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A B S T R A C T

Quantitative estimation is a key and challenging issue in water quality monitoring. Remote sensing technology
has increasingly demonstrated its potential to address these challenges. Remote sensing imagery, combined with
retrieval algorithms such as empirical band ratio methods, analytical bio-optical models, and semi-empirical
three-band models, enables efficient, large-scale, real-time acquisition of water quality distribution character-
istics, overcoming the limitations of traditional monitoring methods. Furthermore, artificial intelligence (AI),
with its powerful autonomous learning capabilities and ability to solve complex problems, can deal with the
nonlinear relationships between different spectral bands’ apparent optical properties and various water quality
parameter concentrations. This review provides a comprehensive overview of remote sensing applications in
retrieving concentrations of nine water quality parameters, ranging from traditional methods to AI-based ap-
proaches. These parameters include chlorophyll-a (Chl-a), phycocyanin (PC), total suspended matter (TSM),
colored dissolved organic matter (CDOM) and five non-optically active constituents (NOACs). Finally, it discusses
five major issues that need further research in the application of remote sensing technology and AI in water
quality monitoring. This review aims to provide researchers and relevant management departments with a po-
tential roadmap and information support for innovative exploration in automated and intelligent water quality
remote sensing monitoring.

1. Introduction

Inland water bodies, including rivers, lakes, and reservoirs, play vital
roles such as flood control, irrigation, and climate regulation, and they
are important components of terrestrial ecosystems (Tian et al., 2023).
These water bodies are sensitive to human activities and climate change.
Under the context of global warming, external pollution due to excessive
use of agricultural pesticides and fertilizers, and improper discharge of
industrial wastewater, has led to severe pollution in inland water bodies.
This includes organic and inorganic pollution and frequent occurrences
of eutrophication and blue-green algae blooms (Ho et al., 2019). Water
quality parameters are key indicators of the ecological environment of
water bodies, reflecting the quality level and changing trends of the
water environment. The decline in the water quality of inland water
bodies threatens normal human production, life, and sustainable
development (Fang et al., 2022). Therefore, monitoring the spatiotem-
poral changes in water quality has gradually attracted attention, making

water quality monitoring an essential part of water environment man-
agement. It is crucial for the timely detection, tracing, and containment
of water pollution (Niu et al., 2021).
Traditional water quality monitoring involves: a) on-site sample

collection with lab analysis, which is accurate but time-consuming and
costly; b) rapid on-site testing, which is efficient but measures fewer
parameters with lower precision; and c) automatic monitoring stations,
which provide continuous data but are expensive and have limited
coverage. These methods make comprehensive spatiotemporal water
quality monitoring challenging for regulatory agencies (Chawla et al.,
2020).
Remote sensing provides cost-effective, large-scale water quality

monitoring with high temporal coverage and reasonable accuracy. It
captures spatial and dynamic changes, detects pollutants, and supports
real-time monitoring. Although many satellite sensors, such as earth
resources satellites like Landsat, SPOT, SeaWiFS, Terra and Aqua/
MODIS, and ENVISAT/MERIS, and geostationary satellites as GOCI, are
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designed for ocean or land observation, many studies have already
applied them to inland water bodies. However, remote sensing of inland
water bodies faces challenges such as optical complexity, satellite sensor
limitations, and atmospheric correction accuracy. Thus, promoting the
understanding and application of remote sensing for inland water
quality monitoring is essential.
Previous research on water quality monitoring have focused on

perfecting the retrieval of remote sensing reflectance to more accurately
estimate OACs (Ouma et al., 2020), including chlorophyll-a (Chl-a) (Li
et al., 2021), total suspended matter (TSM) (Fu et al., 2022), and colored
dissolved organic matter (CDOM) (Xu et al., 2018). Efforts, such as
improving the quality of atmospheric correction algorithms, cloud
detection and glint removal algorithms (Duan et al., 2020; Sun et al.,
2017), establishing the open data policy for accessing satellite images
and providing customizable algorithms based on users’ application
needs, have greatly promoted the application of remote sensing tech-
nology in the field of water quality monitoring. Besides these, key water
quality parameters related to eutrophication, such as total nitrogen
(TN), total phosphorus (TP), dissolved oxygen (DO), chemical oxygen
demand (COD), and biochemical oxygen demand (BOD), are not opti-
cally active. Despite this, numerous studies have explored the correla-
tion between OACs and NOACs to estimate NOACs indirectly through
model construction (Cai et al., 2023). However, these models are limited
by the weak correlation between OACs and NOACs and the variability of
this relationship across spatial and temporal scales, which hampers the
generalizability of the algorithms (Cao et al., 2021). Traditional
retrieval methods for OACs and NOACs—empirical,
semi-empirical/semi-nalytical, and analytical—struggle with capturing
nonlinear relationships, facing challenges in accuracy, generalizability,
and complexity.
In recent years, advancements in computer science have made arti-

ficial intelligence (AI) a research hotspot, revitalizing fields such as
natural language processing, facial recognition, medical imaging,
pedestrian re-identification, and autonomous driving (Zhu et al., 2017).
We are now in an era characterized by massive remote sensing data from
satellites, drones, and other devices, with datasets that have varying
imaging methods and spatiotemporal resolutions. AI has unique ad-
vantages in solving complex nonlinear problems due to its ability for
continuous learning and model correction without a fixed framework.
Beyond constructing water quality parameter retrieval models, AI also
offers new possibilities for multi-source remote sensing data fusion,
which is crucial for improving temporal, spatial, and spectral resolution,
thereby providing higher-quality water quality monitoring data. The
application of AI and remote sensing technology enables efficient,
large-scale, and continuous water quality monitoring, providing strong
support for eutrophication assessment (Li et al., 2023; Zhang et al.,
2024).
Currently, few review articles address the synergistic application of

remote sensing technology and AI in water quality monitoring. Most
previous works have focused on remote sensing data and retrieval
methods, briefly summarizing the application of AI-based methods in
constructing water quality parameter retrieval models (Wasehun et al.,
2024), or assessing only a few water quality parameters (Cao et al.,
2022). This article comprehensively analyzes the retrieval of nine water
quality parameters, including both OACs and NOACs. It reviews tradi-
tional retrieval models, including empirical, analytical, semi-empirical,
and semi-analytical approaches, with a particular focus on recent ad-
vancements in Al-based retrieval techniques. The limitations and
adaptability of AI are discussed as well. Additionally, it explores the
challenges, future trends, and potential of the application of AI and
remote sensing technology in inland water quality monitoring.

2. Data sources from sensors

Based on the type of platform on which they are situated, observing
sensors can be divided into two major categories: airborne sensors and

satellite sensors. The performance of sensors is fundamental to the
application of remote sensing technology in water quality monitoring
(refer to SI Section 1 for a detailed description of the data sources from
sensors).

3. Preprocessing of remote sensing data

Remote sensing images are often limited by spatial resolution,
radiometric resolution, and spectrum. Therefore, preprocessing is
crucial. This includes radiometric calibration, atmospheric correction,
water body extraction, and statistical analysis to determine the distri-
bution characteristics of water quality parameters. Intelligent identifi-
cation and extraction of water bodies is essential for long-term analytical
studies that require accurate extraction of water bodies. Integrating
multi-source remote sensing data fusion with AI enhances resolution in
temporal, spatial, and spectral dimensions, providing robust data sup-
port for inland water quality monitoring.

3.1. Water body extraction

Water body extraction is based on the principle that water is
significantly less reflective in the infrared channel than other land types.
Intelligent iterations of water body extraction methods provide a more
convenient means of studying various water bodies over long time series
(refer to SI Section 2 for a detailed description of the methods).

3.2. Fusion of multi-source remote sensing data

Multi-source remote sensing data includes data recorded by different
sensors, as well as data obtained by the same sensor across different
spectral bands. The intelligent iteration of multi-source remote sensing
data fusion techniques offers a viable research direction to mitigate the
limitations of a single data source, overcome constraints in temporal,
spatial, and spectral resolution, and improve the accuracy of water
quality predictions (refer to SI Section 3 for a detailed description of the
techniques).

