.
Abbreviations: CC, common carp; RC, rusty crayfish; SWF, spiny waterflea; ZM, zebra mussel.
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Klymus et al.  (2020). The LOD was based on three replicates, and 
we considered any qPCR replicate from a given site above the LOD 
as a positive detection. The mean qPCR efficiency, r2, and LOD can 
be found in Table 2. Since we were interested in whether the de-
tection probability changed over time (and not the copy numbers of 
eDNA), we do not report the limit of quantification. Additionally, we 
excluded samples from any lake-visit that had field or lab blank qPCR 
amplification above the LOD.

2.4  |  Data analyses

We used a Bayesian multi-species occupancy model to quantify 
how the probability of detection in a water sample of four AIS 
using eDNA was influenced by seasonality and environmental con-
ditions. Multi-species occupancy models are often hierarchical, 
which allows data from all species to contribute to estimates of 
species-specific occupancy and detection probability (Dorazio & 
Royle, 2005; White et al., 2020). Given our primary focus on fac-
tors affecting eDNA detection probabilities, and that lake-level oc-
cupancy of each species was known a priori, we did not estimate 
occupancy directly, but instead focused on detection probability by 
conditioning on known occupancy or eDNA detections from this 
study.

We focused our modelling efforts on covariates of detection be-
cause determining optimal eDNA sampling schemes requires deter-
mining when and where to sample for each species, and how much 
to sample based on the detectability of the organism. However, 
we also included other site-level covariates hypothesised to influ-
ence the availability of eDNA. These covariates were water clarity, 
which we thought would decrease sample level detectability due 
to UV DNA degradation (Kessler et al., 2020; Strickler et al., 2015); 
percentage of the water column mixed, which we assumed would 
decrease detectability in a sample due to a dilution effect (Curtis, 
Tiemann, et al., 2021; Klobucar et al., 2017); and sampling site depth, 
which would decrease sample level detectability, especially for com-
mon carp and rusty crayfish that live in primarily littoral areas. The 
model allows the estimation of relationships between covariates and 
response:

where p is detection probability, s indexes species, i indexes lake, 
j indexes sites within a lake, and v represents lake-visit. The detection 
model has species-specific intercepts β0,s, with nested random inter-
cepts for lake and site-within-lake, βs,i and βs,i,j, respectively. Depth is 
the depth of the water column from lake i at site j. Julian day is the nu-
meric day of year at the time of sampling, Clarity is the Secchi depth for 
the lake at the time of sampling, and PercentMixed is the percentage 
of the water column at the maximum depth that is within 1°C of the 
surface of the lake. All covariates were standardised to have a mean of 
0 and an SD of 1. For site depth, we standardised after log transforma-
tion because of a strongly right-skewed distribution. We quantified the 
detection or non-detection of three qPCR replicates. The sub-sample 
detection probability is given by

using the same notation defined in Equation  (1) and where k in-
dicates qPCR replicate and 3 is the total number of qPCR replicates. 
Therefore, the observation model per sub-sample is

where zs,i describes the known presence (zs,i = 1) or absence (zs,i = 0) 
of species s in lake i. The observed variable, ys,i,j,v,k describes the de-
tection of the species s at lake i, site j, lake visit v, and qPCR replicate 
k, which is a random variable determined by the detection probability 
ρs,i,j,v,k.

For model parameters, we used diffuse priors. Specifically, we 
used half-Cauchy hyperpriors for standard deviations (Outhwaite 
et  al.,  2018). Priors for regression coefficients (β), including inter-
cepts were estimated by treating species as a random effect and 
drawing species-specific regression coefficients from a shared nor-
mal distribution, e.g., β ~ N(μ, σ), where μ ~ N(0, 1.75) and σ ~ Unif(0,1) 
(Boone et al., 2023; Mordecai et al., 2011; White et al., 2020). For 
example, the species-specific effect of clarity, β3,s, is derived from a 
normal distribution with a mean (μβ3) and variance (σ2

β3) correspond-
ing to β3,s ~ N(μβ3, σ2

β3). This provides a vague prior after transforming 
values from the logit to the real scale.

