
Monitoring, simulation and early warning of cyanobacterial harmful algal 
blooms: An upgraded framework for eutrophic lakes

Yinguo Qiu a, Jiacong Huang a, Juhua Luo a, Qitao Xiao a, Ming Shen a, Pengfeng Xiao c,  
Zhaoliang Peng a, Yaqin Jiao a, Hongtao Duan a,b,*

a Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
b University of Chinese Academy of Sciences, Nanjing, 211135, China
c School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China

A R T I C L E  I N F O

Keywords:
Lake eutrophication
Cyanobacterial harmful algal blooms
Models
Natural disaster
Early warning

A B S T R A C T

Cyanobacterial Harmful Algal Bloom (CyanoHAB) is a global aquatic environmental issue, posing considerable 
eco-environmental challenges in freshwater lakes. Comprehensive monitoring and accurate prediction of Cya
noHABs are essential for their scientific management. Nevertheless, traditional satellite-based monitoring and 
process-oriented prediction methods of CyanoHABs failed to satisfy this demand due to the limited spatiotem
poral resolutions of both monitoring data and prediction results. To address this issue, this paper proposes an 
upgraded framework for comprehensive monitoring and accurate prediction of CyanoHABs. A collaborative 
CyanoHAB monitoring network was firstly constructed by integrating space, aerial, and ground-based moni
toring means. As a result, CyanoHAB conditions were assessed frequently covering the entire lake, its key areas, 
and core positions. Furthermore, by overcoming technical limitations associated with high-precision simulation 
of the growth-drift-accumulation process of CyanoHABs, such as the unclear drifting process of CyanoHABs and 
the mechanism of its coastal accumulation, the multi-scale CyanoHAB prediction was realized interconnecting 
the entire lake and its nearshore areas. The implemented framework has been applied in Lake Chaohu for over 
three years. It provided high-frequency and high-spatial-resolution CyanoHAB monitoring, as well as its multi- 
scale and accurate simulation. The application of this framework in Lake Chaohu had significantly improved 
the accuracies of CyanoHAB monitoring, simulation, and early warning. This advancement holds significant 
scientific value and offers potential for CyanoHAB prevention and control in eutrophic lakes.

1. Introduction

The frequent occurrence of cyanobacterial harmful algal blooms 
(CyanoHABs) in freshwater lakes is a crucial environment problem, 
causing serious ecological and health damage to both human and 
aquatic life (Paerl and Paul, 2012; Huisman et al., 2018; Fang et al., 
2022). For instance, a significant CyanoHAB event in Lake Taihu during 
May–June 2007 leaded to a water crisis in Wuxi City (Duan et al., 2009). 
In September 2013, a serious CyanoHAB occurred in west Lake Erie, 
resulting in the loss of clean drinking water for nearly 2000 residents in 
Carol Town, Ohio (Wynne and Stumpf, 2015; Steffen et al., 2017). 
Furthermore, cyanobacterial toxins had resulted in the sudden deaths of 
at least 330 African savanna elephants in 2020 (Wang et al., 2021). In 
fact, CyanoHABs in eutrophic lakes have become prevalent and will exist 
for a long time in the future (Duan et al., 2020; Wang et al., 2023a; Ma 

et al., 2023). Hence, efficient monitoring and accurate prediction of 
CyanoHABs are crucial in affected lakes to mitigate disasters and 
minimize socio-economic losses.

Timely and accurate assessment of CyanoHABs in eutrophic lakes, 
yet, remains a significant challenge (Zhang and Zhang, 2015; Tan et al., 
2023). Optical satellite remote sensing can achieve large-scale and 
long-term observation (Kutser, 2009; Shi et al., 2019), which has been 
widely used for CyanoHAB monitoring in lakes (Kim et al., 2020; Mu 
et al., 2021). Based on effective processing methods (Hu, 2009; Chen 
et al., 2019), satellite-based CyanoHAB products can be quickly ob
tained. However, optical satellite remote sensing cannot provide Cya
noHAB information in a fully timely manner due to factors such as cloud 
cover, precipitation, and relatively coarse spatial resolution. Especially 
in local sensitive areas such as drinking-water sources, the demands of 
emergency monitoring cannot be met (Qiu et al., 2022).
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Drone and ground-based methods, including unmanned aerial ve
hicles (UAVs) and video devices (Kwon et al., 2020; Wang et al., 2023b), 
have emerged as effective solutions to overcome the limitations of 
satellite-based monitoring of CyanoHABs. These methods offer advan
tages by avoiding the frequency and spatial resolution limitations 
associated with satellite monitoring (Cook et al., 2023). Spectral indices 
have been widely employed as the predominant technique for Cyano
HAB detection in digital images (Wu et al., 2019; Kislik et al., 2018), 
while computer vision and deep learning-based approaches have also 
shown promise (Wang et al., 2023b). However, these techniques require 
rectified and calibrated images with minimal environmental distur
bances for optimal performance. Although these methods have enabled 
preliminary continuous and emergency monitoring of CyanoHABs in 
key areas and core positions, their precision is hindered by the hetero
geneity of CyanoHABs, frequent changes in camera poses, and chal
lenges in distinguishing CyanoHABs from shadows and turbid water 
bodies (Ma et al., 2022; Tan et al., 2023). Specifically, comprehensive 
CyanoHAB information covering the entire lake, key areas, and core 
positions cannot be obtained frequently.