4. Retrieval of water quality parameters

The principle of water quality monitoring via remote sensing links
spectral information from water components to quality parameters,
divided into OACs like Chl-a, TSM, and CDOM, and NOACs like DO,
COD, BOD, and TN. OACs interact with light through absorption,
refraction, and scattering, whereas NOACs lack significant optical
properties and cannot be directly measured via spectral methods.
Common retrieval methods include analytical/semi-analytical, empir-
ical/semi-empirical, and AI-based methods.
The analytical/semi-analytical method, based on bio-optical models

and water radiative transfer theory, is highly interpretable but requires
optical parameters for different regions and seasons, which limits its
practical use. The empirical method is simple, establishing statistical
relationships between spectral data and water quality, but it lacks
physical interpretability and generalizability across regions. The semi-
empirical method combines analytical and empirical approaches,
improving generalizability and interpretability, but still requires syn-
chronous data for calibration and is limited to the retrieval of OACs. The
AI-based method, handles complex, nonlinear data effectively,
providing robust predictions, though it requires extensive data and face
challenges in interpretability.
Most of current research focuses on OACs, but significant progress

has been made in retrieving NOACs. Although the indirect retrieval of
NOACs has limitations, studies on the estimation of NOACs still hold
certain application scenarios and value. This article precisely in-
vestigates common methods and models for retrieving the concentra-
tions of nine water quality parameters. Sections 4.1-4.5 respectively
cover Chl-a, phycocyanin (PC), TSM, CDOM, and NOACs (including DO,
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COD, BOD, TN, and TP).

4.1. Chlorophyll–a (Chl-a)

Although other indicators are also used to monitor algal blooms
(Binding et al., 2021; Legleiter et al., 2022; Liu et al., 2022; Richard and
Michelle, 2005), chlorophyll–a remains the most primary indicator for
this purpose. Additionally, the concentration of Chl-a in water is an
important indicator for assessing the degree of eutrophication. Effective
monitoring of chlorophyll-a helps prevent further deterioration of water
quality (Andrade et al., 2019).
Chlorophyll-a has absorption peaks in the 430–700 nm. Algal sub-

stances in the water show absorption peaks in the blue-violet band
(around 440 nm) and the red band (around 675 nm). Thus, water bodies
with high chlorophyll-a concentrations will exhibit troughs in their
reflectance curves at these wavelengths due to the strong absorption of
chlorophyll-a. Meanwhile, high Chl-a concentrations result in a signifi-
cant reflectance peak around 700 nm in the near-infrared. An increase in
the concentration of Chl-a leads to a decrease in the spectral response at
short wavelengths, particularly in the blue band (George, 1997).
Analyzing these spectral characteristics allows for accurate remote
sensing retrieval of Chl-a concentrations in water bodies.
Traditional retrieval methods include empirical, semi-empirical/

semi-analytical, and analytical methods. Table 1 provides a detailed
summary of the retrieval methods for Chl-a in the water, including the
application and accuracy of their models.
The analytical method originates from Gordon et al.’s bio-optical

algorithm in 1975 (Gordon et al., 1975). Subsequent studies have
made several improvements to this, such as Lee et al.’s Quasi-Analytical
Algorithm (QAA) for type II water bodies (Lee et al., 2002) and the
application of bio-optical models in inland waters. Giardino et al. (2007)
obtained Chl-a concentration data in Lake Garda within 3 h of Hyperion
satellite imaging using in-situ water samples based on the analytical
method ISO 10260-E (1992). Based on optical parameters provided by
Matthews (2011), they established a bio-optical model. They compared
the subsurface irradiance reflectance R(0-, λ) measured using a PR-650
spectroradiometer with those simulated by the bio-optical model to
verify the model’s accuracy. With a sensitivity analysis applied to the
bio-optical model, they selected Hyperion bands, specifically binning
the 480–500 nm and 550–560 nm bands, to retrieve Chl-a concentra-
tion. The results were in good agreement with in situ point data con-
centrations measured in 8 pelagic stations, showing a correlation
coefficient (r) of 0.77, a RMSE of 0.36 mg/m3, and a bias of 0.12 mg/m3

(relative bias 6%). This demonstrates that remote sensing can support
relevant management applications for Lake Garda and other large sub-
alpine lakes. While effective, these models require extensive inherent
optical properties (IOPs) data, complicating their implementation and
limiting their validation in complex waters.
The main models of the empirical method include the widely used

two-band ratio model, which could reduce the impact of suspended
matter, yellow substances, and atmospheric reflection. For instance, the
ratio of near infrared (NIR) and red reflectance shows a strong corre-
lation with Chl-a concentration (Gurlin et al., 2011), with common
wavelengths around 700 nm and 670 nm (e.g., R708/R665(Gilerson et al.,
2010)). Additionally, the normalized difference chlorophyll index
(NDCI) model (Mishra and Mishra, 2012) and the single-band model
(George, 1997) are used to retrieve the chlorophyll-a concentration in
the water column. The single-band model typically selects wavelengths
centered on the reflectance peaks or absorption valleys in the reflectance
eigen-spectrum of Chl-a.
The empirical method has also undergone relevant iterations in the

past decade (Allan et al., 2015). Beck et al. (2016) conducted a study in a
temperate reservoir in southwestern Ohio using coincident VNIR CASI
hyperspectral aircraft imagery and intensive coincident surface obser-
vations (44 densely overlapping surface observations acquired at
400-meter grid spacing within 1 h of image acquisition). They compared

the performance of 10 existing models and 2 new models for retrieving
Chl-a. The results showed that NDCI was the most widely applicable
algorithm, performing well across all synthetic imaging systems, with
2BDA following. The performance of NDCI was best on CASI and the
synthesized WorldView-2/-3, Sentinel-2, and MERIS satellites, with R2

values ranging from 0.687 to 0.845. This confirms the strong potential of
NDCI for routine Chl-a estimation in smaller inland water bodies using
operational and future satellite systems.
The empirical method’s retrieval models are simple but heavily

reliant on actual sampling data, leading to regional limitations and a
lack of physical basis. To address these issues, semi-empirical/semi-
analytical models have been developed. Key models include the three-
band model, the four-band model, APPLE model (El-Alem et al.,
2012), and synthetic chlorophyll index (SCI) model (Shen et al., 2010).
Gitelson et al. (2008) first developed the three-band model for Chl-a,
later improved by Moses et al. (2009) and Gilerson et al. (2010) by
adding reflectance at 753 nm to account for suspended particles’ back-
scattering. Le et al. (2009) further improved it for turbid waters by
adding a fourth band in the NIR (730–780 nm) to minimize interference
from suspended particles and pure water absorption. The four-band
model outperformed the three-band model in Taihu Lake.
Semi-empirical/semi-analytical models aim to eliminate the influence of
suspended matter, yellow substances, backscattering, and pure water on
the Chl-a reflectance spectrum, thus maximizing the extraction of Chl-a
concentration. Both empirical and semi-empirical/semi-analytical
methods, however, still rely on field data, lacking strong physical
significance.
The above models have limitations in retrieval accuracy, general

applicability, fault tolerance, and computational complexity. With the
advancement of technology, AI has become widely used in scientific
fields. ML (machine learning), a branch of AI, avoids atmospheric
correction errors common in empirical and semi-analytical methods and
provides generalized models for retrieving Chl-a. ML algorithms such as
neural networks (Chen et al., 2022), support vector machine (SVM) (Li
et al., 2021), extreme gradient boosting (XGBoost) (Cao et al., 2020),
and random forest (RF) (Fang et al., 2024) have been introduced for
water quality parameter retrieval. These algorithms address nonlinear
optimization problems in complex water bodies, enhancing inversion
accuracy and generality (Park et al., 2015). For instance, Li et al. (2021)
collected 273 samples from 45 typical lakes in China between 2017 and
2019, and applied an SVM model for Chl-a retrieval, achieving better
results than linear regression (LR) and Catboost models. This suggests
that SVM is effective for large-scale monitoring, especially at medi-
um/low Chl-a levels. Pahlevan et al. (2020) proposed a mixed density
network (MDN) model for Chl-a inversion with Sentinel-2 MSI and
Sentinel-3 OLCI observations. The MDN, which learns covariances be-
tween target variables, improves performance by simultaneously
retrieving Chl-a, total suspended solids (TSS), IOPs, and other
parameters.
Current research on ML in ecological studies often relies on tradi-

tional algorithms, with limited use of advanced ones. Different water
bodies have unique optical characteristics, making a single algorithm
insufficient for accurate retrieval. To address this, an algorithm system
based on water body classification has been developed. Neil et al. (2019)
collected data from 185 water bodies and developed a dynamic
ensemble algorithm based on the water body classification standards
proposed by Spyrakos et al. (2018). This system considers spatiotem-
poral differences and optimizes parameters for each water body type,
improving retrieval accuracy by 25%, with a correlation coefficient of
0.89 and an average absolute error of 0.18 mg/m3. To address multi-
collinearity among feature bands, Zhang et al. (2022) proposed a feature
bands selection strategy (FD-FI) based on knee-point detection and
variance inflation factor (VIF) for retrieving Chl-a concentration. They
also introduced stacking model fusion technology, combining nine ML
algorithms to construct a MixModel, which showed superior general-
ization, stability, and sensitivity to extreme values of Chl-a compared to
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Table 1
Retrieval methods, models and the accuracy for Chl-a.