The model was fit in JAGS using the package rjags (Su & 
Yajima, 2015). For each model, we used 500,000 iterations with a 
burn-in of 100,000 on three chains with a thinning rate of one in 
10 yielding 120,000 posterior samples. To assess model conver-
gence, we visually inspected all trace plots and ensured the Gelman–
Rubin criterion r-hat values <1.01 (Gelman & Rubin, 1992). We also 

(1)

logit
(

�s,i,j,v
)

=�0,s+�s,i+�s,i,j+�1,sJulianDayi,v

+�2,sJulianDay
2
i,v +�3,sClarityi,v

+�4,sPercentMixedi,v +�5,sDepthi,j

(2)�s,i,j,v,k = 1 −
(

1−�s,i,j,v
)−3

(3)ys,i,j,v,k ∼ Binomial
(

�s,i,j,v,k , zs,i
)

Species qPCR efficiency r2 LOD (copies/μL)

Common carp 97.1 (95.5–98.8) 0.986 (0.984–0.989) 4.27 (2.90–5.65)

Rusty crayfish 98.2 (94.6–101.9) 0.982 (0.978–0.985) 6.73 (3.66–9.79)

Spiny waterflea 96.9 (93.3–100.5) 0.985 (0.982–0.988) 11.42 (3.99–18.86)

Zebra mussel 105.9 (103.8–107.9) 0.980 (0.976–0.985) 2.40 (1.60–3.20)

Note: Mean quantitative PCR efficiency, r2, and mean LOD values for the four target species with 
95% confidence intervals in parentheses. The LOD is the three-replicate LOD calculated from 
Klymus et al. (2020).

TA B L E  2  Quantitative polymerase 
chain reaction (qPCR) efficiency, r2, and 
limits of detection (LOD) for the four 
target species.
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calculated the Bayesian p-value (Kéry & Schaub,  2012) to assess 
goodness-of-fit. All covariates included in the model had variance 
inflation factors below 2, suggesting no evidence of multicollinearity 
(Fieberg, 2024; Zuur et al., 2009). We made inferences on covariate 
effect sizes based on the posterior mean and 80% Bayesian credible 
intervals (BCIs). We plotted these effects over the observed range 
of covariate values while holding other covariates at their mean and 
setting random effects to zero. Further, we used the mean poste-
rior eDNA detection probability in a water sample (ρ) to calculate 
the number of water samples required to detect a species given its 
presence.

where we used α equal to 0.95 (McArdle, 1990). All modelling was 
done in R version 4.1.2 (R Core Team, 2021) and visualisations were 
made using ggplot2 (Wickham,  2016). All data and code are stored 
at the Data Repository for the University of Minnesota (Rounds 
et al., 2023).

3  |  RESULTS

We detected common carp eDNA in 13 of the 20 lakes sampled, 
rusty crayfish eDNA in 15 of the 20 lakes, spiny waterflea eDNA in 
two of 20 lakes, and zebra mussel eDNA in 10 of 20 lakes. The eDNA 
of all four species was detected in at least one lake where they were 
previously unknown to occur. Common carp eDNA was detected in 
four lakes where they were not known to occur with an average of 
6.5 positive qPCR replicates in each new lake detected of 150 qPCR 
replicates possible (five sampling events × 10 samples × three qPCR 
replicates). Rusty crayfish eDNA was detected in nine lakes where 
they were not known to occur with an average of 4.75 positive qPCR 
replicates in each new lake detected of 150 qPCR replicates pos-
sible. Spiny waterflea eDNA was detected in one lake where they 
were not known to occur with three positive qPCR replicates of 150 
possible, and zebra mussel eDNA was detected in one lake where 
they were not known to occur with two positive qPCR replicates 
of 150 qPCR replicates possible. In lakes where AIS were known to 
occur based on previous surveys, we failed to detect the eDNA of 
common carp in one lake, rusty crayfish in two lakes, spiny water-
flea in six lakes, and zebra mussels in three lakes. We excluded all 
samples from lake visits that had field or lab blank contamination. 
This eliminated samples from one lake visit for common carp (1% 
contaminated; lab blank), two lake visits for rusty crayfish (2% con-
taminated; both field blanks), one lake visit for spiny waterflea (1% 
contaminated; lab blank), and eight lake visits for zebra mussels (8% 
contaminated; four lab and four field blanks).

3.1  |  Occupancy model results

Our model converged, and goodness-of-fit tests indicated no dis-
cernible problems (Bayesian p-value = 0.15). Based on posterior 

distributions, detection probabilities varied among sites within a 
lake to a greater extent than they varied among lakes (Appendix S1: 
Figure S1). However, detection probabilities varied among species to 
the greatest extent.

