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Abstract 

Emerging contaminants (ECs) in aquatic environments have recently attracted the attention of researchers due to 

their ubiquitous occurrence and the potential risk they may pose to life. While advance analytical methods have 

improved global reporting in water matrices, additional information is needed to compile data on their occurrence, 

existing legislation, treatment technologies and associated human health risks. Therefore, the present study 

provides an overview of the occurrence of selected ECs, including personal care product, antibiotics, NSAIDs, 

EDCs and psychiatric drugs, the existing regulatory framework and their toxicological effects on human health. 

The water matrices under review are the treated wastewater, surface water, groundwater and, in a few cases, 

drinking water.  The study also highlights different treatment technologies available, and evaluates their 

performance based on the removal efficiency for different classes of ECs. For removal of almost all ECs 

considered, ozonation integrated with gamma radiation was reported highly efficient. Risk analysis was also 

performed for selected ECs including diclofenac, ibuprofen, naproxen, carbamazepine, estrone, 17 β-estradiol, 

bisphenol A, sulfamethoxazole, erythromycin and triclosan. The human health risk analysis indicated the highest 

number of locations with potential risk due to the EDCs, with South America, Europe and Asia having multiple 

risks due to estrone and Bisphenol A. The results of this study will give a better insight into the current situation 

of ECs in the global water matrices, the performance assessment of treatment technologies and the risk analysis 

will describe the need for more robust regulatory structures around the world to prevent the occurrence of such 

contaminants in the aquatic environment. 

Keywords: Emerging contaminants, Global water matrices, Wastewater treatment, Risk quotient, Guidelines  

Jo
ur

na
l P

re
-p

ro
of



Abbreviations 

ECs  Emerging Contaminants 

EDCs  Endocrine Disrupting chemicals 

NSAIDs Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) 

PPCPs  Pharmaceutical and Personal Care products 

E1 Estrone 

BPA Bisphenol A 

E2 17-βestradiol 

MOFs Metal Organic Frameworks 

CDM-74 Carbon derived from Zn based MOF-74 

MAF-6 Zn based MOF 

MBR Membrane Bioreactor 

CWs Constructed Wetlands 

EU  European Union 

WHO  World Health Organization 

NHMRC National Health and Medical Research Council 

USEPA  United States Environmental Protection Agency   

Jo
ur

na
l P

re
-p

ro
of



1. Introduction 

Water is among the most essential items for sustaining life on the planet. However, as a consequence of 

population explosion and economic growth, reduced discharge in rivers for extended periods due to climate 

change (Sjerps et al., 2017), the rapidly accelerated production and utilisation of chemicals (Bernhardt et al., 

2017), and enhanced sensitivity of analytical techniques, the amount of chemicals present in water is also 

increasing rapidly (Sjerps et al., 2016). To provide an example of the scale of this issue, within the European 

Union (EU) there are more than 100,000 registered chemicals (EINECS) (Schriks et al., 2010), of which 

30,000–70,000 are in daily use. Furthermore, it is estimated that nearly 300 million tons of synthetic 

compounds annually used in consumer and industrial products, partially end up in natural waterways 

(Schwarzenbach et al., 2006). Following the increasing concerns, researchers from eight countries at United 

Nations Environment Assembly, 2020 called for the establishment of a global body to direct the efforts to 

monitor chemical waste in the environment (Adeleye et al., 2022; Snow et al., 2018). 

Environmental contaminants in water have a long history, focusing initially on legacy contaminants like 

organic pollutants and heavy metals. Subsequent to this, the development of more sophisticated analytical 

methodologies has enabled the identification of emerging contaminants (ECs) in the environment at low 

concentrations (Adeleye et al., 2022; Snow et al., 2018). Emerging contaminants are pollutants which are 

present in the environment for an extended period, yet have only been recently identified and characterised. 

Alternatively, ECs are a class of compounds that have recently been identified in aquatic environments and 

their presence in water is a potential threat to the environment, humans, and aquatic life (Gumbi et al., 2017). 

Pesticides, pharmaceuticals, personal care products, endocrine disrupting chemicals (EDCs), microplastics, 

and flame retardants are some of the few examples of contaminants of emerging concern (Houtman, 2010). 

Since most of the pesticides have been regulated, they are also categorised as priority micropollutants 

(Glassmeyer et al. 2017; Peña-Guzmán et al. 2019; Sousa et al. 2018). In 1962, the release of American 

biologist Rachel Carson's book "Silent Spring" was one of the first and most significant steps in making 

humanity aware of the existence of such unregulated contaminants and paying attention to their harmful 

impacts. In that work, Carson raised concerns over the extensive use of biocide 

dichlorodiphenyltrichloroethane (DDT) and other persistent contaminants for agricultural practices. Though 

the concentrations of these contaminants were in the range of ng/L to µg/L but a continuous exposure to them 

can have a negative impact on the health of the ecosystem and its sustainability (Carson, 2002; Houtman et 

al. 2010). 
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Emerging contaminants can enter the environment through various pathways. If considering chemicals 

that are ingested into the living body viz, illicit drugs and pharmaceuticals, are incompletely utilized by the 

body and are passed in faeces and urine further (Zuccato et al., 2006). Others, like personal care or cleaning 

products are disposed of via drainage system (Daughton and Ternes, 1999). Furthermore, where infrastructure 

is available these contaminants are transported to wastewater treatment plants (WWTPs) via sewage system 

(Chiavola et al., 2019). As outlined by Wen et al. (2021) the treatment technologies for ECs are majorly 

classified in two broad categories of conventional and advanced treatment processes. The technologies 

utilized by current WWTPs are not able to completely remove the ECs, this was possibly due to the complex 

structure and non-biodegradability of these compounds and also due to their low concentration of occurrence 

(Alvarino et al., 2018; Sheng et al., 2016). The natural attenuation processes, which encompass mechanisms 

including sorption, dilution, volatilisation, photolysis, and biodegradation, offer a comparatively 

straightforward and cost-effective approach to remediation. However, these processes may exhibit reduced 

efficiency and efficacy in certain contexts (Barbosa et al., 2016; Rout et al., 2021). Nevertheless, the removal 

of ECs via activated carbon and biochar had the centre of focus in research related to EC removal technologies 

(Bedia et al., 2018; Sophia A. and Lima, 2018). Additionally, high solubility in water and the polarity of ECs 

reduced the removal efficiencies through physical techniques like sedimentation and flocculation. Whereas 

over the past few decades, conventional and advanced treatment techniques have gained more attention (Chen 

et al., 2021), regardless of the high energy and cost requirements of these processes. In light of this hybrid 

systems have been identified as potential replacements for conventional technologies, with a view of 

capitalising on the relative strengths of different techniques (Ahmed et al., 2021). 

It is evident that a number of ECs have been identified in the drinking water systems, yet the extent of their 

potential risks to health is unknown. Moreover, the contamination of global water resources due to the 

presence of emerging contaminants is quite clear. In China (Bao et al., 2020; Hao, 2020; Lin et al., 2017), 

Malaysia (Shehab et al., 2020), US (Barber et al., 2015; Karalius et al., 2014), Austria (Brueller et al., 2018), 

Philippines (Katrina and Espino, 2020), India (Joshua et al., 2020), Germany (Gerhardt, 2019), Netherlands 

(Belfroid et al., 2002), Mexico (Calderón-Moreno et al., 2019) and many more ECs have been identified in 

different water matrices. These findings imply that the occurrence of ECs in water is a worldwide issue. 

The concentration of ECs in water is primarily influenced by the pattern of water usage, catchment 

characteristics, per capita consumption, environmental persistence and others (Patel et al., 2019; Tran and 

Gin, 2017). Recent studies highlighted the unregulated, untreated, or partially treated discharge of ECs in the 
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environment, due to lack of strong regulatory structure and insufficient data about the toxicity and fate of the 

ECs. Addressing the recent concerns some global agencies have started to work on the establishment of 

interim aquatic guidelines. Moreover, agencies like the United States Environmental Protection Agency 

(USEPA) (Contaminant Candidate List 4, 2016), European Union (EU) (European Union Directive 

2013/11/EU, 2013), World Health Organization (WHO) (WHO, Guidelines for Drinking-Water Quality, 

2011) and other responsible bodies have developed a list of priority pollutants consisting of contaminants that 

can have adverse effects on human health and aquatic biota. 

So far, the existence of ECs from different water matrices has been the subject of numerous studies but, most 

of them have only examined a particular class or geographical region.  Additionally, only a handful of studies 

have assessed the potential toxicity by comparing the concentration in environmental matrices and the 

available toxicological data. For example, Morin-Crini et al. (2022), Parida et al. (2021), Ramírez-Malule et 

al. (2020), and Sousa et al. (2018) have recently conducted comprehensive reviews of the existing literature 

on the occurrence of ECs in the global water matrices. Although these studies have covered diverse 

geographical regions worldwide, they have collectively failed to provide sufficient information regarding the 

potential risks these compounds may pose to human health. Contrary to this, Baken et al. (2018) and Sharma 

et al. (2019) recently carried out the risk assessment of ECs present in water with the limitation being the 

extent of the geographical area focused in the studies. Therefore, to bridge this knowledge gap, present work 

was conducted with an aim of providing a comprehensive review of existing literature on the occurrence of 

different group of ECs, including antibiotics, NSAIDs, EDCs, psychiatric drugs, and personal care products 

in the global water matrices, majorly consisting of treated wastewater, surface water, groundwater and lastly 

few cases of drinking water. Furthermore, the potential risks to human health were calculated on a global 

scale for the concentrations of selected ECs in surface water, groundwater and drinking water matrices, 

expressed as risk quotients (RQ). In particular, the drinking water equivalent limits were compared with the 

maximum detected concentrations in water to derive the estimated RQ. In particular, the drinking water 

equivalent limits were compared with the maximum detected concentrations in water to derive the estimated 

RQ. Additionally, the study also assessed the potential conventional and hybrid treatment technologies to 

bring down the concentration of ECs in treated water. Also, a review is conducted about the performance of 

different technologies and the cost associated to get a better idea about the economical implementation of any 

technology at larger scale. 