Retrieval Methods Retrieval Models Equation/ Algorithm Study Area Chl-a
Concentration
(mg/m3)

Sensor R2

(Number of
Samples)

RMSE
(mg/m3)

Reference

The empirical
method

Single-band model Chl − a = − 41.63 ∗ R560 + 6.91 Six lakes and ten tarns in the
English Lake District

1–70 Daedalus ATM r = 0.97
(N = 9)

/ (George,
1997)

Two-band ratio model Chl − a = 61.324 ∗
[
R− 1
665 ∗R708

]
− 37.94 The Taganrog Bay and the

Azov Sea, Russia
0.63–65.51 MERIS 0.97

(N = 8)
3.65 (Moses et al.,

2009)
Chl − a = [35.75 ∗ (R708/R665) − 19.30]1.124 Fremont State Lakes, USA 2–100 MERIS 0.96

(N = 85)
/ (Gilerson

et al., 2010)
Normalized difference
chlorophyll index
(NDCI) model

Chl − a = 14.039+ 86.115 ∗
[R708 − R665]
[R708 + R665]

+194.325 ∗
(
[R708 − R665]
[R708 + R665]

)2

Chesapeake Bay, Delaware
Bay, the river Mississippi Delta
region, and the Mobile Bay,
USA

1–60 MERIS 0.80
(N = 20)

1.89 (Mishra and
Mishra,
2012)

The semi-
analytical/
semi-empirical
method

Three-band model
(3BDM)

Chl − a = 232.29 ∗
(
R− 1
665 − R− 1

708
)
∗ R753 + 23.174 The Taganrog Bay and the

Azov Sea, Russia
0.63–65.51 MERIS 0.95

(N = 8)
5.02 (Moses et al.,

2009)

Chl − a =
{
113.36 ∗

[(
R− 1
665 − R− 1

708
)
∗ R753

]
+ 16.45

}1.124 Fremont State Lakes, USA 2–100 MERIS 0.96
(N = 85)

/ (Gilerson
et al., 2010)

Chl − a = 331.01 ∗
[
R− 1
684 − R− 1

690
]
∗ R718 + 14.609 The Pearl River Estuary, China 4.8–92.6 EO-1 Hyperion 0.95

(N = 16)
6.44 (Chen et al.,

2011)
Four-band model
(4BDM)

Chl − a = 0.0097
[
R− 1
662 − R− 1

693
]
∗
[
R− 1
740 − R− 1

705
]− 1

− 0.1268

Taihu Lake, China 4–158 Field
measurements

0.89
(N = 80)

9.74 (Le et al.,
2009)

APPLE model Chl − a = 8.5739 ∗ Exp(28.176 ∗ SI)SI = B2 ∗ [(B1 ∗B2) +
(B3 ∗B2) ∗B2]

Missisquoi Bay of Lake
Champlain, Lake Brome, Lake
William and Lake Nairne,
Canada

2.5–91,000 MERIS 0.93
(N = 51)

RMSEr=69% (El-Alem
et al., 2012)

Synthetic chlorophyll
index (SCI) model

Chl − aspring = 179378 ∗ SCI2 + 92.934 ∗ SCI+ 0.2736Chl −
asummer = 550383 ∗ SCI2 + 2769 ∗ SCI+ 4.3866SCI = Hchl − HΔ

Hchl = (0.74R681 + 0.26R620) − R665
HΔ = R620 − 0.5(R560 + R681)

The Changjiang Estuary, China Spr: 0.03–3.10
Sum:
0.88–31.50

MERIS Spr: 0.72
(N = 19)
Sum: 0.91
(N = 21)

Spr: 0.86
Sum: 2.87

(Shen et al.,
2010)

The analytical
method

Bio-optical model Bio-optical algorithms Lake Garda, Italy 1.30–2.16 Hyperion 0.59
(N = 8)

0.36 (Giardino
et al., 2007)

QAA-based model Quasi-Analytical Algorithm Waters around Baja California,
USA

0.03–30 / / / (Lee et al.,
2002)

The AI-based
method

Traditional machine
learning models

Back propagation (BP) neural network Middle and lower reaches of
the Hanjiang River, China

2.774–41.837 MODIS 0.99
(N = 5)

3.1462 (Chen et al.,
2022)

Support vector machine (SVM) 45 typical lakes across China 0–120.99 Sentinel-2 MSI 0.88
(N = 91)

6.28 (Li et al.,
2021)

Extreme gradient boosting tree (XGBoost) Lakes in the middle and lower
reach of Yangtze River and a
reach of Huai River, China

0.4–258.7 Landsat-8 OLI 0.79
(N = 102)

7.1 (Cao et al.,
2020)

Random forest (RF) 40 lakes across the Northeast
China

0.45–781.42 MODIS (a): 0.83
(N = 177)
(b): 0.77
(N = 665)
(c): 0.82
(N = 73)

(a): 2.19
(b): 4.57
(c): 6.31

(Fang et al.,
2024)

More advanced AI-
based models

FD-FI-MixModel Nansi Lake, China 10–70 Zhuhai-1
CMOS

0.8664
(N = 99)

5.7926 (Zhang et al.,
2022)

Dynamic ensemble algorithm 185 global inland and coastal
aquatic systems

0–1000 MERIS 0.79
(N = 2807)

0.25 (Neil et al.,
2019)

Note:
(1) In the equations,R665 refers to the remote sensing reflectance at a wavelength of 665 nanometers (nm). Similar expressions can be applied analogously.
(2) Bi represents the remote sensing reflectance of the ith band of the corresponding sensor.
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other models.

4.2. Phycocyanin (PC)

For a long time, research on cyanobacterial blooms in inland waters
has primarily used Chl-a concentration as an indicator of cyanobacterial
biomass. However, Chl-a is present in all eukaryotic algae and aquatic
vegetation. Phycocyanin (PC), the characteristic pigment of cyanobac-
teria, is unique to cyanobacteria and can accurately indicate their
biomass. PC absorbs and transfers light energy, appears bright blue, and
is an intracellular protein (Simis et al., 2012). Utilizing remote sensing
to monitor PC concentration offers an effective, large-scale, rapid, and
accurate strategy for monitoring cyanobacterial blooms.
Phycocyanin (PC) has a distinct absorption peak near 620 nm,

providing a basis for remote sensing monitoring. However, several
challenges limit the accuracy and application of PC retrieval. First, PC’s
absorption signal is weak, only 20% of that of Chl-a (Schalles and
Yacobi, 2000). Higher PC concentrations yield stronger remote sensing
signals, but in low-PC waters, especially oligotrophic ones, reliable
estimation models are hard to establish (Liu et al., 2018). Additionally,
PC signals are easily interfered with by other substances like Chl-a,
CDOM and TSM in turbid waters (Liu et al., 2018). Researchers have
developed empirical and semi-analytical methods to retrieve PC con-
centration based on absorption features between 615 and 630 nm
(Ogashawara et al., 2013). Table 2 lists the classic remote sensing
retrieval models for PC concentration that have been developed so far.
In the empirical method, two-band ratio models are commonly used