Environmental DNA detection probability decreased through-
out the open-water season for common carp, peaked near August–
September for rusty crayfish, and peaked in July–August for spiny 
waterflea and zebra mussels (Figure  2a). Zebra mussel eDNA was 
most detectable throughout the open water season compared to 
other species and required six samples (80% BCI: 3–12 samples) for 
a 95% probability of detection at peak detectability. Environmental 
DNA detection probability for spiny waterflea was consistently the 
lowest (below 0.02). The optimal time to sample to detect all four 
species using eDNA was therefore determined by the detection 
probability of spiny waterflea and occurred in July–August, requiring 
160 samples for a 95% probability of detection (Figure 2b). The best-
case scenario (10% credible interval) for eDNA detection probabil-
ity for spiny waterflea during this period was 67 samples, while the 
worst-case scenario (the 90% credible interval) was 1,616 samples.

Environmental DNA detection probability generally increased 
with increasing water clarity (Figure 3a), but water clarity negatively 
affected eDNA detection probability of common carp (Figure  4). 
Similarly, the percentage of the water column mixed increased the 
eDNA detection probability for three of the four species, but again 
the effect was negative for common carp, and the 80% BCI over-
lapped zero for common carp and rusty crayfish (Figures 3c and 4). 
Sampling site depth had a negative effect on the eDNA detection 
probability for all four species (Figure  3e), but the 80% BCI over-
lapped zero for spiny waterflea (Figure 4). Our estimates of species-
specific covariates of eDNA detection had variability not represented 
in Figure 3; for graphical estimates of variability see Figure 4.

4  |  DISCUSSION

We sampled eDNA from 20 lakes, five different times throughout 
the open water season resulting in a total of 1,000 water samples 
to determine factors influencing the detection probability of four 
common AIS. Environmental effects (clarity, site depth, and lake 
mixing) on eDNA detection probabilities were species-specific. 
The Julian date strongly affected eDNA detection probabilities, 
with different species showing different patterns of peak eDNA 
detectability. The common carp eDNA detection probability de-
creased throughout the year, whereas rusty crayfish eDNA de-
tection probability peaked in late summer and early autumn, and 
spiny waterflea and zebra mussels eDNA detection probability 
peaked in mid-summer. For our suite of species, optimal sampling 
timing and effort is driven by the hardest-to-detect species, spiny 
waterflea, and we suggest an effort of 160 field samples in July–
August to achieve a 95% detection probability of all four species 
(80% BCI: 67–1,616 samples). Excluding spiny waterflea decreases 
the required effort substantially and changes the optimal timing of 
eDNA sampling (optimal timing in between June and July with an 

(4)N = log(1 − �)∕ log(1 − �)

 13652427, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fw

b.14320 by N
anjing Institution O

f G
eo, W

iley O
nline L

ibrary on [18/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1486  |    ROUNDS et al.

effort of 57 samples for a 95% probability of detection; 80% BCI: 
31–154 samples).

Our results indicate that different species have distinct peri-
ods of peak detectability by eDNA sampling, and species gener-
ally followed our hypotheses about the seasonality of detections 
(Figures  1b and 2a). Common carp detectability with eDNA de-
creased over the season, following our expectations that detectabil-
ity would decrease after spring spawning (Figure 2a). It is possible 
that common carp detection probability was greatest in the spring 
due to large spring spawning events (Bajer & Sorensen, 2010; Banet 
et al., 2022). For rusty crayfish, the role of seasonality effects were 
less pronounced (Figure 2a). However, it is likely that peak detect-
ability during the summer–autumn months can be attributed to a 
combination of increases in crayfish density, activity, and the onset 
of ovigery (Kvistad et al., 2021, 2023; Somers & Green, 1993). We 
found that spiny waterflea eDNA was the most difficult to detect. 
Similar to Walsh et  al.  (2019), we found peak (albeit still low) de-
tection probability of spiny waterflea eDNA during July–August. 
Previous research has found that zebra mussel eDNA detections are 
greatest in mid-summer (Sepulveda et al., 2019) and probably relate 
to the release of veligers (Haag & Garton, 1992). Our results indicate 
that zebra mussel eDNA is highly detectable in mid-summer but de-
creases markedly in spring and autumn.