Understanding the current state of CyanoHABs is crucial for pre
dicting their spatiotemporal trends and developing proactive response 
strategies (Brookfield et al., 2021). Earlier, statistical models were pre
dominantly used for CyanoHAB prediction (Summers and Ryder, 2023). 
These models established correlations between cyanobacterial biomass, 
meteorological factors, nutrient concentrations, and hydrodynamic pa
rameters through experimental analysis (Freeman K., 2000; Xu et al., 
2002). Studies have shown a close relationship between CyanoHAB 
occurrence and key water quality parameters, such as Chl-a and total 
phosphorus (TP) (Shahriar and Rahman, 2013; Peng et al., 2020). Thus, 
accurately predicting these parameters indirectly enables CyanoHAB 
prediction. However, these data-driven models have simple structures 
and convenient applications but lack a comprehensive understanding of 
lake ecosystems, resulting in inherent uncertainty, especially for 
short-term predictions (Pan et al., 2022). On the other hand, 
process-oriented ecological dynamic models, such as PCLake, AQUA
TOX, WASP, EFDC, and MIKE, accurately simulate the 
growth-drift-accumulation process of CyanoHABs by considering phys
ical and chemical processes of cyanobacteria evolution (Hu et al., 2016, 
2020; Li et al., 2018; Wu and Xu, 2011; Zhao, 2015). These models offer 
clear advantages, particularly for short-term CyanoHAB predictions 
(Summers and Ryder, 2023). However, their stringent data re
quirements pose challenges due to limited data acquisition capabilities 
in lakes. Enhancing the accuracy of these models can be achieved by 
incorporating assimilation modules for satellite-based CyanoHAB 
products (Wang et al., 2018). Additionally, the development of UAV 
remote sensing, video monitoring, and in-situ monitoring has signifi
cantly improved the monitoring of lake water environments, theoreti
cally enabling accurate CyanoHAB prediction (Kwon et al., 2020; Wang 
et al., 2023b; Yang et al., 2019). However, there is currently a lack of 
efficient frameworks for integrating multi-source monitoring data to 
predict CyanoHABs.

One drawback of traditional CyanoHAB prediction models, including 
both data-driven and process-oriented approaches, is that their predic
tive outcomes often deviate from the practical requirements of Cyano
HAB prevention and management (Qiu et al., 2022; Wang et al., 2023b). 
Following their occurrence, CyanoHABs tend to accumulate in near
shore regions, which can potentially lead to secondary disasters (Qian 
et al., 2022; Wang et al., 2023b). This poses significant threats to 
drinking water safety since water intakes are typically situated in these 
nearshore areas. Therefore, compared to other regions, monitoring 
CyanoHAB trends in nearshore areas becomes more critical. However, 
traditional models have not adequately addressed this need as they 
primarily focus on large-scale CyanoHAB trends, such as throughout an 
entire lake or extensive lake areas, often overlooking the risks associated 
with CyanoHAB accumulation in nearshore regions.

In this study, we have developed an integrated framework for 

collaborative monitoring and accurate prediction of CyanoHABs, which 
we have applied to Lake Chaohu. Initially, we established a monitoring 
network that integrates various approaches, referred to as the space- 
aerial-ground collaborative monitoring network in this paper. This 
network combines satellite observations, UAVs, video devices, in-situ 
systems, and field measurements to comprehensively assess CyanoHAB 
conditions. Furthermore, we employed high-precision simulations of the 
growth-drift-accumulation process of CyanoHABs to predict potential 
risks associated with CyanoHAB accumulation in nearshore areas. To the 
best of our knowledge, this is the first successful integration of space, 
aerial, and ground-based methods for CyanoHAB research in a lake. 
Given the global issue of eutrophication in lakes, this study can provide 
valuable guidance for the prevention, control, and emergency response 
of CyanoHABs in eutrophic lakes.

2. Materials and methods

2.1. Study area

This study focuses on Lake Chaohu (Fig. 1), the fifth largest fresh
water lake in China. Situated in the central region of Anhui Province, 
Lake Chaohu (31◦25′28″–31◦43′28″N, 117◦16′54″–117◦51′46″E) is 
among the three significant lakes in China that require eutrophication 
control. This lake plays a crucial role in providing water for the city, 
controlling flooding, facilitating irrigation, and supporting fisheries and 
tourism industries. In recent years, with a population explosion and the 
rapid development of industrial and agricultural production in the 
watershed, the nutritional level of Lake Chaohu remained stubbornly 
high. The occurrence of CyanoHABs, largely attributed to lake eutro
phication, has become a significant constraint on the sustainable 
development of regional socio-economic growth. Traditional CyanoHAB 
monitoring methods in Lake Chaohu rely mainly on satellite remote 
sensing and field measurement, which cannot provide timely assessment 
of CyanoHAB status that covers the entire lake, its key areas, and core 
positions. Consequently, conventional methods were limited in their 
capacity to offer scientific decision-making support for CyanoHAB pre
vention and control.