to eliminate interference factors like atmospheric effects. Commonly
used ratios are, for example, R710/R620(Hunter et al., 2008), R709
/R620(Kwon et al., 2020). Based on Sentinel-2 MSI imagery data,
Sòria-Perpinyà et al. (Sòria-Perpinyà et al., 2020) collected 76 geore-
ferenced PC concentration (measured by 3D spectrofluorimetry) sam-
ples at 0.2 m depth from seven different points in the Albufera of
Valencia (Eastern Iberian Peninsula) spanning two years. They selected
the 21 samples for calibration and the remaining 55 for method vali-
dation. They successfully developed a two-band ratio retrieval model
with the ratioR740/R665, achieving a validation accuracy with
R2 = 0.775, and RMSE% = 40%. This study provides a concise and
efficient PC retrieval algorithm for Sentinel-2, but the algorithm still
requires calibration before being applied to other lakes. The baseline
model proposed by Dekker (1993) is another frequently used method.
Castagna et al. (2020) developed the Orange Contra-band Algorithm
model based on Dekker’s baseline model to eliminate the effects of
particle scattering. Recent studies by Sun et al. (2015) and Jin et al.
(2017) constructed multiple band (or band ratio) linear regression
models for waters, achieving high accuracy.
The empirical method does not consider the optical radiation prin-

ciples of PC, thus having certain spatial limitations. So researchers have
proposed the semi-analytical method. These methods include three-
band models, four-band models, nested band ratio models, and deriva-
tive algorithmmodel (spectral shape algorithm-based model). Models of
the semi-analytical method mainly aim to solve the issues of atmo-
spheric correction, decomposition of PC absorption at 620 nm, and
insufficient spectral resolution.
The nested band ratio model, developed by Simis et al. (2005), iso-

lates PC absorption by removing Chl-a contributions, achieving high
accuracy within specific study areas but larger errors elsewhere. Vari-
ants of this model have been widely used for PC retrieval in various
regions (Chawira et al., 2013). The derivative model, or spectral shape
algorithm (SS(λ)), was proposed by Wynne et al. (2008). Qi et al. (2014)
modified the spectral shape algorithm, referred to as the PCI index,
achieving good accuracy in Lake Taihu. Initially designed for Chl-a
retrieval, the three-band and four-band models were adapted for PC
by modifying the absorption bands. Hunter et al. (2010) introduced the
three-band model for PC retrieval, achieving high accuracy. Le et al.
(2011) adapted the four-band model for PC in Taihu Lake, achieving

high accuracy (R2=0.86, RMSE=6.8 μg⋅L− 1). Liu et al. (2018) improved
the four-band model as FBA_PC by separating the absorption spectra of
yellow substances and other phytoplankton pigments from that of PC.
Using PC concentration data from seven water bodies in China, the
United States, and the Netherlands, along with in situ spectral data
simulating the MERIS and Sentinel-3 OLCI bands, they calibrated and
validated the model with 215 samples respectively. The model achieved
satisfactory validation results with R2 = 0.730 and RMSE= 27.691
mg⋅m-3. It performed better than the band ratio model, the three-band
model, and the PCI index model, demonstrating robustness when
applied to a wider range of water bodies.
The complex optical absorption and scattering characteristics of

substances in water bodies, which defy simple linear relationships, have
driven the trend toward the AI-based method for retrieving PC. ML
models that have been widely used, including genetic algorithm (GA)
(Song et al., 2012a), SVM (Sun et al., 2013), artificial neural network
(ANN) (Park et al., 2017), RF (Beal et al., 2024). Further optimization of
these shallow ML models can address problems such as overfitting, high
dimensional data processing and local minima. Liu et al. (2023)
addressed the problem of local minima in the BP neural network (BPNN)
by optimizing BPNN using a particle swarm optimization algorithm
(PSO). They demonstrated that PSO-BPNN outperformed traditional
BPNN and support vector machine regression (SVR) in monitoring
low-concentration PC.
Deep learning, a powerful form of ML, excels with complex,

nonlinear, and redundant datasets. Pyo et al. (2019) constructed the
Point-centered regression convolutional neural network (PRCNN)model
based on hyperspectral images to accurately retrieve PC concentration,
demonstrating that convolutional neural network (CNN) regression has
the potential for high-precision detection and quantification of cyano-
bacteria. Yim et al. (2020) enhanced deep neural network (DNN) feature
learning with stacked autoencoders (SAE-DNN), outperforming DNNs
and band ratio models. Pyo et al. (2020) further showcased deep
learning’s potential with SAE for advanced feature extraction. However,
these models rely heavily on mathematical analysis and lack mecha-
nistic studies related to the IOPs and apparent optical properties (AOPs)
of water bodies.

4.3. Total suspended matter (TSM)

Suspended matter in inland water bodies includes inorganic sub-
stances (insoluble sediments, clay, minerals) and organic substances
(phytoplankton, plankton, plant and animal remains) (Schartau et al.,
2019). Changes in the concentration of suspended matter affect under-
water light distribution and aquatic plant light absorption (Dekker et al.,
2002). Thus, timely and accurate monitoring of suspended matter dy-
namics is crucial for effective water management and protection.
Changes in suspended matter concentration alter IOPs, which is the

theoretical basis for constructing TSM retrieval models. Reflectance
values at various wavelengths rise with increasing suspended matter
concentration. There is a reflection peak near 750 nm and an absorption
peak near 950 nm. However, as the suspended matter concentration
continues to increase, the peak reflectance values in the red and green
bands become saturated, the reflection peak exhibits a red shift (i.e.,
shifts to longer wavelengths), and the absorption peak shows a blue shift
(i.e., shifts to shorter wavelengths) (Dörnhöfer et al., 2018). Remote
sensing of TSM primarily uses reflectance changes in the red and NIR
bands. Traditional methods for retrieving TSM in inland water bodies
primarily include two types: the empirical/semi-empirical method and
the analytical/semi-analytical method. Table 3 provides a detailed
summary of the retrieval methods for TSM in the water column and the
application and accuracy of their models.
Based on the analytical method, Dekker et al. (2002) used a

bio-optical model to retrieve TSM in the Frisian Lakes of the
Netherlands. The analytical method, requiring many parameters and
default conditions, become semi-analytical when some empirical

Y. Sun et al. Water Research 267 (2024) 122546 

5 



Table 2
Retrieval methods, models and the accuracy for PC.

Retrieval
Methods

Retrieval Models Equation/ Algorithm Study Area PC
Concentration
(μg/L)

Sensor R2

(Number of
Samples)

RMSE
(μg/L)

Reference

The empirical
method

Two-band ratio
model

PC = 5.8281 ∗ (R709/R620) − 2.7126 The Daechung Reservoir,
South Korea

0.39–803.01 Drone-based
Hyperspectral

0.94
(N = 92)

/ (Kwon et al.,
2020)

PC = exp[2.6151 ∗ (R740 /R665) − 3.6369] Albufera of Valencia,
Spain

10–1287.96 Sentinel-2 MSI 0.775
(N = 55)

40%
(RMSE%)

(Sòria-Perpinyà
et al., 2020)

Baseline model PC = − 24.6+ 13686(0.5 ∗ (R(0− )600
+R(0− )648) − R(0− )624)

Vecht lakes area,
Netherlands

46–130 CASI 0.99
(N = 10)

2.34 (Dekker, 1993)

Orange Contra-
band Algorithm
model

PC∝Rorangers
Rorangers = 2.2861( ± 0.1303)Rpanrs
− 0.9467( ± 0.0611)Rgreenrs − 0.1989( ± 0.0712)Rredrs

Two lakes in the
Netherlands and seven
lakes in Belgium

0.01–329.41 Landsat-8 OLI /
(N = 428)

5.39%
(RMSE%)

(Castagna et al.,
2020)

Multi-band model Log10(PC) = K0 + K1 ∗ B1 + K2 ∗ B2 + K3 ∗ B3
+K4 ∗ B4 + K5(B4/B3) + K6(B4/B2) + K7(B4/B1)
+K8(B3/B2) + K9(B3/B1) + K10(B2/B1)