Multiple studies have documented that eDNA detectabil-
ity can vary seasonally or with life history events for target taxa 
(Dunn et al., 2017; Takahashi et al., 2018; Takeuchi et al., 2019), 
but few have evaluated seasonal eDNA detectability between 

multiple species (Collins et  al.,  2022; de Souza et  al.,  2016; 
Erickson et  al.,  2017) or integrated this seasonality into sam-
pling recommendations for multi-species communities of AIS. In 
our case, optimal sampling for eDNA surveillance of AIS was de-
termined by the hardest-to-detect species, the spiny waterflea. 
However, different managers or policymakers could have dif-
ferent priorities for monitoring that might omit this species, and 
our other three focal taxa evidence tradeoffs in sampling design 
dependent on species-specific eDNA detectability by season. For 
example, if sampling in mid-July, zebra mussel eDNA could be de-
tected with high confidence (95%) using only six samples per lake 
(80% BCI: 3–11 samples) and rusty crayfish eDNA could be de-
tected with only 40 samples per lake (80% BCI: 21–106 samples), 
but common carp would require 75 samples per lake (80% BCI: 
39–239 samples). Conversely, if common carp was the highest pri-
ority species for an AIS monitoring programme, eDNA sampling in 
early May would detect this species with high confidence (95%) 
with only 32 sample per lake (80% BCI: 17–93 samples), but zebra 
mussel would require 177 samples per lake (80% BCI: 81–548 
samples) and rusty crayfish would require 188 samples per lake 
(80% BCI: 97–600 samples). Accordingly, eDNA sampling will re-
quire choices by researchers or managers to scale their sampling 
effort to seasonal detectability of their highest priority species, 
while recognising that this will result in some lower priority or sec-
ondary species being less detectable. These trade-offs should be 
considered when repurposing stored eDNA samples for secondary 
taxa (e.g., Dysthe et al., 2018), and will be even more acute when 

F I G U R E  2  Seasonal trends in environmental DNA detection probability per water sample (a) and number of environmental DNA water 
samples required to have a 95% probability of detecting a species given its presence on the log scale (b). Shaded bands indicate 80% credible 
intervals. Shaded bands and lines are evaluated for predicted effects when other covariates are at their mean and random effects for lake 
and site are set to zero.
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monitoring entire communities with eDNA metabarcoding be-
cause this method is generally less sensitive to organism presence 
at low abundance than single-species approaches such as qPCR 
(Blackman et al., 2020; Deiner et al., 2017; Moss et al., 2022). We 
encourage users of eDNA to consider phenology or seasonality of 
focal taxa as explanations for inferred false negatives along with 
more common attribution to laboratory or field methodologies 
(Burian et al., 2021; Jerde, 2021; Rees et al., 2014).

To control the impacts of environmental factors on detection 
probability, we included three environmental covariates in our 
occupancy model that we hypothesised would influence detec-
tion probability: water clarity, stratification status, and sampling 

depth. Environmental DNA detectability for rusty crayfish and 
zebra mussels increased with increasing water clarity, but the 
credible intervals overlapped zero for common carp and spiny wa-
terflea. Previous research has shown detection probabilities can 
be higher in clearer lakes (Dougherty et al., 2016), probably due to 
a lower amount of PCR inhibitory substances such as humic acids 
(Stoeckle et  al.,  2017), for which we did not test. Counteracting 
this effect, water clarity might negatively affect eDNA detection 
probability due to the DNA degradation effects of UV radiation 
(Kessler et  al.,  2020; Strickler et  al.,  2015), but the importance 
of this phenomenon has been contested in natural conditions 
(Mächler et  al.,  2018). The percentage of a lake's water column 

F I G U R E  3  Trends of environmental DNA detection probability over water clarity (a), percentage of water column mixed (c) and sampling 
site depth (e), and the number of environmental DNA water samples required to have a 95% probability of detecting a species given its 
presence for the range of covariate values (b, d, f). Lines shown indicate effects when other covariates are at their mean and random effects 
for lake and sampling site are set to zero.
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that was within 1°C from the surface increased eDNA detection 
probability, indicating that detections were more likely when 
lakes were well mixed. Previous work has shown lake mixing can 
increase the amount of DNA collected from hypolimnetic organ-
isms with surface water sampling (Klobucar et al., 2017; Littlefair 
et al., 2021). Interestingly, the effect of mixing was more certain 
for the organisms with a planktonic life stage (spiny waterflea and 
zebra mussels; 80% BCI do not overlap zero) than for organisms 
without planktonic stages (common carp and rusty crayfish; 80% 
BCI overlap zero; Figure  4). Detection probability decreased as 
sampling site depth increased, similar to previous work showing 
a weak negative effect of sampling depth in small lakes on plant 
eDNA diversity metrics (Drummond et  al.,  2021). Depth did not 
influence detection probability of spiny waterflea, a result that 
makes sense given that the species is pelagic throughout its life.