2.2. Various CyanoHAB monitoring means

Like most eutrophic lakes, the CyanoHAB monitoring means in Lake 
Chaohu include satellite remote sensing, UAV monitoring, video moni
toring, in-situ monitoring and field measurement. However, each single 
method cannot meet the multi-scale monitoring requirement of Cyano
HABs, i.e., covering the entire lake, its key areas, and core positions 
(Table 1). 

(i) Satellite remote sensing can regularly obtain both the area and 
spatial distribution of CyanoHABs in the entire lake. In this paper, 
the floating algae index (FAI) index (Hu, 2009) was used to 
extract CyanoHABs from satellite images of Terra/Aqua MODIS, 
Sentinel-2 MSI and GOCI. The threshold value of 0.0006, 
employed to distinguish between intense blooming and 
non-bloom pixels, was in accordance with the methodology 
outlined in existing research (Li et al., 2017). Moreover, a ma
chine learning algorithm-random forest (RF) (Shen et al., 2020, 
2022) were also utilized to invert key water quality parameters 
such as Chl-a concentration and transparency.

(ii) UAV monitoring applies to emergency CyanoHAB monitoring in 
key areas such as water sources. In this paper, UAVs were used to 
collect digital images of target lake areas in emergency situations, 
and the collected images were then processed by image pro
cessing algorithms (the same method as shown in Fig. 2). Finally, 
CyanoHAB status was obtained in target lake areas, i.e., areas and 
coverages.
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(iii) Video monitoring can assess CyanoHAB conditions in key near
shore areas frequently and automatically. After occurrence, 
CyanoHABs easily accumulate in nearshore areas, often causing 
secondary disasters and threatening the water quality safety of 
water sources. Therefore, timely CyanoHAB monitoring in near
shore areas is essential for emergency CyanoHAB prevention and 
control. Video devices can work continuously and automatically 
without artificial participation under appropriate lighting. To 
overcome the inconsistent observation angles of video devices, 
based on the characterization analysis of CyanoHABs in video 
images, lighting intensities and background conditions of 
different video devices, CyanoHAB pixels were distinguished 
from CyanoHAB-free pixels using a multi-scale deep network and 
the random forest method (Fig. 2).

(iv) In-situ systems automatically monitored key water quality pa
rameters of eight core positions (Fig. 1) once every 4 h and 

provided data support for water quality status analysis and Cya
noHAB prediction.

(v) Field measurement was used to regularly monitor key water 
quality parameters of twenty core positions (Fig. 1) (once per 
month). During CyanoHAB outbreak periods (from Apr. 1 to Oct. 
31 every year), the monitoring frequency was increased to twice 
per week. By this approach, emergency monitoring was con
ducted as needed, providing data support for CyanoHAB analysis 
and prediction.

2.3. Multi-scale CyanoHAB simulation and prediction

2.3.1. Construct a 3D hydrodynamic-water quality-algae coupled model
A 3D hydrodynamic-water quality-algae coupled model of Lake 

Chaohu was developed to realize the precise simulation and early 
warning of CyanoHABs (Fig. 3). The model began with the hydrological 
simulation of Lake Chaohu watershed. Ten hydrological stations were 

Fig. 1. The basic situation of Lake Chaohu. There are 20 field measurement positions, and eight of them are overlapped with in-situ monitoring systems. And there 
are 20 in-situ monitoring systems of 3D lake flow and 20 meteorological stations, the positions of which are overlapped with field measurement positions.

Fig. 2. Automatic monitoring method for cyanobacterial harmful algal blooms (CyanoHABs) in nearshore areas of Lake Chaohu utilizing land-based video moni
toring systems.
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deployed in 10 main rivers that flow into or out of Lake Chaohu (Fig. 1). 
The monitored indicators of these stations include water level, flow, and 
water volume. Based on these data, daily flows of the 10 rivers were 
simulated using the distributed hydrological model named Grid- 
Xinanjiang (Huang et al., 2018), providing boundary conditions for 
the hydrodynamic simulation of Lake Chaohu. Here, the Xinanjiang 
model grid size was set to 500 × 500 m, details of which can be seen in 
Huang et al. (2018).

Afterwards, we completed the hydrodynamic simulation of Lake 
Chaohu. The hydrodynamic conditions of Lake Chaohu were simulated 
based on the daily flows of ten main rivers and 3D lake flow monitoring 
results. Twenty in-situ systems were utilized, as depicted in Fig. 1. The 
monitored parameters included flow velocity and direction, with a 
monitoring frequency of once per day. The EFDC model was employed 
for this simulation, with a grid size set to 500 × 500 m. This grid was 
vertically divided into two layers, with a roughness height at the bottom 
of 0.02 m and a time step of 200 s.

The meteorological data used was observed hourly by 20 meteoro
logical stations deployed in Lake Chaohu (Fig. 1). The observed mete
orological factors included wind speed, wind direction, temperature, 
precipitation, evaporation and solar radiation. The boundary conditions 
of the model used include the flows of the 10 main rivers, details of 
which can be seen in Huang et al. (2018).