Jo
ur

na
l P

re
-p

ro
of



2. Emerging contaminants 

For the convenience of the readers, following sections few major classes of EC’s are discussed in terms of 

their occurrence and respective impact on organisms. 

Endocrine disrupting compounds (EDCs): Back from 1990s, evidence has been accumulating that some 

natural and artificial chemicals in the environment can unsettle the endocrine (hormonal) functionality of the 

organisms that are exposed by imitating or obstructing the action of hormones (Colborn et al., 1993). 

Exposure to these chemicals may result in adverse health effects, collectively termed as endocrine disruption. 

The impacts of these can be observed in a wide range of biological processes viz. fertility, development, 

growth and reproduction. Among the EDCs estrogenic compounds like 17 β-estradiol (female sex hormone) 

have been given the highest attention. In this respect, the most prominent effect observed is the intersexuality 

in the male fishes in different parts of the world (Houtman et al., 2007; Jobling et al., 1998; Kirby et al., 2004; 

Solé et al., 2003; Vethaak et al., 2005). The endocrine system of humans is similar to vertebrates like fish, 

and thus the exposure to EDCs may also present certain health risks for humans. Moreover, it has been 

postulated that there is a correlation between environmental contaminants and human reproductive health, 

particularly in relation to declining sperm counts, breast cancer, testicular cancer, and increased occurrence 

rates of other reproductive disorders, including male infertility (European Environment Agency, 1997; Sharpe 

and Skakkebaek, 1993). However, despite the apparent correlation between the two variables, a causal 

relationship has not yet been definitively established (Daston et al., 2003). 

Pharmaceuticals: Pharmaceuticals are today one of the keystones of modern Western society. Without 

pharmaceuticals, many of our current standards of living would not be possible. A great number of 

pharmaceuticals are utilised today which include antibiotics, pain killers, lipid regulators, anti-depressants, 

X-ray contrast media etc. (Richardson, 2008). The release of pharmaceutical compounds in the environment 

has been acknowledged by researchers for decades. Despite this long-standing awareness, the full significance 

of this phenomenon has remained underappreciated for an extended period. One contributing factor may be 

the tendency for the regulation of pharmaceuticals to be overseen by health agencies, which may possess 

limited expertise when it comes to the intricacies of environmental issues(Daughton and Ternes, 1999). An 

estimate suggests that as much as 65% of all pharmaceuticals sold are never actually consumed (Ruhoy and 

Daughton, 2008). Moreover, a considerable quantity of pharmaceuticals, such as anti-inflammatory drugs and 

antibiotics, are not effectively removed by sewage treatment. These substances are commonly used in the 

veterinary sector to treat cattle in feedlots, where they can directly contaminate surface water through runoff 
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during precipitation. A number of evidence are available reporting the inefficacy of drinking water treatment 

technologies in eliminating pharmaceutical compounds, with their presence in the drinking water in trace 

levels (Cooney, 2009; Versteegh et al., 2007). 

Personal care products: Personal care products are defined by their active ingredients, which are used for the 

preservation of cosmetics, toiletry, and fragrance products. The aforementioned ingredients are employed to 

alter the olfactory, visual, physical, and gustatory characteristics of these products (Daughton and Ternes, 

1999). There can be a variety of personal care products like polycyclic musks used as fragrances then the 

parabens present in the shampoos, creams etc. to prevent bacterial decomposition. Moreover, disinfectants 

like clorophene and triclosan are used at large scales. For instance, triclosan is used in a variety of products 

ranging from hand soap and toothpaste to socks and toys (Petrović et al., 2003). Furthermore, benzophenone 

present in sunscreen has caught the eye of many environmental scientists and biologists. The worldwide 

occurrence of personal care products in effluents and surface waters has been reported regularly (Daughton 

and Ternes 1999; Rahman et al. 2009). It has been observed that some of these compounds can accumulate 

in exposed organisms (Houtman et al., 2004) while some are believed to have possible adverse effects such 

as mimicking hormonal activity (parabens, UV blockers), extreme bioaccumulation (musks) and toxicity (UV 

blockers) (Daughton and Ternes, 1999; Rahman et al., 2009). 

Pesticides:  The use of pesticides in agricultural and horticultural practices, including the application of 

fungicides, herbicides, insecticides, bactericides, and defoliants, plant growth regulators, has been a topic of 

concern for surface water quality for many decades. Following the Second World War, relatively nonpolar 

and substantially persistent pesticides, such as aldrin, chlordane and DDT led to significant increases in crop 

security and the production of food. But the bioaccumulation possibility of these compounds led to adverse 

effects on the ecosystem, as evident from the findings of the "Silent Spring" by Rachel Carson (Carson, 2002). 

Pesticides nowadays are polar and relatively less persistent. After application, these can reach surface waters 

through runoff, drift, drainage etc. Due to the long history of pesticide usage, the European Union has 

established regulations limiting the amount of pesticides permitted in drinking water: 500 ng/L for cumulative 

concentration of pesticides and 100 ng/L for individual compounds (Houtman, 2010). 

Perfluorinated compounds: Perfluorinated compounds, such as perfluorooctanoic acid (PFOA) and 

perfluorooctane sulfonic acid (PFOS), are notable for their unique chemical properties: they are both 

lipophobic and hydrophilic, exhibiting a high degree of repellence to water, lipids, and oil. These substances 

are employed as repellents for water, dirt, and grease, as well as sprays and coatings and for textiles, leather, 
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and in PTFE (Teflon) non-stick cookware. The growing concern about perfluorinated compounds can be 

attributed to their apparent persistence, their tendency to accumulate within organisms, as well as their 

documented toxicity, which includes interference with development and carcinogenicity (Mclachlan et al., 

2007; Skutlarek et al., 2006). A number of studies have indicated the presence of perfluorinated compounds 

in aquatic environments across the globe (Dalahmeh et al., 2018; Eschauzier et al., 2013; Essumang et al., 

2017; Kumar et al., 2023; Stroski et al., 2020) 

Microplastics: The term "microplastics," defined as plastic particles less than 5 mm in size, has emerged in 

the past few decades as a significant environmental contaminant. These microscopic particles are derived 

from diverse sources, including the disintegration of larger plastic fragments, and synthetic fibres derived 

from textiles and microbeads present in personal care products. Once released into the environment, these 

micro compounds are found to be present in a wide range of habitats, including both marine and freshwater 

ecosystems, as well as terrestrial and even atmospheric settings (Thompson et al., 2004; Barnes et al., 2009). 

The ubiquitous presence of microplastics in the environment is a cause of concern due to their ability to serve 

as carriers of dangerous substances, such as heavy metals and persistent organic pollutants (POPs), which can 

adhere to their surfaces (Rochman et al., 2013). The ingestion of these particles by organisms across different 

trophic levels from fish to zooplankton and even humans can lead to various adverse effects, including 

physical blockages, the absorption of toxins by the organism's body, and the possible biomagnification of 

these toxins through the food chain (Cole et al., 2011; Wright et al., 2013). A number of studies have 

documented the presence of microplastics in some of the remotest regions of the earth. These include the 

Arctic and the deep ocean trenches, which suggest a wide distribution and ubiquity of these pollutants 

(Obbard et al., 2014; Van Cauwenberghe et al., 2013). 

Flame Retardants: Flame retardants are a class of synthetic chemicals employed in the manufacture of a wide 

variety of materials, including plastics, textiles, and foams used in the production of computer cases, 

televisions, clothes, and upholstered furniture. The objective of their use is to inhibit combustion in the event 

of fire (Houtman, 2010). Previously, the primary compounds utilized for this purpose were polybrominated 

biphenyls (PBBs) and polybrominated diphenyl ethers (PBDE). These substances possess structural 

similarities to the "classical" contaminants, namely polychlorinated biphenyls (PCBs), and exhibit analogous 

behaviour in the environment as well. It has been documented that Brominated flame retardants are present 

in the tissues, blood, and breast milk of both wild and captive animals, as well as humans (Rahman et al., 

2001).  This is a cause for concern, as previous research has identified several potentially toxic properties of 
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these compounds and related products. These include their capacity to disrupt the thyroid, hormonal systems 

(Legler, 2008); toxicity to the nervous system; and the possibility that they may also be carcinogenic 

(Richardson, 2009). Due to their low solubility in water, these compounds tend to sorb to river sediments, 

rather than accumulating in water bodies at high concentrations (Rahman et al., 2001). 

3. Methodology 

3.1. Data collection 

The review was compiled using literature sourced from google scholar, web of science, ResearchGate, and 

others with the keywords "emerging contaminants, water and name of the continents or top countries 

contributing to the majority of the area in each continent." The primary set of literature was grouped according 

to the continents to which the study region belongs. The broad categories of ECs considered in this study 

were antibiotics, NSAIDs, EDCs, psychiatric drugs and personal care products. Furthermore, the discussed 

removal efficiencies for different classes of emerging contaminants were directly taken from the previously 

published research articles. Moreover, the risk was calculated for three age groups including infants, children 

and adults. The use of age-specific assessments of exposures has been previously employed in order to reduce 

uncertainty in risk assessment (de Jesus Gaffney et al., 2015; Yang et al., 2017). 

3.2. Estimation of human health risk 

For the risk analysis, the ten most commonly occurring contaminants from the abovementioned categories 

were selected. The worst-case scenario of possible health risk due to the presence of selected ECs in water 

matrices around the world was estimated in terms of risk quotients (RQ). In this study, an age specific RQ 

for each selected contaminant was estimated by dividing the maximum measured concentration in water by 

the provisional guideline value (Eq. 1) (Schriks et al., 2010; Sharma et al., 2019). 

𝑅𝑄 =
𝑀𝐶𝐷

𝐷𝑊𝐸𝐿
 

 

(1) 

Here, MCD is the maximum detected concentration in water and DWEL is the drinking water equivalent level. 