Lake Dianchi, China 77.6–754.9 Landsat 4 TM
Landsat 5 TM
Landsat 7 ETM+

Landsat 8 OLI

>0.97
(N = 14)

RMSE<10% (Sun et al., 2015)

PC = (89.1711 ∗ B5 − 262.292 ∗ B6 + 221.193 ∗ B7
− 1.7065 ∗ B8 − 26.1116 ∗ B9+0.363418) ∗ 100%

Lake Taihu and Lake
Chaohu, China

3.26–804.11 MERIS 0.72
(N = 41)

7.56 (Jin et al., 2017)

The semi-
analytical
method

Nested band ratio
model

PC = a(620)pc/a∗pc(620)
apc(620) = {[R709/R620] ∗ [aw(709) + bb]} − bb
− aw(620))δ− 1 − [ε ∗ achl(665)]

Missisquoi Bay, USA 4.1–105 Quick Bird
MERIS

0.68
(N = 16)

/ (Wheeler et al.,
2012)

Three-band
model

PC = 1.58+ 0.984
[
R− 1
615 − R− 1

600
]
∗ R725 Loch Leven and Esthwaite

Water, UK
5.74–93.7 CASI-2

AISA
0.98
(N = 15)

3.98 (Hunter et al.,
2010)

Four-band model
PC = 462.5 ∗ FBA PC+ 22.598FBA PC =

[
1

R620
−
0.4
R560

−
0.6
R709

]

R754
12 inland waters in the
United States, the
Netherlands, and China

0.327–317.74 Field
measurements

0.73
(N = 215)

27.691 (Liu et al., 2018)

Spectral shape
algorithm-based
model

PC = 3.87exp[1154 ∗ PCI(Rrs)]PCI = R6́20 − R620R6́20 = R560 +
620 − 560
665 − 560

∗ (R665 − R560)

Lake Taihu, China 1–300 MERIS 0.79
(N = 37)

58%
(RMSE%)

(Qi et al., 2014)

The AI-based
method

Traditional
machine learning
models

artificial neural network(ANN) Baekje Reservoir, South
Korea

0.2–147 AisaFENIX NSE=0.8
(N = 39)

/ (Park et al., 2017)

Random forest (RF) Lake Mendota, USA 0–5 Sentinel-2 MSI 0.69
(N = 41)

MAE=0.21 (Beal et al., 2024)

Coupling machine
learning models

PSO-BPNN QinZhou Bay, China 0.799–4.855 Sentinel-2 MSI 0.70
(N = 22)

0.615 (Liu et al., 2023)

Deep learning
models

DNN Waterbodies across the
States of Illinois and
Missouri, USA

0.1–9.34 Landsat 8 OLI
Sentinel-2 MSI

0.82
(N = 35)

0.43 (Sagan et al.,
2020)

Point-centered regression CNN (PRCNN) Baekje weir, South Korea 0.19—150.9 AISA 0.86
(N = 36)

9.39 (Pyo et al., 2019)

SAE-DNN Baekje Reservoir, South
Korea

0.02—280.87 AISA 0.87
(N = 61)

14.45 (Yim et al., 2020)

SAE-ANN Baekje Reservoir, South
Korea

0.19—146.9 AISA 0.83
(N = 86)

9.75 (Pyo et al., 2020)

Note: (1) In the equations,R665 refers to the remote sensing reflectance at a wavelength of 665 nanometers (nm). Similar expressions can be applied analogously. (2) Bi represents the remote sensing reflectance of the ith
band of the corresponding sensor. (3) R(0− )600 represents the subsurface irradiance reflectance at 600 nm. Similar expressions can be applied analogously.
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Table 3
Retrieval methods, models and the accuracy for TSM.

Retrieval Methods Retrieval Models Equation/ Algorithm Study Area TSM
Concentration
(mg/L)

Sensor R2

(Number of
Samples)

RMSE
(mg/L)

Reference

The empirical/semi-
empirical method

Single-band model TSM = 1.6543 ∗ exp(0.0034 ∗ Red) 423 lakes across China 0.04–2426.7 Landsat TM/
ETM+/OLI

0.76
(N = 212)

21.4 (Wen et al., 2022)

TSM = 9.65 ∗ exp(58.81 ∗ R645) Lake Taihu, China 13.9–301.3 MODIS 0.8
(N = 150)

14.0 (Shi et al., 2015)

TSM = 1.8035 ∗ exp(0.0039 ∗Red) Lakes across Inner
Mongolia, China

1.2–860 Landsat TM/OLI 0.82
(N = 33)

8.23 (Du et al., 2021)

TSMOLI = 6110.3 ∗ NIR − 1.8242
TSMETM+/TM = 4616.4 ∗ NIR − 4.362
TSMMSS = 4508.2 ∗ NIR − 4.4551

Dongting Lake, China 4–101 Landsat MSS;
TM/ETM+;
OLI

OLI:0.81
ETM+/
TM:0.82
MSS:0.82
(N = 20)

OLI:5.79
ETM+/
TM:7.01
MSS:12.21

(Zheng et al., 2015)

Multi-band model TSM = exp(15.4 ∗ [R645 − R1240]) + 1.99 Lake Hongze, China 10–80 MODIS 0.55
(N = 41)

7.64 (Cao et al., 2017)

TSM = 7234.4
(
Green ∗ Red

Blue

)2
− 146.46

Green ∗ Red
Blue

+8.0425

22 water bodies in
Songnen Plain, China

8.33–136 Landsat TM/
ETM+/OLI

0.66
(N = 38)

16.62 (Du et al., 2020)

TSM = − 44.97 ∗ R475 + 4.29 ∗ R560
+46.10 ∗ R660 + 0.33

Xin’anjing Reservoir,
China

0.67–5.11 HJ-1A/B 0.85
(N = 35)

0.53 (Zhang et al., 2019)

The analytical/
semi-analytical
method

Analytical model Bio-optical algorithms The Frisian lakes,
Netherlands

3–245 Landsat TM 0.99
(N = 22)

/ (Dekker et al., 2002)

Semi-analytical
model

A two-step, IOP-based model Hangzhou Bay and Lake
Taihu, China

2.4–695.2 GOCI 0.83
(N = 112)

43.1 (Zhang et al., 2018)

The AI-based
method

Traditional machine
learning models

Multilayer back propagation neural network
(MBPNN)

The Bohai Sea, Yellow Sea,
and East China Sea, China

0.6–350 MODIS 0.91
(N = 77)

MRE=31.88% (Chen et al., 2015)

Random forest (RF) 423 lakes across China 0.04–2426.7 Landsat TM/
ETM+/OLI

0.81
(N = 212)

16.39 (Wen et al., 2022)

Extreme gradient boosting (XGBoost) San Francisco Bay, USA 2–120 Sentinel-2 MSI 0.77
(N = 70)

6.1 (Niroumand-Jadidi and
Bovolo, 2022)

Extreme learning machine (ELM) Five lakes in Mexico 10–790 Landsat-8 OLI 0.91
(N = 14)

60.86 (Arias-Rodriguez et al.,
2021)

Coupling machine
learning models

PLS-PSO-BPNN Lower reaches of the
Haihe River, China

6–34 Gaofen-2 0.92
(N = 6)

3.05 (Guo et al., 2022)

LOOCV-XGBoost Poyang Lake, China 3.6–99.6 Landsat-8 OLI,
Sentinel-2 A/B

0.96
(N = 12)

MRE=12.79% (Fu et al., 2022)

GA-RF Nansi Lake in North China 4–54.8 EO-1 Hyperion 0.98
(N = 6)

1.715 (Liu et al., 2021)