Finally, we realized the hourly CyanoHAB prediction, both the 
CyanoHAB trends in the entire lake and the accumulation risks of Cya
noHABs in nearshore areas. For this purpose, four indices were con
structed, i.e., algal bloom index, lake shoreline index, hydrodynamic 
index, and wind direction index. These indices were based on the 
assimilation of space-aerial-ground collaborative monitoring data, 
hourly weather forecast data, hydrodynamic simulation results of Lake 
Chaohu, and high-frequency monitoring data pertaining to water quality 
and hydrology (Qian et al., 2022). In this study, the frequency of 
weather forecast data, CyanoHAB information gathered via video de
vices, and in-situ monitoring data pertaining to water quality and hy
drology was set at 1 h. For other types of data, such as satellite-derived 
CyanoHAB products, they were adjusted to an hourly frequency through 
time series interpolation.

2.3.2. Drive the hydrodynamic-water quality-algae coupled model
The driving dataset of the constructed model was dynamically 

generated (Fig. 3) based on: (i) high-frequency monitoring data of the 
space-aerial-ground collaborative network, (ii) meteorological data 
from the 20 automatic monitoring stations in the lake (monitoring data) 
and Hefei Meteorological Bureau (forecast data), (iii) hydrological 
monitoring data from the 10 hydrological automatic monitoring stations 
of the 10 main rivers around the lake, (iv) 3D digital flow field data by 
interpolation of monitoring data from the 20 in-situ monitoring systems 
in the lake, and (v) shoreline and underwater 3D terrain data from the 
Anhui Provincial Lake Chaohu Administration. The simulated indicators 
included TN, TP, DO, COD, Chl-a, surface algal biomass, NH3-N, and 
CyanoHAB accumulation risks in nearshore areas.

The initial distribution of CyanoHABs across the entire lake is a 
critical factor in predicting their spread. The accuracy of this initial state 
directly impacts the precision of the model’s predictions. Current 
research often uses satellite-based remote sensing images to generate 
this initial state, but this method fails to account for CyanoHAB distri
bution in key local areas such as water sources. In contrast, this study 
proposes the use of additional data sources. These include the areas and 
coverages of CyanoHABs in target lake areas monitored by UAVs, and 
the conditions of CyanoHABs in key nearshore areas assessed by video 
devices. By incorporating this multi-source CyanoHAB information, we 
can improve the accuracy of the initial conditions for CyanoHAB pre
diction, thereby enhancing the overall prediction accuracy.

2.3.3. Evaluate model performance
The accuracy of the constructed model was verified using collabo

rative CyanoHAB monitoring data. Initially, the accuracy of CyanoHAB 
prediction in the entire lake was verified by the 20 in-situ monitoring 
systems in the lake. As CyanoHABs cannot be directly monitored by in- 
situ systems, a popular CyanoHAB characterization factor in water 
bodies, i.e., Chl-a, was employed as the indicator of accuracy verifica
tion. Furthermore, three water quality parameters (TN, TP, and NH3-N) 
were utilized as supplementary indicators for accuracy verification.

Additionally, the accuracy of CyanoHAB accumulation prediction in 
nearshore areas was jointly verified through video-based and satellite- 
based monitoring results. For water areas with high predicted Cyano
HAB accumulation risks, the actual CyanoHAB accumulation situation 

Table 1 
Analysis of advantages and disadvantages of single methods for CyanoHAB monitoring in Lake Chaohu.

Means Monitoring results Advantages Disadvantages

Satellite remote 
sensing

(i) Monitoring region: the entire lake, (ii) monitoring 
indicators: CyanoHAB area and distribution, key water quality 
parameters, (iii) monitoring frequency: twice a day (Terra/ 
Aqua MODIS), eight times a day (GOCI) and once every five 
days (Sentinel-2 MSI), and (iv) image resolution: 250 m 
(MODIS), 500 m (GOCI) and 10 m (Sentinel-2 MSI).

High monitoring frequency. (i) Greatly affected by cloudy and rainy weathers, making it 
impossible to satisfy emergency monitoring requirements, and 
(ii) cannot accurately monitor CyanoHABs in key areas and 
core positions due to the limitation of spatial resolutions of 
images

UAV monitoring (i) Monitoring region: key nearshore areas and core positions, 
(ii) monitoring indicators: CyanoHAB coverage, and (iii) 
monitoring frequency: dynamically determined based on 
exceeding-standard situations of CyanoHAB monitoring and 
prediction.

Strong flexibility, low- 
altitude flight, and high 
resolution of images

(i) Difficult to achieve large-scale or daily monitoring, due to 
the limited navigating ability of UAVs and the required 
professional participation, and (ii) require ideal weather 
conditions for on-site operation, e.g., no wind or breeze, no 
rain, etc.

Video 
monitoring

(i) Monitoring region: key nearshore areas, (ii) monitoring 
indicators: CyanoHAB coverage, and (iii) monitoring 
frequency: hourly from 8 a.m. to 6 p.m. every day.