The DWEL values for all three age groups were calculated using Eq. 2, 

𝐷𝑊𝐸𝐿 =
𝐴𝐷𝐼(𝑜𝑟 𝑅𝑆𝐷) ∗ 𝐵𝑊

𝐷𝑊𝐼 ∗ 𝐴𝐵 ∗ 𝐹𝑂𝐸
 (2) 
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Where ADI/RSD (μg/kg/day) is the acceptable daily intake/risk specific dose. The values of ADI or RSD for 

each contaminant were obtained from various agencies like WHO, USEPA, EU, National Health and Medical 

Research Council (NHMRC) etc. BW and DWI is the average body weight (kg) and drinking water intake 

(L/day) for respective age groups (Leeuwen, 2000) (Table S1 and S2). AB, the gastrointestinal absorption 

rate was assumed to be 1 and FOE is the frequency of exposure (350/365 days) (Sharma et al. 2019). An RQ 

value of greater than 1 showed the possibility of human health risk and an RQ value of less than or equal to 

0.2 indicated no appreciable risk, whereas values ranging between 0.2 to 1 indicated the need for a more 

detailed assessment (Schriks et al., 2010; Yang et al., 2017). 

4. Treatment technologies 

Considering the treatment mechanisms and the aspects of the processes involved, the wastewater treatment 

techniques can be classified into four main categories: physical, chemical, biological, and hybrid methods. 

Primarily, these techniques are incorporated into water and wastewater treatment plants with the objective to 

produce safe water suitable for drinking and disposal respectively. The following sections provide a detailed 

insight into functionality and principles of the existing wastewater treatment technologies. 

4.1. Physical treatments 

Physical treatments relate to the removal of the ECs from wastewater without altering the biochemical 

properties of the contaminants present in water, given that such techniques avoid the use of any chemical or 

biological agents. Usually, physical treatments act as predecessors to the advanced treatment technologies 

i.e., chemical and biological treatments in a multistage treatment setup. Screening, sedimentation, aeration, 

membrane-based filtration are few of the most commonly employed physical treatment techniques (Samsami 

et al., 2020). The most highlighted advantage of these techniques is their technically simple and flexible 

approach which allows high adaptability of such techniques in various treatment strategies (Ahmed et al., 

2021). 

4.1.1. Effect of pre-treatment processes on ECs removal 

When considering different classes of emerging contaminants, the effect of pre-treatment processes such as 

sedimentation and flocculation on ECs in wastewater may vary. For instance, due to their high solubility in 

water, the majority of pesticides and pharmaceutical contaminants will remain soluble in water and will have 

a removal efficiency of less than 10% (Ahmed et al., 2016). Whereas in case of microplastics a removal 
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efficiency between 35% to 59% is reported after pre-treatment (Sun et al., 2019). Burns and Boxall, observed 

that roughly 65% of the microplastics are eliminated during the primary treatment stage (Burns and Boxall, 

2018). Additionally, microplastics can be trapped during the gravity settling and the grit removal phase. 

Studies conducted by Gies et al. (2018) and Bayo et al. (2020) reported that during the primary treatment 

stage the microplastic removal efficiency can be 92% and 74% respectively. Similarly, Long et al. (2019) 

studied the influence of the shape of microplastics on the removal efficiency in the primary treatment stage, 

the findings reported that fibre and pellet shaped particles were removed up to 79% and 83% respectively, 

whereas for granules and fragments efficiency was found to be 91%. Overall, it should be noted that more 

advanced techniques are required for the proper removal of ECs from the water. 

4.1.2. Effect of adsorption on ECs removal 

Adsorption in the past has been considered a powerful technique for the removal of ECs considering the 

strong binding ability of the majority of the emerging contaminants such as pharmaceutical and personal care 

products (PPCPs), NSAIDs and others. The main advantages of adsorption over other strategies are low cost, 

regeneration of the adsorbents, technically simple and many more (Eniola et al., 2022).  As the adsorption 

process is influenced by the properties of both the adsorbent and the contaminant, with contaminant properties 

such as charge, structure, size and solubility determining the binding of contaminant species to the adsorbent 

surface. A variety of natural and synthetic materials have been used as sorbents for the removal of ECs from 

water, including zeolites, agricultural waste, clay, polymers etc. Some of the most common and effective 

have been summarised. 

4.1.2.1. Natural materials 

Clay minerals are the most commonly used adsorbents for water treatment, numerous studies in the past 

reported the use of different clay materials for the removal of ECs from water. For example, Theibault et al. 

(2015) in a study used sodium smectite for the removal of doxepin and tramadol by adsorption. The Langmuir 

adsorption isotherm analysis revealed that ECs adsorbed on the clay bed reached 223.5 and 263.4 mg/g for 

tramadol and doxepin, respectively. 

Another natural (synthetic in some instance) absorbent commonly used for the removal of ECs is zeolite 

(Gupta and Suhas, 2009). A study presented by Maetucci et al. (2012) investigated the efficiency of 

adsorption for different organophilic synthetic zeolites (Y, ZSM-5, and MOR) for removal of carbamazepine, 
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erythromycin, and levofloxacin. Zeolite Y performed best with removal efficiency of 100, 42, 45 mg/g 

respectively. Overall, the study found that various materials have varying effects on different drugs, which 

may be attributed to differences in their interactions and structures. 

4.1.2.2. Agricultural waste 

Agri-wastes are generated by agricultural activities and the food processing industry in some cases. Rice 

husks, soybean shells and coconut shells are examples of agricultural wastes. These products contain 

functional groups such as cellulose, starch and lignin in their composition. These active surface groups on 

various agricultural waste products used as sorbents make these products a potential alternative to commercial 

sorbents (Sulyman et al., 2017). 

Liu et al. (2013) used rice straw to remove clofibric acid and carbamazepine. The absorbent showed 

significant results with adsorption of 14.3×103 mg/g for clofibric acid and 4.01 mg/g for carbamazepine. In a 

similar study, Isabel grape bagasse waste (a residue from grapefruit processing, mainly in wineries) was 

evaluated for its ability to remove diclofenac sodium from water. From the reported results, the Langmuir 

qmax was found to be 76.9 mg/g, with the percentage of diclofenac sodium ranging from 16.4% to 22.8%. 

Generally, sorbents based on agro-waste have proved to be a promising alternative treatment for wastewater 

containing ECs (Antunes et al., 2012). 

4.1.2.3. Synthetic and modified adsorbents 

To enhance the adsorption capacity the physicochemical characteristics of the absorbent materials are many 

times altered (Eniola et al., 2022).  For example, Cabrera-Lafaurie et al. (2014) modified the zeolite Y by 

introducing surfactants and transition metals; to enhance the adsorption of carbamazepine and salicylic acid 

this increased the adsorption for salicylic acid from 0.03 to 3.9 mg/g. A Titanium oxide pillared clay (Ti-

PILC) having improved microporosity and surface area than natural montmorillonite was also developed to 

enhance the removal efficiency for various ECs. This improved Ti-PILC showed removal efficiency for 

82.68, 23.05, 20.83 and 4.26 mg/g for imipramine, diclofenac-sodium, paracetamol and amoxicillin 

respectively (Chauhan et al., 2020). Another sorbent was synthesised by Eniola et al. (2020) to develop a 

modified nanocomposite (CuFe2O4/NiMgAl-LDH) with magnetic properties and a sheet-like layered 

structure, by incorporating metal oxide nanoparticles with an LDH. The modified sorbent was tested against 

oxytetracycline, and the performance compared with NiMgAl-LDH and CuFe2O4 (the precursors). The 

adsorption capacity was found in the order CuFe2O4 (106 mg/g) < NiMgAl-LDH (116 mg/g) < 
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CuFe2O4/NiMgAl-LDH composite (192.5 mg/g). The composite's adsorption capacity for ECs increased due 

to modifications made to the functional group and metal ions on its surface. 

Bhadra et al. (2020) reported the use of metal-organic frameworks (MOFs) to synthesise nanomaterials 

containing metals and non-metals. As compared to non-pyrolyzed MOF carbon drive from MOF (CDM-74) 

(i.e. carbon derived from Zn based MOF-74) showed a higher adsorption for N, N-diethyl-3-

methylbenzamide (DEET), chloroxylenol, and oxybenzone due to high porosity and acidic functionality of 

the carbon-derived form of MOF. Similarly, An et al. (2018) developed a porous carbon from MAF-6 (Zn 

based MOF) that demonstrated an exceptionally high adsorption for ibuprofen and diclofenac. 

Ravi et al. (2020) was the first to evaluate the removal of caffeine and carbamazepine using a phosphate 

(-PO3OH) based organic absorbent. Two synthesised materials showed high microporosity around 19.6% and 

32.5% and surface area of 714 and 581 m2 /g. In the past years, new sorbent materials were synthesised at a 

comparatively high rate, this might be due to high stability, surface area and pollutant binding ability of the 

same. The efficiency of these materials largely depends on parameters such as time, pH, temperature, and 

nature and concentration of the contaminant. The solution pH and surface charge of the adsorbent plays a 

vital role in binding of the pharmaceutical pollutants on the material surface (Eniola et al., 2022). 

4.1.3. Membrane technology 

The most commonly used membrane technologies for water treatment includes microfiltration, ultrafiltration, 

nanofiltration and reverse osmosis. This classification of techniques is purely based on the pore size 

characterization of the membranes used. For example, for microfiltration the pore size is about 0.04–0.1 μm 

and is 0.001-0.02 μm of ultrafiltration. Microfiltration is a process used to remove bacteria and viruses. 

Whereas nanofiltration can eliminate divalent salts and metal ions, pesticides, and other substances from the 

effluent. Reverse osmosis and nanofiltration are more energy-intensive than micro and ultrafiltration. 

However, they can produce better quality effluents (Khanzada et al., 2020). 