Note: In the equations,R665 refers to the remote sensing reflectance at a wavelength of 665 nanometers (nm). Similar expressions can be applied analogously.
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parameters are used as approximations. Zhang et al. (2018) derived
absorption and backscattering coefficients of suspended matter from the
reflectance signals based on GOCI image data. They developed a
two-step, IOP-based model to retrieve TSM in Taihu Lake and Hangzhou
Bay, enhancing retrieval accuracy and applicability. The mechanistic
parameters of the analytical/semi-analytical method that is more
applicable, accurate and theoretically supported, still need to be further
explored and optimized.
Remote sensing retrieval of total suspended matter (TSM) is mainly

based on the empirical/semi-empirical method, including single-band
models and multi-band models. Single-band models, generally use the
red or NIR band to retrieve TSM concentration. Shi et al. (2015) found
the 645 nm band in MODIS-Aqua data correlated well with TSM con-
centration in Taihu Lake. Thereby, an exponential model was con-
structed to estimate the TSM in Taihu Lake from 2003 to 2013, analyzing
its annual and seasonal dynamics. Multi-band models, using statistical
regression, can improve predictions. Du et al. (2020) collected 142
water samples (sampling depth of 1 m) from 22 water bodies in the
Songnen Plain (China) during 2012 to 2015, and measured TSM con-
centrations using weighing method (Song et al., 2012b). They conducted
a Pearson correlation analysis between various band combinations from
Landsat TM/ETM+/OLI images and field-measured TSM concentra-
tions, finding that the combination of Green*Red/Blue best correlated
with TSM. Based on this finding, they established a power function
model using TSM data from 104 samples and corresponding remote
sensing data, achieving a validation accuracy with R2 = 0.66 and an
RMSE of 16.62 mg⋅L− 1 (N = 38). Using this empirical model, they then
retrieved the spatiotemporal variations in the annual average suspended
matter concentration in the lakes of the Songnen Plain from 1984 to
2018. This study confirms the effectiveness of a multiple regression
fitting model, using a combination of three bands as independent vari-
ables, in TSM retrieval.
Models of the Empirical/semi-empirical method, based on satellite

data and water optical properties, often suffer from regional and sea-
sonal specificity due to the spatial and temporal variability of optically
active substances. These models, usually simple linear functions,
struggle to capture complex relationships between water spectral char-
acteristics and water color elements. Recently, ML models such as neural
network (Chen et al., 2015), RF (Wen et al., 2022), XGBoost
(Niroumand-Jadidi and Bovolo, 2022), and extreme learning machines
(ELM) (Arias-Rodriguez et al., 2021) have been used for TSM retrieval.
These models can detect both linear and nonlinear interactions,
improving the identification of complex relationships (Chen et al.,
2021). Milad et al. (Niroumand-Jadidi and Bovolo, 2022) developed an
XGBoost model based on Sentinel-2 MSI images, showing high temporal
robustness compared to the optimal band ratio analysis (OBRA) model.
Leonardo F et al. (Arias-Rodriguez et al., 2021) proposed an ELM model
with Landsat-8 OLI images to retrieve TSM concentration in Lake Cuit-
zeo, Mexico’s second-largest lake, outperforming SVR and LR.
Researchers have also focused on optimizing traditional ML models.

Guo et al. (2022) improved the BPNN model by combining partial least
squares (PLS) with PSO, selecting wavelength factors that influence
water quality parameters as input data for the neural network model.
This method screened and reduced the dimensionality of large-band
combination raw data, optimizing the BPNN model and effectively
avoiding overfitting, enhancing retrieval accuracy from 9.50 mg/L to
4.04 mg/L. Fu et al. (2022) used multi-sensor images to assess a total of
OACs and NOACs of Poyang Lake in China. They developed a
leave-one-out cross validation (LOOCV) combined with GradientBoost
(LOOCV-GradientBoost) model. The residuals of the TSM retrieval re-
sults were only half of those obtained by ML (XGB, CatBoost, and Gra-
dientBoost) and ensemble machine learning (SEL) models, indicating
that LOOCV- GradientBoost was the best model for estimating a single
water quality parameter in this study. Using Hyperion hyperspectral
remote sensing data in Nansi Lake in North China, Liu et al. (2021)
developed a RFmodel based on genetic algorithm optimization (GA_RF).

The two parameters of optimal design are the number of features and the
number of decision trees were optimized by the genetic algorithm. Six
training-testing datasets (20 sample points for training and 6 for testing)
were random selected. The validation results showed that the GA-RF
model significantly outperformed seven other models, including LR,
BPNN, KNN, and RF, with R2 = 0.98, an RMSE of 1.715 mg⋅L− 1. This
study provides useful methods and recommendations for the quantita-
tive retrieval of TSM concentration in large shallow lakes.

4.4. Colored dissolved organic matter (CDOM)

Colored Dissolved Organic Matter (CDOM) consists of soluble,
colored organic substances in water bodies, including humic substances,
proteins, algal metabolic products, and other organic materials. It is a
significant component and the largest reservoir of Dissolved Organic
Carbon (DOC) in aquatic environments, appearing yellow and brown
(Zhang et al., 2021). CDOM reduces sunlight penetration, and at high
concentrations, its absorption overlaps with that of phytoplankton,
potentially inhibiting their photosynthesis and disrupting aquatic eco-
systems (Blough and Del Vecchio, 2002).
CDOM has unique spectral characteristics, with its absorption

spectra showing good consistency across studies. Within the range of
250–700 nm, the spectral absorption coefficient of CDOM decreases
exponentially with increasing wavelength. CDOM absorbs strongly in
the blue and ultraviolet wavelengths and weakly in the range of
500–700 nm, with minimal absorption (approaching zero) beyond 700
nm.
In general, the parametric equation for the wavelength dependence

of the absorption coefficient of CDOM in the visible band can be
expressed as a negative exponential function (Carder et al., 1989; Zhang
et al., 2007), as shown in Eq. (1):

aCDOM(λ) = aCDOM(λ0)exp[SCDOM(λ0 − λ)] (1)

Where λ0 is the wavelength of the selected reference band, aCDOM(λ) is
the absorption coefficient of CDOM at any wavelength (m− 1), and SCDOM
is the slope parameter of the CDOM absorption spectrum. To measure
the concentration of CDOM, it can be calculated directly or expressed as
an absorption coefficient. Due to the complexity of CDOM composition,
most studies use absorption coefficients to represent CDOM concentra-
tion. CDOM absorbs strongly in the ultraviolet and blue wavelength
bands. The absorption coefficients at wavelengths of 355 nm
(aCDOM(355)), 400 nm (aCDOM(400)), 420 nm (aCDOM(420)), and 440 nm
(aCDOM(440)) are usually chosen to express the concentration of CDOM
(Griffin et al., 2011; Zhu et al., 2014).Traditional methods for retrieving
inland CDOM include the empirical/semi-empirical method and the
semi-analytical method. Table 4 provides a detailed summary of the
retrieval methods for CDOM in the water column and the application
and accuracy of their models.
The widely used Quasi-Analytical Algorithm (QAA) model proposed

by Lee et al. (2002), which belongs to the semi-analytical method, re-
trieves the total absorption coefficients of CDOM and non-algal species.
Improved QAA-based models have since been applied to various water
bodies. For instance, Zhu et al. (2011) developed the QAA-E model for
better separation of CDOM and non-algae absorption coefficients. Dong
et al. (2013) proposed a method with three wavelength absorption co-
efficients (412, 443, and 490 nm). Wang et al. (2017) accumulated 144
matchup samples based on GOCI images and nine cruise campaigns
conducted in the Changjiang estuarine and coastal waters during 2011
and 2015, where CDOMwater samples were obtained by filtering with a
0.22 µm polycarbonate membrane under low vacuum conditions
immediately after sampling. They developed a new model (QAA_cj),
adjusting several submodule coefficients within the QAA model by
combining QAA_v6 (Zhongping, 2014) and QAA_CDOM (Zhu and Yu,
2013). This model can separate aCDOM(443) (the absorption coefficient
of CDOM) from adg (CDOM and non-pigmented particles absorption
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Table 4
Retrieval methods, models and the accuracy for CDOM.