High monitoring frequency. (i) Susceptible to interference from factors such as solar flares 
and shore vegetation, (ii) CyanoHAB status in the entire lake 
cannot be fully defined, and (iii) cannot obtain specific water 
quality parameters.

In-situ 
monitoring

(i) Monitoring region: core positions, (ii) monitoring 
indicators: TN, TP, COD, NH3-N, water temperature, Chl-a, 
DO, pH, conductivity and BOD, and (iii) monitoring frequency: 
once every 4 h.

High monitoring frequency, 
and detailed monitoring 
indicators.

Cannot obtain the integrated CyanoHAB information that 
covers the entire lake, its key area, and core positions.

Field 
measurement

(i) Monitoring region: core positions, (ii) monitoring 
indicators: TN, TP, COD, NH3-N, water temperature, Chl-a, 
DO, pH, conductivity and BOD, and (iii) monitoring frequency: 
once a month (not in CyanoHAB prevention and control 
periods), twice a week (in CyanoHAB prevention and control 
periods) and dynamically determined (based on exceeding- 
standard situations).

High monitoring accuracy, 
and detailed monitoring 
indicators.

(i) Cannot obtain the integrated CyanoHAB information that 
covers the entire lake, its key area, and core positions, and (ii) 
the requirement of emergency monitoring cannot be met in 
prevention and control periods of CyanoHABs, due to the poor 
monitoring efficiency and high working cost.
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(e.g., range and intensity) was verified by a nearby land-based video 
device. Moreover, satellite-based Chl-a products were used as supple
mentary data to verify the simulated CyanoHAB accumulation risks in 
nearshore areas, i.e., to determine whether the Chl-a concentrations in 
water areas with high predicted CyanoHAB accumulation risks were 
significantly higher than those in other water areas.

3. Results

3.1. Space-aerial-ground collaborative monitoring of CyanoHABs

Fully automatic CyanoHAB extraction has been achieved based on 
multi-source satellite images. Moreover, the CyanoHAB status in Lake 
Chaohu can be evaluated in a timely manner on sunny days (Fig. 4a). 
The accuracy verification results are shown in Fig. 6a. In local sensitive 
water areas, particularly where high-frequency CyanoHAB monitoring is 
not feasible via satellites, emergency monitoring was effectively 
executed by UAVs (Fig. 4b), and the accuracy verification results are 
shown in Fig. 6b. For nearshore areas that are more prone to CyanoHAB 
accumulation and consequently pose a significant concern in lake water 
environment management, 42 sets of land-based video devices were 
used to frequently monitor CyanoHABs and the whole process was 
implemented in an unattended manner. From 8 a.m. to 6 p.m. every day, 
CyanoHABs were hourly monitored in key nearshore areas (Fig. 5), and 
the accuracy verification results are shown in Fig. 6c.

Furthermore, timely assessment of the current status, exceptional 
situations, and trends in water quality at core positions was realized via 
in-situ systems and field measurements. Among the indicators obtained, 
TP and NH3-N proved particularly valuable for the analysis and judg
ment of CyanoHAB condition throughout the lake.

Finally, by integrating multiple monitoring means, a space (satel
lite)-aerial (UAV)-ground (video device, in-situ system and field mea
surement) collaborative CyanoHAB monitoring network was 
constructed (Fig. 7). As a result, integrated monitoring of CyanoHABs 
was achieved, covering the entire lake, its key areas, and core positions. 
Accordingly, the current status and exceeding-standard situation about 
CyanoHABs and key water quality parameters can be quickly under
stood (Fig. 8), accelerating the scientific management and emergency 
control of CyanoHABs. In this collaborative monitoring network, satel
lites, in-situ systems, and video devices are daily monitoring means, 
which were automatically activated at regular times every day; UAVs 
and field measurements are emergency monitoring means which were 
activated in case of abnormal situations, e.g., exceeding-standard water 
quality, abnormal water color, CyanoHAB accumulation, etc.

3.2. Simulation and prediction of CyanoHABs

CyanoHABs and key water quality parameters were simulated and 
predicted hourly for the next seven days in this research, and the pre
diction indicators included TN, TP, DO, COD, NH3-N, Chl-a, surface algal 

Fig. 3. The process of multi-scale CyanoHAB simulation and prediction.

Y. Qiu et al.                                                                                                                                                                                                                                      Environmental Research 264 (2025) 120296 

5 



Fig. 4. CyanoHAB monitoring results by satellite and UAV. (a1) is the original satellite image with Sentinel-2 MSI as data source (the imaging date is Sep. 17, 2022), 
and (a2) and (a3) are results of CyanoHAB extraction (the CyanoHAB area is 6.51 km2) and Chl-a inversion, respectively. The region in the red box in (b1) denotes the 
water area of UAV monitoring, (b2) is the on-site image collected by UAV, and (b3) is the CyanoHAB extraction result of (b2) (green pixels represent CyanoHAB, blue 
pixels stand for non-CyanoHAB, and the area ratio of CyanoHABs is 59.24%).