4.1.3.1. Microfiltration 

The microfiltration membrane process has been in use since the 19th century and has proven to be an efficient 

technique for the treatment of water containing various pollutants (Anis et al., 2019). These membranes can 

be used alone or in combination with other treatment methods, such as advanced oxidation for a better 
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removal of emerging contaminants (Ba et al., 2018). A study recently reported the capability of microfiltration 

membranes in removing the ECs such as pharmaceuticals via electro-oxidation. The study revealed that as 

the permeate flux of the membrane filter increased linearly from 74-216.4 L/m2 /h, the microfiltration 

membrane successfully degraded sulfamethoxazole with a removal efficiency of 85% (Yu et al., 2020). 

4.1.3.2. Ultrafiltration 

Ultrafiltration is a low-pressure membrane technology that is used for the removal of a variety of organic 

contaminants (Kim et al., 2016). Yoon et al. (2007) evaluated the interaction mechanism between the 

ultrafiltration membrane and 24 different emerging contaminants including the EDCs and pharmaceuticals in 

different water matrices i.e. drinking, wastewater and others. The source and chemistry of the water affected 

the adsorption of the targeted ECs. The study also compared the retention capacity of the ultrafiltration 

membrane with the nanofiltration membrane, and the latter was found to have the better adsorption capacity. 

Additionally, the study also reported that out of 27 targeted contaminants, 14 and 8 showed 100% retention 

on ultra and nanofiltration respectively and the retention for the remaining compounds was in the range 40-

75 %. Similarly, a study modified the ultrafiltration membrane by ingesting with Cu2O photocatalyst and 

tested it over ibuprofen. The results of the study revealed that the membrane successfully removed 85% of 

the ibuprofen with rate of removal of 32.63×10-3/min under visible light conditions (Singh et al., 2019). 

4.1.3.3. Nanofiltration 

Nanofiltration (NF) membranes have been used to remove various ECs. It uses a pressure gradient as the 

driving force (Licona et al., 2018). A study evaluated the performance of NF 90 (a commercially available 

nanofiltration membrane) for the removal of five pharmaceuticals namely: ibuprofen, acetaminophen, 

dipyrone, caffeine, and diclofenac. As per the results reported the targeted drugs showed greater than 88% 

rejection with ibuprofen and diclofenac showed a rejection of more than 90%. Maryam et al. (2020) tested 

the removal efficiency of two nanofiltration membranes NF10 and NF 50, the authors reported that the 

breakdown of ECs from a mixture might reduce the removal efficiency of the membranes. For all the targeted 

compounds NF10 provided less than 10% removal efficiency. Whereas NF 50 on the other hand showed 

removal efficiency in the order of paracetamol (49%) < ibuprofen (81.2%) < diclofenac (99.7%), but in case 

of mixture the removal efficiency for diclofenac abruptly reduced to 23%. 
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4.1.4. Reverse osmosis 

Reverse osmosis (RO) is a technology widely used to produce fresh water from seawater and brackish water. 

Also, it has been used to decontaminate wastewater (Goh et al., 2019). As reported by Kimura et al. (2004) 

RO was successful in removing some of the pharmaceutically active compounds and some uncharged EDCs. 

The results highlighted that for carbamazepine the cellulose acetate membrane had 85% rejection, while for 

polyamide membrane it reached 91%. Khan et al. (2004)  reported that RO can be highly efficient in the 

removal of emerging contaminants like pharmaceuticals. Furthermore, the commercially available RO 

membrane (BW30) is evaluated for the removal of ibuprofen, dipyrone, diclofenac, caffeine and 

acetaminophen. The range of removal efficiencies for different pharmaceuticals at different conditions were 

ibuprofen (99.05-99.15%), dipyrone (98.88-99.03 %), diclofenac (99.10-99.71%), caffeine (86.44-96.1%) 

and acetaminophen (89.47-95.85%). The study reported respectively lower rejection for Caffeine and 

Acetaminophen might be due to the highly hydrophilic nature of both the compounds (Licona et al., 2018). 

4.2. Chemical treatments 

4.2.1. Chlorination 

Most chemical oxidation processes have been shown to be highly effective in the degradation of EC in 

wastewater by oxidising them to a less toxic form. In some cases, bromine and gaseous chlorine/hypochlorite 

have also been utilised in wastewater treatment. Noutsopoulos et al. reported the use of chlorine for the 

removal of ECs from water. For pharmaceuticals naproxen and diclofenac, the removal was found to be the 

highest with efficiency of 95% and 100% respectively (Noutsopoulos et al., 2014). However, for other ECs 

like nonylphenol, nonylphenol diethoxylate, nonylphenol monoethoxylate, triclosan, bisphenol A, ketoprofen 

and ibuprofen the efficiency ranged from 34% to 83% (Noutsopoulos et al., 2015). Similarly, (Real et al. 

(2015) for the case of ECs like amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol the rate 

of reaction of chlorination was three times lower than that of ozonation. Additionally, chlorine and chlorine 

dioxide are strong oxidising agents that can produce by-products when treating wastewater, and the extent of 

mineralization achieved can be unsatisfactory (Rivera-Utrilla et al., 2013). 
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4.2.2. Ozonation 

Ozonation is an oxidation process that uses ozone (O3) to oxidise ECs. This technique shows an impact in 

significantly reducing the load of ECs in wastewater (Hollender et al., 2009). Ozone can react with ECs 

directly or indirectly through the formation of secondary oxidants (hydroxyl radicals) as a result of ozone 

reacting with a particular class of ECs, such as phenols or amines (Rizzo et al., 2019). Ozone is a potent 

oxidising agent that selectively reacts with aromatic rings and double bonds of ECs having a high electron 

density like sulfamethoxazole and trimethoprim (Barbosa et al., 2016; Gogoi et al., 2018). At a dose of 5000 

µg/L ozone can successfully remove more than 95% of carbamazepine, diclofenac, sulpiride, trimethoprim 

and indomethacin (Sui et al., 2010). As reported by de Oliveira et al. (2019) the degradation of ECs by 

ozonation largely depends on the factors viz. temperature, pH and ozone dose and the formation of by-

products during the process is still a concerning issue. 

4.2.3. Fenton process 

Fenton oxidation is another conventional method for oxidation. In this process, hydroxyl radicals are 

generated after the reaction of ferrous ions with hydrogen peroxide, which are effective in reducing the 

toxicity of organic contaminants in wastewater. However, this process has some clear limitations, such as the 

narrow pH range it can operate within, as well as the associated risks and costs of transporting, storing and 

handling the necessary reagents (Zhang et al., 2019). Another drawback of the process is the accumulation of 

Fe as Fe(OH)3, and the unintended consumption of OH* to form OH2* (Ahmed et al. 2016). Considering the 

related limitation some modifications in the Fenton process were also recommended. For instance, Shen et 

al.  (2019) designed a catalyst similar to Fenton to replace the centred iron matrix for better degradation of 

ECs like sulfamethazine. Sönmez et al. on the other hand assessed the performance of Fenton process while 

removing carbamazepine, caffeine and paracetamol from spiked tap water. The study reported the influence 

of Fe2+ and H2O2 concentrations on the removal efficiency. The removal of carbamazepine, caffeine and 

paracetamol at different optimal concentration of Fe2+ and H2O2 for each compound is reported as 99.77%, 

99.66% and 99.11% respectively with caffeine and paracetamol having higher optimal concentrations 

(Sönmez et al., 2022). A review about the removal of pharmaceuticals of from water by homogeneous and 

heterogeneous Fenton processes was carried out by Mirzaei et al. (2017). The study reported the removal 

efficiencies of different Fenton processes ranging from no significant removal in drug manufacturing sewage 

to complete degradation of antibiotics in distilled water. 
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4.2.4. Photolysis 

Photolysis is the process by which hydroxyl free radicals form when energy from electromagnetic radiation 

breaks down water molecules. This process can occur with various radiation sources, such as solar and UV 

radiation (Choi et al., 2020). Recent studies have shown that electro-magnetic energy, together with powerful 

oxidants such as ozone or H2O2, can be used to decontaminate water containing ECs associated with 

pharmaceutical products (Ali et al., 2017b). A study evaluated the performance of photolysis in removing the 

selected pharmaceuticals (fluoxetine, carbamazepine, atenolol, and trimethoprim). Reported findings 

suggested that if water containing targeted ECs is nitrated and exposed to solar or UV light, it can lead to the 

degradation of compounds via photolysis. The degradation mainly resulting from the oxidation of hydroxyl 

radicals was lowest for trimethoprim (47%) followed by carbamazepine (50%), fluoxetine (57%) and highest 

for atenolol (60%) (Hora et al., 2019). 

The fate of 16 ECs undergoing photodegradation was studied in controlled conditions under simulated 

sunlight. The treatment process effectively degraded carbamazepine, trimethoprim, atenolol, ranitidine, 

diclofenac, warfarin, sulfamethoxazole and ciprofloxacin. These drugs are resistant to wastewater treatment 

processes. However, some drugs may be transformed into other toxic parent compounds by photolysis. For 

example, carbamazepine was transformed into acridine, carbamazepine-10, 11-epoxide, and 10, 11-dihydro-

10, 11-dihydroxy-carbamazepine and diclofenac degraded into carbazole-1-acidic acid and 8-

chlorocarbazole-1-acetic acid. Additionally, acetaminophen irradiation resulted in ethenone. The 

contaminants degraded at different rates when exposed to light, with some degrading completely in less than 

15 minutes and others taking up to 63 minutes. This suggests that exposure to natural sunlight can cause 

partial or complete degradation of these and other emerging contaminants by photolysis (Ali et al., 2017). 