Environmental DNA was well suited for detecting most species in 
our study, although it was least effective for spiny waterflea, which 
went undetected with eDNA in six lakes where it was thought to 
exist. However, we relied on previous traditional surveys to help us 
understand the occupancy status of our study lakes. The eDNA and 
traditional surveys were mismatched in time and could have resulted 
in prior positive detections that failed to establish or that were at 
an invasion stage when the species were more abundant and thus 
more detectable using traditional methods (Strayer et al., 2017). In 
total, using eDNA we missed 11 AIS infestations where they were 

presumed to exist but documented 15 cases of eDNA detections at 
lakes where AIS had not been previously detected. We believe this 
highlights the sensitive nature of eDNA as well as its utility as a rapid 
detection tool for new AIS infestations. We suggest that to verify 
a lake has been invaded, eDNA detections of new invasives should 
also be paired with targeted sampling to collect voucher specimens 
(Beng & Corlett, 2020; Sepulveda et al., 2023).

We estimated strong seasonal and environmental effects on 
eDNA detection rates despite methodological choices that may 
have reduced the detectability of our organisms. Detectability of 
our species might have been higher if we filtered larger volumes 
of water (Hunter et  al.,  2019), had not prefiltered our samples (Li 
et al., 2018), or used alternative extraction methods that might re-
cover higher eDNA yields (García et  al.,  2024; Hinlo et  al.,  2017; 
Renshaw et al., 2015). Further, our study was also limited by a mod-
erate rate of contamination for zebra mussel (Hutchins et al., 2022; 
Sepulveda et al., 2020). However, we anticipate that our results are 
robust to these limitations. First, we believe that seasonal differ-
ences in detectability would persist between our four focal species 
even if overall eDNA detectability was improved by different labora-
tory or field methods, as our findings were consistent with the biol-
ogy and life history of the focal species and past studies of individual 
taxa (Dunn et al., 2017; Sepulveda et al., 2019; Walsh et al., 2019). 
The number of samples required to detect spiny waterflea eDNA 
with high confidence, for example, might be reduced with alternative 
methods, but we anticipate that common carp eDNA would remain 
more detectable than this species in the spring or early summer by 
these same methods. Second, our low level of field and lab contam-
ination was not structured by season, indicating little impact on the 
results of seasonal timing of sampling. Researchers should continue 
to work to optimise laboratory and field methods that improve sensi-
tivity of eDNA approaches to organism occupancy, especially at low 
relative abundances, while being mindful that environmental and bi-
ological factors may still constrain the benefits of this optimisation 
(Barnes & Turner, 2016).

Conventional methods for multi-species surveillance at a land-
scape scale are difficult and costly (Borrell et  al.,  2017; Evans, Li, 
et al., 2017), which inhibits AIS management over large areas. This 
difficulty manifests in AIS early detection. For example, more than 
850 waterbodies in Minnesota are designated as infested with one 
or more AIS (MN DNR list of infested waters, April 2023). However, 
this number is almost certainly a gross underestimate due to a lack 
of statistically valid sampling across the landscape of lakes (Latzka 
et al., 2016). Environmental DNA may allow for an efficient moni-
toring network facilitating both sampling across a landscape of lakes 
and standardised monitoring that is infeasible with traditional meth-
ods (Jeremy et al., 2015; King et al., 2022), especially if timed to co-
incide with life history events that increase probability of detection. 
Based on our multi-lake, multi-species sampling effort, we found 
the probability of eDNA detection follows species-specific trends. 
By randomly surveying a larger sample of lakes, without regard to 
known infestation status, our sampling and modelling approaches 
could be readily adapted to estimate infestation probabilities (i.e., 

F I G U R E  4  Covariate effect sizes for the environmental DNA 
detection probability of all species. The point represents the 
median covariate effect for each species-covariate combination. 
The thick bars represent 80% Bayesian credible interval and the 
thin bars represent 95% Bayesian credible interval for each species-
covariate combination. The label CC is used for the covariate 
effects for common carp, RC corresponds to rusty crayfish, SWF 
denotes spiny waterflea, and ZM is zebra mussel.
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occupancy) across broader landscapes ultimately resulting in more 
effective multi-species monitoring and AIS management.
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