Fig. 5. Video-based CyanoHAB monitoring results in nearshore areas. (a) CyanoHAB extraction results (area ratio) of the station named Liying Village, (b) spatial 
distribution of CyanoHAB intensity in nearshore areas, (c) long-term CyanoHAB monitoring results (area ratio) of the station named Liying Village, and (d) long-term 
CyanoHAB monitoring results (area ratio) of another station named Yejiayoufang.
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biomass and the probability of a CyanoHAB outbreak. Taking Chl-a as an 
example, the predicted results are shown in Fig. 9a. Additionally, the 
quantitative evaluation of CyanoHAB accumulation risks in nearshore 
areas and their spatiotemporal trends were achieved for the next seven 
days (Fig. 9b).

The accuracy of water quality prediction in the lake was evaluated 
using in-situ monitoring data. Taking the predicted results on Sep. 27, 
2021 (spanning from Sep. 27 to Oct. 3) as an example, we compared the 
monitoring data of an in-situ system and the prediction results at the 
same position to validate accuracy. The chosen indicators for this vali
dation were Chl-a, TN, TP and NH3-N. Our findings (Fig. 10) suggest 
that: (i) the model’s accuracy is high overall and the prediction results in 

the next 1–3 days are reliable, (ii) the errors of prediction tend to in
crease as the simulation period extends, and (iii) among the four vali
dation indices, Chl-a exhibited the highest simulation precision; TN and 
TP demonstrated comparable accuracies, and NH3-N had the lowest 
accuracy.

Moreover, the prediction accuracy of CyanoHAB accumulation risks 
in nearshore areas was evaluated by video-based and satellite-based 
monitoring (Fig. 11). The monitoring results by 42 land-based video 
devices were used to verify the CyanoHAB accumulation situation in 
those nearshore areas with high predicted CyanoHAB accumulation 
risks (Fig. 11a). Additionally, the prediction results of CyanoHAB 
accumulation were compared with satellite-based monitoring 

Fig. 6. Accuracy verification results of satellite-based, UAV-based, and video-based CyanoHAB monitoring. (a) presents the accuracy verification results of satellite- 
based monitoring. The study utilized 20 sets of validation data, wherein estimated Chl-a concentrations were derived from Aqua/Terra MODIS data, while measured 
Chl-a concentrations were obtained through field measurements. (b) illustrates the accuracy verification outcomes of UAV-based monitoring. This segment involved 
20 sets of validation data, wherein UAV-monitored and manually extracted CyanoHAB coverages were calculated based on digital images captured by UAVs, utilizing 
the specifically designed image processing algorithm and manual methods, respectively. (c) depicts the accuracy verification results of video-based monitoring. This 
section encompasses 42 sets of validation data, wherein video-monitored and manually extracted CyanoHAB coverages were computed based on digital images 
captured by video devices, employing the purposefully designed image processing algorithm and manual techniques, respectively.

Fig. 7. Working mode of the space-aerial-ground collaborative CyanoHAB monitoring network.
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Fig. 8. The space-aerial-ground collaborative CyanoHAB monitoring results. Integrated CyanoHAB information was acquired simultaneously, which provides 
CyanoHAB area and distribution covering the entire lake, its key areas, and core positions.

Fig. 9. Prediction results of Chl-a and CyanoHAB accumulation in the future seven days. (a1)~(a7) are the prediction results of Chl-a for the next 1–7 days, 
respectively. (b1)~(b7) are the prediction results of CyanoHAB accumulation in nearshore areas in the next 1–7 days, respectively. Note that the time resolution of 
the original prediction results is 1 h and the daily prediction results here are the average values calculated based on the hourly prediction results of every day.
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(Fig. 11b), which showed high prediction accuracy.

4. Discussion

4.1. Advantages of developed framework

The frequency and scale of CyanoHABs in lakes increase continu
ously at present (Huisman et al., 2018; Cook et al., 2023). Timely 
evaluation of CyanoHAB status and accurate prediction of their spatio
temporal tends are of great significance for scientific prevention and 
control of them. However, traditional methods cannot satisfy this de
mand. This paper presents an integrated framework for the collaborative 
monitoring and precise prediction of CyanoHABs, which has been 
applied in practice in Lake Chaohu. This framework has achieved 

significant breakthroughs in enhancing both the monitoring coverage 
and the prediction precision of CyanoHABs. First, compared to single 
monitoring, this framework achieved the collaborative CyanoHAB 
monitoring that covers the entire lake, its key areas, and core positions, 
enabling a thorough understanding of current status and any abnormal 
information related to CyanoHABs (Fig. 8). Furthermore, the conven
tional simulation model for CyanoHABs in lakes was enhanced and 
multi-scale CyanoHAB prediction was achieved, interconnecting the 
entire lake and its nearshore areas (Fig. 9). Under the conditions of 
limited emergency response resources, this framework has important 
guiding significance for emergency prevention and control of Cyano
HABs in lakes.

On Sep. 29, 2021, the MODIS/Aqua image data indicated that the 
total algae volume in the eastern, central, and western areas of Lake 

Fig. 10. Accuracy verification results of water quality parameter prediction. The measured water quality parameters are sourced from an in-situ monitoring system.