4.2.5. Photo-Fenton 

The Photo-Fenton process is a combination of the Fenton process and ultraviolet radiation (Barrera-Salgado 

et al., 2016). This technique can effectively degrade ECs like pharmaceuticals present in wastewater 

(Alabdraba et al., 2018). One disadvantage of photo-Fenton is its high catalyst consumption and the 

production of iron sludge. However, the photo-Fenton method was successful in decontaminating the effluent 

of a municipal wastewater treatment plant that contained pharmaceuticals (Klamerth et al., 2010). Dong et al. 
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(2019) in a study reported more than 92% degradation of carbamazepine and ibuprofen under different 

conditions in a photo-fenton process. 

4.2.6. Photocatalysis 

Photocatalysis is an advanced oxidation process (AOP) that requires the use of catalysts to facilitate the 

transfer of energy from photons to water molecules. According to Ahmed et al. (2021), the most extensively 

investigated photocatalysis technique for eliminating contaminants and microorganisms from wastewater is 

TiO2 photocatalysis. Moreover, the use of ZnO has also been reported to oxidise the contaminants like 

tetracycline and carbamazepine using photocatalysis. However, the highlighted drawback of this material was 

that at low working pH, it can get corroded. The removal of ECs using photolysis generally follows the order 

of pesticides < analgesics pharmaceuticals < EDCs and for all other pharmaceuticals it was found to be the 

lowest (Ahmed et al., 2017). 

Figure 1 presents a comparative assessment of removal efficiencies of different chemical treatments in 

case of different ECs. The figure illustrates that, with the exception of EDCs UV photolysis/H2O2 and Photo 

Fenton were the two most effective methods for removal of ECs. Although, ozonation and UV photocatalysis 

showed a high removal of EDCs but a relatively lower removal of NSAIDs was observed in case of ozonation 

while UV photocatalysis was highly underperforming in case of beta blockers and lipid regulators. 

Additionally, the figure also shows a notable inefficiency of UV photolysis among chemical treatments, with 

poor removal of lipid regulators, beta blockers, and analgesics (Fig. 1). 
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Fig. 1. Efficiency of different chemical treatment processes in removing various groups of ECs from water 

matrices 

4.3. Biological treatments 

4.3.1. Aerobic and anaerobic techniques 

Aerobic treatment has faster degradation kinetics than anaerobic treatment for the majority of the ECs. The 

biodegradation and sorption processes are responsible for the removal of pollutants in aerobic systems. The 

pollutants are mineralized by the activated sludge, resulting in the production of CO2 and H2O, and a reduction 

in the toxicity of the effluent (Fawzy et al., 2018). Akcal Comoglu et al.  (2016) investigated the treatment of 

wastewater contaminated with pharmaceuticals using an anaerobic batch treatment technique. The results 

obtained suggested that the bacterial biomass and the archaeal present in the reactor were successful in 

degrading the pharmaceutical contaminants. Furthermore, Zhou et al. (2006) studied the removal of 

antibiotics from pharmaceutical wastewater using anaerobic and aerobic treatment. The study reported the 

removal efficiencies for ampicillin and aureomycin as 16.4 and 25.9 % at hydraulic retention time (HRT) of 

1.25 day and 42.1 and 31.3 % with HRT of 2.5 day. On the other hand, biofilm airlift suspension reactor 

showed effective removal of COD, but less than 10 % removal was reported for both the antibiotics. Similarly, 
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Froehner et al. (2010) investigated the removal of hormones, caffeine and bisphenol-A from wastewater 

following the aerobic and anaerobic treatments. The study reported the removal efficiencies in the range of 

bisphenol-A (99.9-approx.100 %), caffeine (99.6-approx. 100 %), Estrone (approx. 100 %), 17-β-Estradiol 

(56.5-66.5 %) and 17-α-Ethinylestradiol (44.1-99.1 %). Shah and Shah (2020) conducted a review of studies 

on the degradation efficiency of anaerobic and aerobic technology for treating pharmaceutical wastewater. 

They concluded that hybrid anaerobic and aerobic technology models are the most competent and preferable 

bioremediation methods for pharmaceutical wastewater. 

4.3.2. Bacteria 

Park et al. (2017) investigated the influence of ammonia-oxidising bacteria on the removal of ECs from water 

in a bioreactor. The biodegradability of most of the compounds studied was improved by the presence of the 

bacteria, including steroidal anti-inflammatory drugs (NSAIDs), analgesics, antibiotics, and antibacterial 

agents. The results suggest that ammonia-oxidising bacteria in bioreactors will play an important role in the 

elimination of pharmaceuticals. In another study, the bacterial community has demonstrated an impressive 

ability to remove ECs (majorly pharmaceuticals) from water. According to the literature, certain species 

involved in degrading prenolol, bisoprolol, metoprolol, fluoxetine, norfluoxetine, 17β-estradiol and 

gemfibrozil have achieved removal efficiencies of 90% or more (Ramírez-Durán et al., 2017). 

4.3.3. Nitrification and denitrification 

Biological nitrification and denitrification play a significant role in removing emerging contaminants (ECs) 

in addition to managing nitrogen compounds in water systems (Ahmed et al., 2017). Ammonia-oxidizing 

bacteria convert ammonium to nitrite or nitrate during nitrification, while heterotrophic bacteria use organic 

carbon sources to reduce nitrate and nitrite to nitrogen gas during denitrification. It is important to note that 

these processes may incidentally remove some ECs, providing additional benefits beyond standard nitrogen 

removal (Silva et al., 2018). Phan et al. (2014) investigated the performance of the denitrification process for 

the removal of different ECs including EDCs, PPCPs and pesticides. The findings further reported that estrone 

(E1), 17-βestradiol (E2), estriol (E3), 17-ethinylestradiol (EE2), bisphenol A, 4-tert-butylphenol, 4-tert-

octylphenol, benzophenone, oxybenze, galaxolide, tonalide and salicylic acid has a removal efficiency of 82-

100%. While the pesticides such as fenoprop and atrazine were poorly removed 8-32% and paracetamol and 

triclosan had a rate of removal reaching 88-98%. According to a study, the rate of removal in denitrification 
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largely depends on the type of contaminants targeted. For instance, in the study carbamazepine, clofibric acid, 

diclofenac, erythromycin, roxithromycin and gemfibrozil had a lower removal efficiency whereas in the same 

study, the removal of ibuprofen, ketofenac and metronidazole by nitrification was high as 83-97% (Suarez et 

al., 2010). 

4.3.4. Microalgae 

Microalgae have been recognised for their ability to biotreat wastewater. This is due to their ability to grow 

in nutrient-rich wastewater. They can break down organic carbon into lipids, carbohydrates and other 

compounds (Mohan and Devi, 2014). Ding et al. (2020) studied the removal of pharmaceuticals using 

microalgae Navicula sp. The study further reported that the microalgae successfully removed 90% of the ECs 

like carbamazepine, atenolol, naproxen and ibuprofen. Additionally, the study also highlighted that the 

degradation of bezafibrate, sulfamethoxazole and naproxen was higher in the mixed treatment, which 

included all the pharmaceuticals collectively, as compared to the separate treatment for individual 

pharmaceuticals. Conversely, carbamazepine and atenolol demonstrated decreased degradation in the mixed 

treatment as compared to the separate treatment.  Another freshwater microalgae Chlorella pyrenoidosa was 

utilised in the treatment of pharmaceuticals in water. The results suggested that Chlorella pyrenoidosa, with 

a residence time of 7 days, effectively eliminated acetaminophen at a rate of up to 90%, while enrofloxacin 

exhibited a comparatively lower rate of removal, approximately 70% (de Wilt et al., 2016; Zhou et al., 2014).

Figure 2 shows the performance of various biological treatments in the successful removal of different 

classes of ECs. From the figure it can be seen that, overall activated sludge-based technique was the least 

efficient technique with rather lower removal for almost all the targeted group of ECs. On the other hand, 

biological activated carbon technique was most suitable for the treatment of ECs, considering their high 

removal efficiencies for all the classes of ECs considering EDCs as an exception. Furthermore, aerobic and 

anaerobic methods showed a better removal for EDCs but their performance in the case of personal care 

products was significantly low. In addition, the figure also depicts that nitrification and denitrification were 

the best performing techniques in the removal of personal care products, while in case of analgesics and 

antibiotics, the removal efficiency of these techniques was observed below 50% (Fig. 2). 
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Fig. 2. Efficiency of different biological treatment processes in removing various groups of ECs from water 

matrices 

4.4. Hybrid technology 

4.4.1. Advanced oxidation 

The inability of the conventional and the recent treatment technologies to properly treat different ECs and the 

defects in some of the recent developments has led to the utilisation of two or more treatment technologies 

simultaneously in a single stage for the treatment of wastewater containing emerging contaminants like 

pharmaceuticals (Eniola et al., 2022). For example, a treatment process integrating biodegradation and 

photocatalysis has shown effective removal of antibiotics, the study suggested that a hybrid technology can 

enhance the quality of effluent produced after wastewater treatment (Yu et al., 2020). In another study, Della-

Flora et al. (2020) combined solar photo Fenton with adsorption to treat an anticancer drug named Flutamide. 

Initially, 20% of the drug was removed solely by photo Fenton. The efficiency was taken to 58% by tripling 

the dose of Fe2+ and H2O2. Whereas by incorporating adsorption on activated carbon from avocado seeds the 

targeted drug was completely removed in a contact time of 40 minutes. Similarly, Ling et al. (2020) in a 

Fenton like process made use of activated alumina-supported CoMnAl metal oxides as co-catalysts to 

decontaminate the wastewater containing pharmaceuticals. 
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4.4.2. Membrane bioreactor (MBR) 

Membrane Bioreactor is widely regarded as a promising technology for wastewater treatment due to the high 

removal efficiency achieved with respect to many ECs. It combines a membrane based physical process with 

a biological process (Tambosi et al., 2010). A recent study developed MBR by incorporating an ultrafiltration 

membrane with an anaerobic sludge bed digestor. The performance of the bioreactor was evaluated against 

the treatment of seven ECs namely ketoprofen, fenofibrate, prednisone, fluconazole, loratadine, 17 α-ethinyl 

estradiol, and betamethasone. The results revealed that despite all being the non-inflammatory drugs 

betamethasone and prednisone showed high removal i.e.95% and 98% respectively, whereas no significant 

removal was reported for ketoprofen. Furthermore, fluconazole also showed relatively less tendency of 

adsorption (Faria et al., 2020). Similarly, Kim et al. (2014) reported that integration of membrane filtration 

with aerobic digestion of wastewater. As reported out of the 99 ECs investigated 23 compounds showed a 

good removal efficiency i.e., greater than 90%. The order of removal was, ibuprofen was completely removed 

and various compounds including metformin, 4-epitetracycline, norfloxacin and others showed a removal of 

91-99%, while moderate removal (55-90%) was observed for albuterol. Furthermore, carbamazepine was 

poorly removed (10-50%) and in the case of thiabendazole, fluoxetine no or less than 10% removal was 

observed. 