Retrieval Methods Retrieval Models Equation/ Algorithm Study Area aCDOM(λ) or
Concentration

Sensor R2 (Number of
Samples)

RMSE (m− 1) or
(mg/L)

Reference

The empirical/
semi-empirical
method

Multi-band model aCDOM(420) =

2.8091 ∗ (R560/R665)− 2.341
46 lakes in Sweden aCDOM(420) =

0.14–12.24 m− 1
Sentinel-2 MSI 0.65

(N = 41)
3.48 (Al-Kharusi

et al., 2020)

aCDOM(440) = 2.70
(
R650
R480

)2
−

6.14
R650
R480

+ 4.19

Barra Bonita Reservoir, Brazil aCDOM(440) =

0.644–1.413 m− 1
Landsat-8 OLI 0.7

(N = 19)
10.65%
(RMSE)

(Alcântara
et al., 2016)

aCDOM(440) = 40.75 ∗ exp[ −
2.463 ∗(B3 /B4)]

Lake Huron, China aCDOM(440) =

0.11–8.46 m− 1
Landsat-8 OLI 0.95

(N = 15)
0.504 (Chen et al.,

2017)
Clean: aCDOM(355)=
0.6346 ∗(B5/B2)+ 1.0811
Turbid:aCDOM(355)=
0.417 ∗(B7/B8)+ 1.3039

Poyang Lake, China aCDOM(355) =

1.70–3.33 m− 1
Sentinel-2A MSI Clean:0.70

(N = 15)
Turbid:0.73
(N = 46)

Clean:0.24
Turbid:0.19

(Xu et al.,
2018)

The semi-
analytical
method

QAA-based model QAA-E model The Mississippi and Atchafalaya river plumes and
the northern Gulf of Mexico, USA

aCDOM(440) =

0.192–7.068 m− 1
EO-1 Hyperion 0.81

(N = 498)
0.458 (Zhu et al.,

2011)
QAA-3R model The Taiwan Strait and the South China Sea, China aCDOM(412) =

0.008–1.613 m− 1
MODIS 0.67

(N = 104)
0.222 (Dong et al.,

2013)
QAA_cj model The Changjiang estuarine and coastal waters, China aCDOM(443) =

0.029–0.65 m− 1
GOCI 0.90

(N = 43)
0.07 (Wang et al.,

2017)
The AI-based
method

Traditional
machine learning
models

Backpropagation (BP) neural
network

Lakes in the upper reaches of the Huai River, the
middle and lower reaches of the Yangtze River and
the Yunnan-Guizhou Plateau, China

aCDOM(254) =

2.64–34.04 m− 1
Landsat 8 OLI 0.75

(N = 408)
3.66 (Sun et al.,

2021)

Random forest (RF) Baekje Reservoir, South Korea aCDOM(355) =

2.1–11.0 m− 1
AisaFENIX
hyperspectral

0.85
(N = 22)

0.70 (Kim et al.,
2022)

Extreme gradient boosting
(XGBoost)

The Pearl River Estuary, China aCDOM(290) =

0–12 m− 1
Landsat-8 OLI 0.9

(N = 18)
0.37 (Huang et al.,

2023)
Coupling machine
learning models

PCA-extremely randomized trees
(ET)

The river Elbe, Germany Concentration =

0–46 ppbQS
Cubert UHD 285 0.95

(N = 562)
0.48 (Keller et al.,

2018)
GA-XGBoost 45 lakes in Estonia Concentration =

0.85–81 mg/L
Sentinel-2 MSI 0.94

(N = 21)
3.77 (Toming et al.,

2024)

Note:
(1) In the equations,R665 refers to the remote sensing reflectance at a wavelength of 665 nanometers (nm). Similar expressions can be applied analogously.
(2) Bi represents the remote sensing reflectance of the ith band of the corresponding sensor.
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coefficient). Validation results showed that QAA_cj achieved high ac-
curacy in estimating aCDOM(443), with an R2 of 0.90 and an RMSE of
0.07 m− 1 (N = 43). This study proposes an algorithm that is more
suitable for retrieving CDOM in highly turbid waters. The
semi-analytical method offers enhanced model generalizability and ac-
curacy due to its clear physical parameters. However, it requires precise
measurement of optical properties. Additionally, the Quasi-Analytical
Algorithm is limited by the spectral channels available on some satel-
lite remote sensing platforms.
The empirical/semi-empirical method establishes statistical re-

lationships between CDOM concentrations and measured surface water
spectral data, focusing on multi-band models. These models often use
the ratio between green and red bands due to low blue spectral reflec-
tance from high CDOM absorption and interference from particulates

and phytoplankton (Alcântara et al., 2016; Kutser et al., 2016). Chen
et al. (2017) estimated aCDOM(440) in the Saginaw River and the Kaka-
gon River with the band ratio B3/B4 from the Landsat-8. Based on
Sentinel-2 remote sensing imagery. Xu et al. (2018) found that in both
clear water (TSM < 10 mg/L) and turbid water (TSM ≥ 10 mg/L),
multi-band models constructed with R689/R497 and R767/R826 provided
the best retrieval results for aCDOM(355). Changes in boundary condi-
tions can limit their applicability, and complex water environments may
present challenges due to collinearity issues among different water
elements.
With the rapid development of computer technology, the AI-based

method for water quality parameter retrieval is gaining popularity.
Unlike traditional empirical algorithms, ML algorithms like random
forest regression (RFR), kernel ridge regression (KRR), Gaussian process

Fig. 1. Boxplot showing the R2 and RMSE of the retrieval models for Chl-a, PC, TSM, and CDOM presented in the existing literature.
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regression and SVR capture complex relationships in the data (Sun et al.,
2021). Kim et al. (2022) collected 108 data points in the Baekje Reser-
voir based on seven sampling events for airborne hyperspectral imagery
and CDOM absorption coefficient data from 350 nm to 440 nm over two
years (2016–2017), which were divided into 80% and 20% for training
and test datasets, respectively. They developed a RF model to retrieve
CDOM and evaluated the best combination of input wavelength bands
(475, 497, and 660 nm) that best represents the CDOM absorption co-
efficient at 355 nm. The RF model exhibited the best performance for
CDOM estimation, with an R2 of 0.85 and an RMSE of 0.70 m− 1. This
study demonstrated the capability of RF models based on hyperspectral
imagery in understanding CDOM in optically complex inland waters.
Huang et al. (2023) developed an XGBoost model based on Landsat-8
OLI data to retrieve the CDOM absorption coefficient aCDOM(290),
which outperformed SVM, RF, multilayer perceptron (MLP), and CNN
models.
However, single ML methods can suffer from overfitting, high-

dimensional data processing issues, and local minima, affecting accu-
racy and robustness. To address this, researchers are optimizing tradi-
tional models. Keller et al. (2018) combined principal component
analysis (PCA) with extremely randomized trees based on hyperspectral
data, successfully retrieving CDOM concentrations by making more so-
phisticated adjustments to the hyperparameters. Toming et al. (2024)
constructed a model combining GA with XGBoost based on Sentinel-2
MSI images to estimate 16 water quality parameters, including CDOM
concentration. This model was validated for its effectiveness.
This review statistically analyzes the retrieval models of Chl-a, PC,

TSM, and CDOM presented in some existing literature, as well as sum-
marizes the corresponding advantages and disadvantages. Among them:
a) The analytical/semi-analytical method has a rigorous physical basis
and versatility, but the complexity of the model is high and the acqui-
sition of IOPs is demanding. b) The empirical/semi-empirical method
uses linear regression between spectral radiance values and in-situ
measurements. It is simple and low in computational effort but has
poor generalizability due to sensitivity to changes in water composition.
c) AI-based methods combine the benefits of the empirical/semi-
empirical method, overcoming multicollinearity issues. Improved ML
models avoid overfitting and local minima problems, while deep
learning models excel with high-dimensional data. However, their
intrinsic mechanisms need further exploration.
Fig. 1 shows the box plots of accuracy statistics based on the results.

For Chl-a estimation, the AI-based method yields an R2 comparable to
the semi-empirical/semi-analytical method, slightly lower than the
empirical method; the performance of RMSE is relatively strong,

showing lower variability compared to the other methods. For PC esti-
mation, the fitting performance of the AI-based method is comparable to
the semi-analytical method, slightly lower than the empirical method,
though RMSE is somewhat higher than the empirical method. For TSM
estimation, the AI-based method outperforms both the empirical/semi-
empirical method and the analytical/semi-analytical method,
achieving higher R2 and relatively lower RMSE. For CDOM estimation,
R2 of the AI-based method performs exceptionally well, far exceeding
the empirical/semi-empirical method and the analytical/semi-
analytical method, though the RMSE of the AI-based method is occa-
sionally higher. Overall, considering that AI-based models are applied to
retrieve water quality parameters across a large spatial range of various
water bodies, and the concentration range is usually wide, it may lead to
slightly weaker fitting performance and occasionally higher RMSE for
some water quality parameters.