Fig. 11. An example of the application of the developed framework. (a1) predicted results of CyanoHAB accumulation in nearshore areas (Oct. 19, 2019) with 250 ×
250 m grid for each unit, (a2) and (a3) on-site images in Region #1 and Region #2 in (a1) which were captured by land-based video devices; (b1) inverted spatial 
distribution of Chl-a based on Sentinel-2 MSI image data (Oct. 19, 2019), and (b2) and (b3) partial enlarged views of Region #1 and Region #2 in (b1).
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Chaohu were 256.5 t, 199.9 t, and 244.6 t, respectively. The CyanoHAB 
prediction results in the entire lake indicated high Chl-a concentrations 
in the eastern, central, and western areas the following day (Fig. 12a1). 
The highest concentration was observed in the eastern area. This indi
cated a high risk of CyanoHAB outbreaks throughout the lake the 
following day. Notably, the eastern area exhibited a higher risk 
compared to both the eastern and central areas. The simulation results 
also indicated that the areas with high CyanoHAB accumulation risks 
the following day were mainly located in the eastern and northwestern 
areas (Fig. 12a2).

On Sep. 30, 2021, unsurprisingly, a large-scale CyanoHAB occurred 
in Lake Chaohu. The satellite-based CyanoHAB result (Fig. 12b1) indi
cated that the CyanoHAB areas in the eastern, central and western re
gions were 133.41 km2, 71.04 km2 and 62.70 km2, respectively. This 
was consistent with the prediction results (Fig. 12a1). The video-based 
CyanoHAB monitoring results (Fig. 12b2) showed that the areas with 
higher CyanoHAB intensities were mainly located in the eastern, 
southeastern and northwestern nearshore areas, which was consistent 
with the satellite-based results (Fig. 12b1) and the prediction results 
(Fig. 12a2).

Based on the prediction results of CyanoHAB accumulation in near
shore areas (Fig. 12a2), the occurrence of CyanoHABs in several key 
nearshore areas was monitored by UAV on Sep. 30, 2021. The results 
(Fig. 13) showed that CyanoHABs occurred in several water areas with 
high predicted accumulation risks; thus, the simulation results were 
consistent with the actual situations.

The Lake Chaohu application effectively illustrates the advantages of 
the integrated framework presented in this paper. An innovative 
collaborative CyanoHAB monitoring network was established, capable 
of effectively supplementing CyanoHAB monitoring in the absence of 
viable satellite data. By placing land-based video devices around the 
lake, we were able to obtain both the intensity and distribution of 
CyanoHABs in key nearshore areas (Figs. 5 and 12b2), such as water 
intakes, in near real time. This provided scientific guidance for lake 
CyanoHAB inspections; thus, frontline workers were able to focus on 
several key areas rather than conduct comprehensive inspections as 
before. Accordingly, the work efficiency was greatly improved and the 
work costs were reduced. In abnormal situations, such as CyanoHAB 
occurrence, UAVs and field measurements were employed to conduct 
emergency monitoring in key areas and core positions. By efficiently 
combining various methods (Fig. 7), the shortcomings of each method 
were overcome, and multi-level integrated monitoring of CyanoHABs 
was achieved (Fig. 8).

Moreover, traditional CyanoHAB prediction methods in lakes (Zhang 
et al., 2013; Li et al., 2018; Brookfield et al., 2021) usually focused on 
predicting the risk and area of CyanoHABs in the entire lake or extensive 
lake areas. However, no effective strategies for emergency responses 
have been established in the day-to-day practice of large-scale Cyano
HAB prevention and control (Shi et al., 2022). And with limited disposal 
resources, managers are more concerned about predicting CyanoHAB 
situations in key areas and core positions in nearshore areas, so as to 
develop response plans in advance and achieve optimal utilization of 
limited emergency disposal resources. Traditional methods, however, 
lacked the capacity to offer decision-making support in this domain. In 
contrast, the multi-scale simulation and prediction model constructed in 
this study not only predicts the trend of CyanoHABs in the entire lake 
(Figs. 9a and 12a1), but also foreknows their accumulation risks in 
nearshore areas, involving more decision-making significance for Cya
noHAB prevention and control (Figs. 9b–11a and 12a2). This helps 
managers of lake water environments to anticipate CyanoHAB situations 
in key nearshore areas and core positions, which enables earlier 
deployment of emergency response resources (Fig. 11a2), reduces the 
potential impacts, and ensures water quality and ecological safety.

4.2. Framework deficiencies

Despite the significant advantages described in Section 4.1, some 
limitations remain in the developed framework. First, although we have 
preliminarily constructed a space-aerial-ground collaborative Cyano
HAB monitoring network, large-scale CyanoHAB monitoring relies only 
on satellite remote sensing. This approach proves challenging when 
applied to smaller or medium-sized lakes.

Secondly, the use of UAVs has been instrumental in the developed 
framework for high-frequency CyanoHAB monitoring in key nearshore 
areas. However, this process necessitates on-site personnel to collect 
images and bring them back to the laboratory for processing and anal
ysis. The efficiency of this approach is currently constrained by factors 
such as the round-trip time for personnel, on-site operational efficiency, 
and the level of automation in data processing. Consequently, there 
remains a substantial discrepancy between the automated data pro
cessing/monitoring capabilities and the actual demand for emergency 
prevention and control of CyanoHABs.