4.4.3. Constructed wetland (CW) 

Constructed wetlands are systems designed to replicate the processes of natural wetlands in a controlled 

environment for the purpose of wastewater treatment. This is achieved through a combination of 

biodegradation (biological), sorption (physicochemical), and oxidation (chemical) interactions between 

plants, wastewater, and soil. Based on the wastewater flow regime constructed wetlands can be classified into 

three classes i.e., vertical flow, horizontal flow, and subsurface/surface flow systems. Töre et al. (2012) 

reviewed the fate of emerging contaminants in constructed wetland-based treatments. The findings revealed 

that CW effectively removed many ECs with percentage removal for polycyclic aromatic hydrocarbons (60-

70%), steroid estrogens (100%), estrone (67.8 ± 28%), bisphenol A (80-100%) and for Linear alkylbenzene 

sulphonates (30-55%). Similarly, Matamoros et al. (2008) tested a 1-ha surface flow constructed wetland for 

treatment of 12 ECs in wastewater. The results reported good removal efficiencies (greater than 90%) for all 

the ECs with the exception of carbamazepine and clofibric acid having removal efficiency range between 30-

47%.  In another study, Hijosa-Valsero et al. (2011) investigated the removal of antibiotics from wastewater 
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using seven different constructed wetlands. The study revealed that taking into account the soluble water 

fraction, the only antibiotics that were easily removed were doxycycline (61 ± 38 %) and sulfamethoxazole 

(60 ± 26 %). Whereas the removal of other contaminants was limited to specific system configurations. Thus, 

CWs are not an overall solution for the removal of ECs from wastewater considering the seasonal and natural 

variability. 

The performance of three hybrid technologies namely constructed wetland-based (CW based), MBR 

based and ozonation and gamma radiation-based processes can be seen in the figure (Fig. 3). The figure 

suggests that different techniques were superior when different ECs were considered. For example, in the 

case of lipid regulators MBR based techniques were most efficient. While in case of Analgesics Ozonation 

integrated with gamma radiation was best performing and MBR based techniques had the lowest efficiency. 

Moreover, when pain relivers are considered both ozonation and MBR based techniques had a better removal 

efficiency than MBR based methods (Fig. 3). 

 

Fig. 3. Efficiency of different hybrid systems in treating various groups of ECs from water matrices 

4.5. Cost estimation 

The biggest challenge in treating emerging contaminants from water and wastewater using recently developed 

technologies is the associated cost. For instance, techniques involving adsorbents or photocatalysts can be 

expensive due to the high cost of the chemicals involved (Eniola et al., 2022). Considering the low cost 

involved the use of agricultural waste provides an economical alternative for the absorbent materials, but then 

the cost of pretreatment required for bio adsorbents adds to make the option expensive (Viotti et al., 2019). 

For photo-Fenton technique, considering a catalyst life of 180 days with 24-hour operation the cost of a 
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photocatalyst for 1 cubic metre was estimated equal to 4.93 euro (Segura et al., 2021). Alternative treatment 

methods, such as membrane technology, can be expensive due to the high cost of equipment. This can increase 

the overall operating costs. Additionally, membrane replacement and the extra energy cost due to membrane 

fouling are significant contributors to the total main operating cost of membrane technology (Jafari et al., 

2021). In case of hybrid techniques, the cost of treatment is usually enhanced due to the involvement of 

multiple treatments in a single stage. Gupta et al. (2021) have estimated the cost of operation for a 

photocatalysis based adsorption system as 2.2-4.4 USD/cubic metres when this is utilised for the degradation 

of diclofenac. However, the environmental and human benefits of improved water quality resulting from the 

higher removal efficiencies of these technologies can offset the high costs of treating emerging contaminants 

in wastewater. Table 1. Listed the operational costs along with the advantages and disadvantages of various 

treatment techniques. 

Table 1 

The operational cost of different treatment technologies utilized for EC removal from wastewater matrix 

Treatment 

Methods 

Types 

Operational 

Cost 

Advantages Disadvantages Applications Ref. 

Physical 

Methods 

Adsorption 

0.98 

USD/cubic 

meter 

Technically 

Simple and 

minimal 

generation of by-

products 

Varying 

contaminant-

adsorbent 

interactions 

Pharmaceuticals 
(Moran, 

2015); 

(Eniola et 

al., 2022; 

Wang et al., 

2015) 

Membrane 

Technique 

Pharmaceuticals 

and personal care 

products 

Chemical 

Methods 

Photocatalysis, 

Fenton, Photo-

Fenton 

0.85-10.36 

Euro/cubic 

meter 

Universal 

Applicability 

Cost associated 

with artificial 

energy 

generation 

Pharmaceuticals 

and Pesticides 

(Segura et 

al., 2021), 

(O’Shea 

and 

Dionysiou, 

2012); 
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(Prieto-

Rodriguez 

et al., 2012) 

Biological 

Methods 

Aerobic, 

Anaerobic, 

Bacteria etc. 

0.17-0.53 

Euro/cubic 

meter 

More 

environmentally 

friendly than 

chemical methods 

High Sludge 

Generation and 

Processing 

Pharmaceutical 

and personal care 

products 

(Pajares et 

al., 2019); 

(Samer, 

2015); 

(Matamoros 

et al., 2015; 

Suman Raj 

and 

Anjaneyulu, 

2005) 

Hybrid 

Methods 

Advanced 

Oxidation 

2.2-4.4 

USD/cubic 

meter 

Significant 

ancillary effect on 

the removal of 

ECs 

Operational and 

maintenance 

cost 

Pharmaceuticals 

(Gupta et 

al., 2021); 

(Rosman et 

al., 2018) 

Constructed 

Wetlands 

1.33 USD/ 

sq. 

Meter/yr. 

Low cost and 

High performance 

Chemical 

precipitation 

and seasonal 

dependency 

Pharmaceuticals, 

personal care 

products and 

pesticides 

(Gkika et 

al., 2014); 

(Garcia-

Rodríguez 

et al., 2014; 

Töre et al., 

2012) 

 

5. Occurrence of emerging contaminants in water matrices 

Generally, the majority of the ECs discussed in the previous section can enter the water matrices through 

various natural or anthropogenic sources. The sources of ECs to the environment can be both direct point 
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sources like effluent discharge from hospitals, industries, WWTPs etc., or it can be indirect sources like 

atmospheric deposition, catchment runoff, septic tanks and waste dumping sites.  The presence of a variety 

of emerging contaminants in water sources around the globe has been documented on a widespread basis, as 

illustrated in the provided figure (Fig. 4). 

 

Fig. 4. Occurrence of different ECs in water sources around the world (a) antibiotics, (b) NSAIDs, (c) EDCs, (d) 

psychiatric drugs, and (e) personal care products 

5.1. NSAIDs 

The non inflammatory drugs have shown a high persistence in the global water, this can be due to their high 

utility in daily life. In this study three drugs were studied i.e., diclofenac, ibuprofen, and naproxen. From the 

review, it was seen that the maximum concentration for NSAIDs diclofenac (836 µg/L), ibuprofen (1673 

µg/L) naproxen (464 µg/L) was reported in the Asian country of Pakistan (Ashfaq et al., 2017). A high 

concentration for diclofenac was also observed in Jeddah, Saudi Arabia (14.02 µg/L) (Ali et al., 2017) and 

KwaZulu-Natal province South Africa (9.7 µg/L) (Madikizela and Chimuka, 2017). Furthermore, Loos et al. 

(2013) presented a report on the Union wide monitoring of ECs in wastewater of Europe. The study reported 

the presence of all the mentioned drugs with maximum concentrations of, diclofenac (0.174 µg/L), ibuprofen 
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(2.129 µg/L), and naproxen (0.958 µg/L). Another study carried out a review on environmental monitoring 

of the contaminants listed in the EU guidelines (Sousa et al., 2018). According to the study, diclofenac was 

one of the most studied pharmaceuticals among the lists. Recently González-Alonso et al. (2017) has also 

reported contamination due to diclofenac in the Antarctic Peninsula region with concentration of the drug as 

7.761 µg/L. Miège et al. (2009) and Santos et al. (2009) reported that across Europe naproxen and ibuprofen 

were most consumed analgesics, with concentration for the drugs ranging beyond 6000 µg/L in the 

wastewater influents. Pulicharla et al. (2021) reported the presence of ibuprofen in five drinking water 

treatment plants across Québec, Canada. In this study the maximum concentration for ibuprofen was reported 

in Lawrence River (0.083 µg/L). Kallenborn et al. (2018) carried out the assessment of pharmaceuticals and 

personal care products in the Arctic environments. In this study maximum concentration of ibuprofen was 

reported for Faroe Islands (4.5 µg/L) followed by Ontario (4 µg/L). Whereas for diclofenac the maximum 

concentration was reported in Longyearbyen, N, Svalbard (1.074 µg/L). A study from Dunedin, New Zealand 

reported the presence of naproxen (0.005 µg/L) in the fresh waters (Bernot et al., 2019). 