4.5. Dissolved oxygen (DO), biochemical oxygen demand (BOD),
chemical oxygen demand (COD), total nitrogen (TN), and total
phosphorus (TP)

Current research on NOACs is limited. NOACs have a weak correla-
tion with the spectrum, making it challenging to estimate NOACs
directly from spectral data. However, many studies have attempted to
retrieve NOACs using indirect methods. Indirect methods first use
spectral reflectance to retrieve OACs like Chl-a, TSM, and CDOM. Based
on the correlations between OACs and NOACs, NOACs can then be
indirectly estimated using traditional models (such as empirical/semi-
empirical or semi-analytical models) (Cai et al., 2023; Chen and Quan,
2012). Additionally, in specific water bodies, NOACs may be correlated
with multiple OAC parameters, resulting in a correlation with several
bands in the spectral curve. AI-based models (Arias-Rodriguez et al.,
2023; Niu et al., 2021; Zhang et al., 2020) are particularly adept at
extracting hidden features related to OACs from complex spectral
curves, allowing for the development of more accurate NOACs retrieval
models, even without establishing a precise correlation between NOACs
and OACs. For instance, Chen et al. (2024) used high-resolution UAV
multispectral images and ground monitoring data for a typical rural
stream to retrieve TN and TP using nine machine learning models. The
results (Fig. 2) showed that the best model (Catboost regression, CBR)
achieved a retrieval accuracy with an R2 above 0.9. However, the
retrieval accuracy of both traditional models and AI-based models de-
pends on the robustness of the relationship between NOACs and OACs,
which is environmentally dependent and difficult to generalize to other
water bodies (Cao et al., 2021; Zang et al., 2011). Still, NOACs retrieval
holds certain reference value and application potential for water quality
monitoring.

5. Conclusion and prospects

Driven by rising environmental awareness and concerns over water
safety, water quality monitoring technology has rapidly advanced. AI-
based methods for water quality retrieval have gained prominence.
This paper provides a comprehensive review of the retrieval methods for
nine water quality parameters. It explores recent AI advancements in
preprocessing, particularly in fusion techniques of multi-source remote
sensing data, optimizing the use of open-source satellite data. To
maximize the synergistic application of AI and remote sensing tech-
nologies in water quality monitoring of inland water bodies, more work
needs to be done in the following five areas.

(a) The quality of remote sensing data is influenced by sensor reso-
lution and atmospheric correction models, and research on AI-
based preprocessing technologies is expected to significantly
advance intelligent water quality monitoring. Multi-source
remote sensing data fusion can address the limitations of single
data sources in spatial and spectral resolution, enhancing imageFig. 2. The accuracy comparisons of each machine learning model.
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quality and water quality prediction accuracy. The author be-
lieves that the development of advanced sensors as well as fusion
techniques to improve temporal, spatial, and spectral resolutions
is crucial for reducing the impact of data source quality on
monitoring accuracy.
The atmospheric path radiance in the signals received by

remote sensing significantly exceeds the reflectance of the water
body, complicating compositional analysis. Effective atmospheric
correction, removing effects from molecules, aerosols, and cloud
particles, is crucial for accurate monitoring. Current methods,
assuming zero reflectance in the near-infrared band, often fail for
inland waters with high suspended matter and Chl-a concentra-
tions. In the author’s opinion, research should focus on the
coupling mechanism and decoupling methods between water and
atmospheric aerosol, and develop more atmospheric correction
methods for inland water bodies to enhance the portability be-
tween sensors.

(b) Enriching the optical mechanisms of water quality retrieval
models and integrating them with advanced artificial intelligence
algorithms to improve model interpretability. This approach has
already been attempted in the literature (Li et al., 2023) and is
meaningful for remote sensing applications in the field of water
quality monitoring. Traditional ML algorithms face issues like
overfitting, high dimensionality, slow convergence, and local
optima. Consequently, deep learning and coupled ML models
have gained more attention. They often lack explainable physical
mechanisms and struggle to integrate IOPs, limiting model ac-
curacy and generalization.
Optical characteristics of inland water bodies vary by season

and region, reducing model transferability. In the author’s
opinion, more efforts should be made to utilize large amounts of
in-situ data and more advanced AI algorithms for water quality
estimation. This includes enhancing the analysis of IOPs across a
wider range of water bodies and enriching the physical mecha-
nisms of AI-based water quality retrieval models. It is necessary to
develop a universal algorithm that is not constrained by season or
region, applicable to various water bodies, and capable of con-
structing transferable retrieval models.

(c) Exploring more water quality parameters with remote sensing
technology and AI, strengthening the monitoring of special types
of water bodies, and expanding to larger scales remain key fo-
cuses of current intelligent water quality monitoring. Although
extensive research on OACs exists, special water bodies, such as
black-odorous and eutrophic waters, require multiple parameters
for accurate characterization due to their complex spectral
properties, resulting in slow progress. Therefore, using deep
learning methods to retrieve multiple OACs outputs from a single
remote sensing reflectance input will be necessary in the future
(Zhang et al., 2024). Meanwhile, with the increasing impact of
climate change, global-scale data and research are becoming
increasingly needed. Global remote sensing products, such as
Forel-Ule Index (FUI) (Wang et al., 2021) and CIE (International
Commission on Illumination)-based algal bloom detection (Hou
et al., 2022), should be vigorously developed to support the SDG
Goal 6: Clean Water and Sanitation.
Furthermore, NOACs remain insufficiently explored. The au-

thors believe that, in addition to advancing NOACs retrieval for
individual water bodies, emphasis should also be placed on data
sharing and the establishment of large-scale datasets. Based on
these datasets, artificial intelligence algorithms can be employed
to classify water bodies with similar spectral characteristics and
OACs, followed by efforts to build corresponding retrieval models
for each category, thereby expanding the application scope of
NOACs retrieval. At the same time, the long-term databases
accumulated through online monitoring technologies should be
fully utilized, and combined with AI algorithms, to explore more

retrieval algorithms for NOACs, such as ammonia nitrogen, DOC,
and others.

(d) The effective use of big data, cloud technology, and remote
sensing platforms integrated with Large Language Models (LLMs)
is the future trend for inland water quality monitoring. This meets
the need for dense time series at high spatial resolution by
leveraging multi-source remote sensing data, balancing extensive
image preprocessing with real-time processing requirements.
Cloud computing platforms like Google Earth Engine (GEE) and
Amazon Web Services (AWS) offer high-end computing resources
at low costs. This allows users to focus on earth science discov-
eries rather than data processing. New remote sensing platforms
integrated with LLMs, like Alibaba DAMO Academy’s AI Earth
and SenseTime’s SenseEarth, enable interactive dialogue with
natural language, leading to more intelligent data processing.
The author suggests utilizing cloud computing infrastructures

like GEE and AWS for large-scale water quality monitoring based
on deep learning, or developing new cloud computing platforms
that can directly use advanced intelligent algorithms, as well as
remote sensing platforms integrated with LLMs. This will enable
accurate, objective, dynamic, and rapid intelligent monitoring of
inland water quality and trend prediction.

(e) Combining water quality remote sensing retrieval models with
hydrodynamic or hydrological models to obtain spatiotemporally
continuous water quality distributions provides a basis for sci-
entific management and quantitative decision-making for water
environment management. A single data source and model
cannot monitor aquatic systems in a fine-grained, high-precision,
comprehensive, and uninterrupted manner. Integrating water
quality observation data with hydrodynamic or hydrological data
into numerical simulation models through data assimilation can
address this issue. This approach, originally applied in weather
forecasting, includes optimal interpolation, variational algo-
rithms, Kalman filtering, and particle filtering.
The author suggests utilizing data assimilation to combine

different water environment information, optimizing water
quality model accuracy. This allows dynamic simulation of inland
water body runoff, pollution impact ranges, and water environ-
ment evolution, enhancing the ecological significance of remote
sensing monitoring and promoting intelligent monitoring of
inland water bodies.
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