Furthermore, while we have made preliminary progress in multi- 
scale CyanoHAB prediction which interconnects the entire lake and its 
nearshore areas, there remains a gap in effective digital twin methods 
for full factors of the physical lake body. Key driving data for the 

Fig. 12. CyanoHAB prediction and monitoring results on Sep. 30, 2021. (a1) and (a2) are prediction results of Chl-a distribution and CyanoHAB accumulation, 
respectively. (b1) and (b2) are the satellite-based (using Aqua MODIS data with a transit time approximately at 1 p.m.) and video-based (at 1 p.m.) CyanoHAB 
monitoring results, respectively.
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CyanoHAB prediction model, e.g., rivers, underwater topographies 
vertical distribution characteristics of water quality and algae, etc., was 
all the generalizations of real geographic information. Accordingly, 
there is still some uncertainty in the prediction results, making it chal
lenging to capture the full CyanoHAB process, i.e., growth, drift and 
accumulation. Consequently, there is significant potential for enhance
ment in supporting emergency preparedness and scientific prevention 
and control of CyanoHABs.

4.3. Future work

Lacustrine CyanoHABs, influenced by eutrophication, global warm
ing and extreme climate conditions, are anticipated to persist for an 
extended period in the future (Huisman et al., 2018; Ho et al., 2019). 
The use of the developed framework has significant scientific impor
tance and practical value for CyanoHAB prevention and management. 
Despite the promising application and performance of this framework, 
several infrastructure and strategic improvements are required for its 
widespread use.

First, it is imperative to enhance the integration and improvement of 
monitoring resources, including space, aerial, and ground-based remote 
sensing. For large lakes whose areas exceed 500 km2, such as Lake Erie 
and Lake Taihu, space remote sensing data sources with low satellite 
revisiting periods and medium-to-high image resolutions are recom
mended, such as Terra/Aqua MODIS and Sentinel-3 OLCI. Conversely, 
for small-to-medium-sized lakes, it is advisable to utilize space remote 
sensing data sources with high image resolutions, such as TRMM VIRS 
and GF. To address the issue of absent satellite data due to adverse 
weather conditions, it is recommended to incorporate supplementary 
monitoring methods. These primarily encompass aerial remote sensing, 
particularly low-altitude and ground-based means, which includes land- 
based, tower-based, and platform-based remote sensing. By fusing and 
splicing multi-source remote sensing data, high-frequency CyanoHAB 
monitoring can be obtained in key lacustrine areas such as water sources 
and landscape areas.

Simultaneously, it is necessary to further improve the automation 
and collaboration of the monitoring-prediction process of CyanoHABs. 

CyanoHABs usually come and go without a trace (Zhang et al., 2021), 
which means that timeliness in CyanoHAB monitoring and prediction is 
crucial to their emergency prevention and control. The automation of 
satellite-based and video-based CyanoHAB monitoring was achieved in 
this research, but the UAV-based CyanoHAB monitoring still requires a 
large amount of manual participation. By building automatic airports for 
UAVs, routine inspection and emergency monitoring of CyanoHABs can 
be achieved in the near future.

Furthermore, it is imperative to develop in-situ observation systems 
for the lacustrine eco-environment. These systems should be capable of 
dynamically capturing the true condition of lake bodies, including water 
levels, spatial distribution of water quality parameters, 3D flow fields, 
underwater terrains, and the volume of water flowing into and out of the 
lake. On this basis, it will be possible to create a digital twin framework 
that accurately represents the lake body, enabling a CyanoHAB footprint 
simulation. In our research, there is an absence of digital twin methods 
that encompass all factors of a physical lake body. As it stands, the 
driving data for CyanoHAB simulation and prediction is all the gener
alizations of real geographic information, affecting the prediction ac
curacy. In the foreseeable future, advancements in technologies like 
digital twins and data assimilation will facilitate the creation of digital 
twins for lakes in the real world. This will enable high-precision calcu
lations of hydrodynamic-water quality-algae coupled models and Cya
noHAB footprint simulations.

5. Conclusions

An innovative framework has been developed for the collaborative 
monitoring and precise prediction of CyanoHABs in eutrophic lakes, 
specifically Lake Chaohu. This framework integrates various single 
means to create a multi-level integrated monitoring network, making 
the first time such a network has been constructed with a specific focus 
on a lake. The goals of rapid assessment of CyanoHAB status and intel
ligent identification of anomalies were achieved. On this basis, a 
hydrodynamic-water quality-algae coupled model was developed, 
innovatively interconnecting the entire lake and its nearshore areas for 
multi-scale CyanoHAB prediction. This framework can provide strong 

Fig. 13. UAV-based CyanoHAB monitoring results in three key water areas on Sep. 30, 2021.
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support for water source protection and drinking water safety assurance. 
The practical application case in Lake Chaohu has demonstrated the 
significant advantages of this framework. Furthermore, the limitations 
of this framework were thoroughly examined, and potential avenues for 
future research were highlighted to address these issues and further 
refine the framework in the near term.
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