5.2. Psychiatric drug 

Carbamazepine was continuously detected in water. Highest persistence for the drug was detected in 

Esmeraldas, Ecuador with concentration more than 80 µg/L (Voloshenko-Rossin et al., 2015). A number of 

studies have suggested a wide utilization of Carbamazepine in South America. For example, Elorriaga et al. 

(2013) reported the presence of the drug in wastewater from urbanized locality of Argentina with 

concentration more than 6 µg/L. Chaves et al. (2021) reviewed the occurrence of emerging contaminants in 

Brazilian surface water, the study listed the occurrence of carbamazepine in many surface water bodies in the 

country with maximum concentrations reported in Jundiai River (0.659 µg/L) and Rio Negro (0.652 µg/L).  

Another study from South Africa has reported a concentration of 3.24 µg/L in water from Msunduzi River, 

KwaZulu-Natal (Matongo et al., 2015). A concentration of 0.886 µg/L for the compound was reported in the 

surface water of Rome, Italy (Patrolecco et al., 2015). Glassmeyer et al. (2017) carried out a nationwide 

inspection of emerging contaminants in the source and treated drinking waters around United States and 

reported a higher concentration in treated drinking water (586 ng/L) than the source (0.269 µg/L). Asian 

countries showed a high persistence of the drug in the water with concentrations of 1.933 µg/L (Saudi Arabia) 

(Picó et al., 2019), 1.455 µg/L (China) (Li et al., 2018) and 0.4841 µg/L of carbamazepine was detected the 

surface waters of Yamuna River, India (Biswas and Vellanki, 2021). Countries from Oceania have reported 
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relatively lower concentration of carbamazepine up to 0.682 µg/L (Australia)(Scott et al., 2014), and 0.620 

µg/L (Waikato, New Zealand) (Moreau et al., 2019). 

5.3. Endocrine disrupting chemicals 

The presence of different EDCs in water has been confirmed for all the continents around the globe. In this 

study, the occurrence of three EDCs including two hormones (estrone (E1); 17 β-estradiol (E2)) and one 

industrial contaminant (Bisphenol A) was reviewed. The highest concentration for all three contaminants was 

reported in Mexico with concentrations varying from ng/L to 140 ×103 µg/L. Recently V´azquez-Tapia et al. 

(2022) assessed the situation of ECDs in various Mexican water matrices. The study reported the maximum 

concentration for E1, E2 and BPA in surface water as 1300 µg/L, 2200 µg/L and 140 ×103 µg/L respectively. 

(Kanama et al., 2018) reported concentration for E1 hormone in range of 0.007 µg/L to 6 µg/L in treatment 

plants receiving influx from the health facilities of Northwest Province, South Africa. In the last decade, a 

continuous persistence of EDCs in South American water has been reported. For instance, Voloshenko-

Rossin et al. (2015) reported the presence of EDCs in Esmeraldas watershed, Ecuador, the maximum 

concentrations for estrone and 17 β-estradiol were found to be 11.4 µg/L and 2.2 µg/L respectively. Another 

study from Iguacu River, Brazil reported the maximum concentration for estrone as 0.94 µg/L whereas for 

estradiol it was 1.42 µg/L (Ide et al., 2017). In a bibliographical assessment of emerging contaminants in the 

Brazilian environment, Starling et al. (2019) reported the presence of various endocrine-disrupting chemicals 

in different water systems around the country. Additionally, the study indicated that bisphenol A (BPA) 

persists at high levels along urban areas and among the identified compounds, 17 β-estradiol and 17 α-

ethynylestradiol were found in the highest concentrations in the surface waters. A similar pattern of 

occurrence was also observed in the countries of Asia and Oceania. Biswas and Vellanki reported the presence 

of estrone in the Yamuna River, with a detection frequency of 100% and a maximum concentration of 1.782 

µg/L (Biswas and Vellanki, 2021). Rivers from western India were found to contain EDCs with range for E1, 

E2 and BPA varying as 0.026-0.124 µg/L, 0.004-0.028 µg/L and 0.095-0.299 µg/L respectively (Williams et 

al., 2019). Emnet, reported that E1 was the most detected estrogen in the wastewater effluent of Lyttelton 

Harbour, New Zealand, with concentration ranging between 0.021-0.114 µg/L (Emnet, 2013). Similarly, in 

Australia also E1 was most detected among the EDCs in river water with maximum concentration of 0.057 

µg/L (Scott et al., 2014). Furthermore, bisphenol A was also highly persistence in the European environment. 

The maximum reported concentration for BPA lowland aquifers of Berkshire, U.K. was 39 μg/L (Manamsa 

et al., 2016). Another study from Poland has reported a maximum concentration of 6.88 μg/L for BPA with 
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detection frequency of 100% in the collected groundwater samples (Kapelewska et al., 2018). River pollution 

by endocrine disruptors in Mira, Portugal have been reported by Rocha et al. (2016) the study reported the 

maximum concentration of BPA in the river water as 0.3066 µg/L. 

5.4. Antibiotics 

The condition of antibiotics in global water is not very different compared to the EDCs or NSAIDs, as they 

have also shown a constant persistence in different water matrices throughout the world. This study has 

reviewed the situation of two of the most commonly occurred antibiotics in the world namely 

sulfamethoxazole and erythromycin. The maximum concentration of 309 μg/L for sulfamethoxazole was 

detected in Esmeraldas, Ecuador (Voloshenko-Rossin et al., 2015). Whereas the African countries have 

shown the most frequent and high detection of the drug. Kimosop et al. (2016) investigated the discharge load 

of antibiotics in the hospital discharge of Kenya. The study reported the presence of sulfamethoxazole along 

with other antibiotics in the discharge from various hospitals around Lake Victoria basin, with the highest 

concentration for sulfamethoxazole (0.59 μg/L) detected in effluent from Kakamega Hospital. Another study 

by Kairigo et al. (2020) reported the presence of antibiotics in Kenyan water, highest concentration of 56.6 

μg/L was detected for sulfamethoxazole in Mwania river, Machakos. Additionally, the study also reported 

the presence of antibiotics in the water matrices of Nyeri and Meru County of Kenya with the concentration 

of sulfamethoxazole in water ranging between 0.3-17 μg/L. Differing from sulfamethoxazole the highest 

concentrations for erythromycin were detected in the Asian water. According to Xiao et al. (2023) highest 

concentration for erythromycin were detected in the effluents from south China having a maximum 

concentration of 7.20 μg/L. Khan et al. (2020) has reviewed presence of ECs in water environments of south 

Asia. The study reported the concentration of erythromycin in surface water in µg/L as Sir Lanka (6.501); 

India (0.0387) followed by Pakistan (0.0362) and lastly Bangladesh (0.76×10-3). In Europe, a high occurrence 

of antibiotics was found in the German groundwater. The maximum concentrations for erythromycin and 

sulfamethoxazole in groundwater of Germany was found to be 0.3924 µg/L and 0.0422 µg/L (Reh et al., 

2013). Lesser et al. (2018) in survey for world’s largest untreated wastewater irrigation system in Mezquital 

Valley, Mexico targeting the presence of ECs reported the maximum concentration of sulfamethoxazole as 

6.75 µg/L while for erythromycin it was found to be 1.140 µg/L. The presence of antibiotics in the 

environmental waters of Oceania has been reported by Watkinson et al. (2009), the maximum detected 

concentration of sulfamethoxazole was 2 μg/L. A similar study by Moreau et al. reported the maximum 

concentrations of 0.260 µg/L for sulfamethoxazole in the groundwater of New Zealand (Moreau et al., 2019). 
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5.5. Personal care products 

In this study, the antibacterial compound triclosan (TCS) was considered, as it is the most commonly studied 

and detected compound in the water matrices around the globe. The highest concentration of triclosan has 

been identified in the waters of North America.  A concentration of 90,000 µg/L was detected in the surface 

water of Mexico (Díaz-Torres et al., 2013; Vázquez-Tapia et al., 2022). As reported by Kumar et al. (2010) 

the maximum concentration of TCS in dissolved phase for Savannah, Georgia, USA was 4.76 µg/L. Peña-

Guzmán et al. (2019) in a review of ECs in Latin America reported that for Guatemala the concentration of 

TCS in varied from 18 to 520 µg/L. While for Chile and Costa Rica the study has reported a maximum 

concentration of 15 µg/L and 0.263 µg/L. Bakare and Adeyinka studied the fate of TCS in wastewater 

treatment systems across Durban, South Africa, the study reported that the concentration of TCS in effluent 

ranged from 1.732-6.980 μg/L (Bakare and Adeyinka, 2022). Stasinakis et al. (2008) identified the presence 

of triclosan in the discharge from Greek wastewater treatment plants with a maximum concentration of 6.880 

µg/L. A study by European Commission has reported a maximum concentration of 5.370 μg/L in the 

wastewater effluents from Luxembourg (SCCS (Scientific Committee on Consumer Safety), 2011). A high 

occurrence of triclosan was also shown among the Asian rivers. Zhao et al. (2009) investigated the Pearl 

River in the south China for the presence of TCS. The study further reported that the concentration in river 

water varied between 0.0006-0.347 µg/L. Another study on Pearl River system reported the concentrations 

range for TCS in Liuxi, Zhujiang and Shijing river as below quantification-0.0139 µg/L, 0.0045-0.0462 µg/L 

and 0.0688-0.338 µg/L respectively (Zhao et al., 2010). Similarly, Biswas and Vellanki (2021) identified the 

presence of triclosan in Yamuna River with a maximum concentration of 0.2698 µg/L. Montagner et al. 

(2014) have investigated the presence of TCS in six rivers across São Paulo, Brazil, in the study 45% of the 

samples contained triclosan with concentration varying from 0.0022 to 0.066 µg/L. A review by Starling et 

al. (2019) has also identified TCS in different water matrices across Brazil. According to Emnet et al. (2020) 

the concentration of TCS in Lyttelton Harbour, New Zealand was in range of 0.00131-0.1215 µg/L. Close et 

al. (2021) detected the highest concentration of TCS in groundwater of New Zealand as 0.00203 µg/L. TCS 

was frequently detected in effluent from Scott base, New Zealand’s Antarctic research site, with 

concentrations up to 0.043 and 0.807 µg/L, respectively (Emnet et al., 2015). Another study from Oceania 

has determined TCS in effluents of Australia’s largest wastewater treatment plant near Canberra with 

concentrations approximately 0.004-0.005 µg/L (Roberts et al., 2016). 
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6. Challenges in reusing water contaminated with emerging contaminants 

6.1. Organic contamination of soil 

Wastewater reuse can alter the physio-chemical and biological properties of soils, which in turn can affect 

the bioavailability and uptake by crops (Minhas et al., 2022). In the past many studies have provided evidence 

for the ubiquitous occurrence of ECs in soil following wastewater reuse and proved their resistance to various 

treatment practices (Minhas et al., 2022). For instance, Muñoz et al. (2008) using the life cycle assessment 

model investigated the impact of 98 ECs and reported a significant impact of 16 of them, out of which 10 are 

from the category of pharmaceuticals and personal care products. Similarly, a study explained the impacts of 

wastewater irrigation and biosolid application on the transport of pharmaceutical contaminants in soil. The 

results suggested that the application of treated effluent has enhanced the transport of some of the 

pharmaceutical compounds in soil, whereas the biosolids increased the retardation for the same (Borgman 

and Chefetz, 2013).  In another study from the past Topp et al. (2008) mobilisation of ECs like 

pharmaceuticals and personal care products was studied. The results suggest the accumulation of the targeted 

compounds in the soil. diclofenac and carbamazepine were detected in the low concentration in the runoff 

even after 266 days of application of the drugs. Another example of the accumulation of emerging 

contaminants in soil irrigated with wastewater in China was presented by (Zeng et al., 2008). In the study, 

Phthalates were detected in the soil sample having concentration in the range of 0.195 x10-3 to 33.6×10-3 mg/g 

(d.w.) which mainly originated from sewage and wastewater application. In the past few decades, the 

occurrence of ECs in soil has attracted researchers throughout the globe. Chen et al. (2011) investigated the 

presence of various ECs in Chinese soil and reported the presence of trichlocarban, salicylic acid, 

oxytetracycline and tetracycline, having concentrations in the range of 0.3 x10-6-139 x10-6 mg/g. Kinney et 

al. (2006) found the presence of carbamazepine, sulfamethoxazole and ECs in the soil from the USA. 

Similarly, the presence of doxycycline (62.6–728.4), norfloxacin (< MQL-95.7), trimethoprim (< MQL-60.1) 

and progesterone (< MQL-24.2) with range in 10-6 mg/g was reported in Malaysian soil (Ho et al., 2012). 

Lastly, Biel-Maeso et al. (2018) studied the occurrence of ECs in soil from Spain. The finding of the study 

reported the concentration of targeted compounds (mg/g): acetaminophen (n.d.-5.95 x10-6), diclofenac (n.d.-

5.06 x10-6), carbamazepine, (0.08 x10-6 –1.36 x10-6), flumequine (n.d.-5.31 x10-6) and hydrochlorothiazide 

(0.38 x10-6 –1.20 x10-6). 
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6.2. Uptake by plants 

The presence of organic contaminants in soil can influence the biological balance and further affect plant 

growth (Gworek et al., 2021). The disturbance is likely caused by the breakdown of a significant number of 

soil micro-organisms such as microworms, nematodes, and protozoa. This, in turn, affects the processes in 

soil-plant symbiosis (Grassi et al., 2013). Transport and bioaccumulation of ECs like pharmaceuticals in 

plants varies with the mode of cultivation i.e., on soil farming and soil less farming also the physical and 

chemical properties can have a significant impact on the uptake (Carvalho et al., 2014). In the past many 

studies have been conducted to comprehend the plant uptake of these micro pollutants by different plant 

species. For example, Kong et al. (2007) conducted a series of experiments in soil-less hydroponic systems 

to investigate the uptake and toxicity of oxytetracycline in alfalfa (Medicago sativa L.). The study suggested 

that the drug influenced the root and shoot growth by approximately 85% and 61% respectively. In another 

study, Wu et al. (2010) explored the uptake of five ECs namely diphenhydramine, carbamazepine, fluoxetine, 

triclosan and triclocarban, in soybean (Glycine max Merr.), under controlled conditions. Analysis carried out 

after a growth period of 60 and 110 days reported the accumulation of triclocarban, triclosan and 

carbamazepine in plant roots, shoots and seeds. Whereas diphenhydramine and fluoxetine had a limited 

accumulation in aerial parts of the plants. Along the same line, another study investigated the potential of 

veterinary products when present in soil to be taken up by plants consumed by humans. The results indicated 

the accumulation of targeted contaminants in the soil above the detection limit, for at least 5 months from the 

application of manure. Additionally, the results of plant uptake by carrot roots and lettuce revealed the uptake 

of diazinon, florfenicol, trimethoprim and enrofloxacin by carrot roots, whereas florfenicol, trimethoprim and 

levamisole were present in lettuce (Boxall et al., 2006). Similarly, Winker et al. (2010) studied the uptake of 

ibuprofen and carbamazepine by ryegrass, supplied with pharmaceutical spiked urine or stream of treated 

household wastewater. The results reported that carbamazepine was the only drug up taken by the ryegrass. 

The study further uncovered that about 34 % of the drug was recovered from the shoots and 0.3% from the 

roots of the plants, whereas 53% of the carbamazepine was still present in the soil. Another study from 

Turkey, analysed the uptake of tetracycline and related metabolites by Phragmites australis (common reed) 

irrigated with effluent from the slaughterhouse. The trace of tetracycline and its metabolites in the studied 

plant components increased in the following order:  leaves <stems <roots (Arslan Topal, 2015). Recently, 

Gredelj et al. (2020) investigated the uptake of a PFAA (perfluoroalkyl acid) mixture into Cichorium intybus 

L (red chicory), a common agricultural produce from a major PFAA contaminated zone in northern Italy. The 
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obtained results highlighted that PFBA showed highest bioaccumulation with roots having the maximum 

(43×10-3 mg/gdw), followed by leaves and head of the plants. Moreover, the concentration in the plant 

compartments eventually decreased with an increase in PFAA chain length. 

6.3. Effects on groundwater quality 

Although the reuse of wastewater has continued to elevate following the increase in wastewater production 

(Khalid et al., 2018), this practice leads to the threat of groundwater contamination (Hashem and Qi, 2021). 

Considering the groundwater some of the major issues are organic contaminants (Lesser et al., 2018), trace 

elements (Yang et al., 2021), polyethylene and other micro pollutants present in wastewater may contaminate 

the shallow aquifers (Panno et al., 2019). Whenever wastewater is applied on land most are absorbed in the 

topsoil, however, the majority of the hydrophilic and more resistant compounds can reach the aquifer and 

enhance the groundwater contamination. Supporting this, a study presented by Montesdeoca-Esponda et al. 

(2021) investigated the occurrence of pharmaceutical contaminants in the groundwater of Gran Canaria 

Island, Spain. The result reported the presence of nicotine, caffeine, and atenolol in groundwater following 

the treated wastewater irrigation. The concentrations detected were in the range of <0.0394-4-0.1136, 

<0.0029-0.0449, and <0.0124-0.068 µg/L respectively. Another study from Plana de Castellón, Spain, studied 

the occurrence of 42 ECs including antibiotics, UV filters and NAIDs in groundwater following wastewater 

irrigation. The findings revealed a high presence (µg/L) of bezafibrate (<0.0013–0.012) carbamazepine 

(<0.0002–0.0019) primidone (<0.0011–0.0075) sulfamethoxazole (<0.0005–0.0061) acetaminophen 

(<0.0011-0.063) (Renau-Pruñonosa et al., 2020). In a similar study from Pennsylvania presented by Kibuye 

et al. (2019), the results highlighted the presence of sulfamethoxazole, caffeine, and naproxen in groundwater 

with detection frequency ranging from 19-40%. Kampouris et al. (2022) presented a case study of antibiotic 

resistance in the groundwater of Wendeburg, Germany, following wastewater irrigation. The study reported 

the presence of sulfamethoxazole (0.0982 µg/L-0.4069 µg/L) and carbamazepine (0.1685 µg/L -0.2723 µg/L) 

in groundwater. However, the concentrations of carbamazepine and sulfamethoxazole in treated wastewater 

were lower compared to what was detected in aquifers. This could be attributed to the use of a mixture of 

digested sludge and treated wastewater in these croplands. Turner et al. (2019) investigated the groundwater 

of Enoggera Catchment (Australia), an area under greywater irrigation. A total of 22 emerging contaminants 

were detected in wastewater out of which DEET, caffeine and acesulfame were detected in subsurface water 

whereas the surface water adjacent to the area was having the presence of salicylic acid. Finally, Lesser et al. 

(2018) carried out a survey of 218 emerging contaminants in groundwater, majorly resulting from the world's 
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largest untreated wastewater irrigation system from Mezquital Valley, Mexico. According to the results, out 

of 218 pharmaceutically active compounds (PhACs), bis-2-(ethylhexyl) phthalate and dibutyl phthalate were 

detected in groundwater. Furthermore, carbamazepine, sulfamethoxazole, benzoylecgonine and N, N-diethyl-

meta-toluamide were frequently detected in groundwater. Overall, Sulfamethoxazole and carbamazepine are 

the compounds that have been most frequently investigated and detected in aquifer systems affected by the 

re-use of wastewater. This is due to their global use, high environmental persistence and low soil affinity. It 

is important to note that pharmaceutical, personal care products and other persistent ECs have been evaluated 

in aquifers located in different areas worldwide (Table S3). However, the abundance of these compounds in 

aquifers of lands irrigated by wastewater has not been extensively studied. 

7. Existing regulatory framework 

To minimise the adverse effect of different contaminants and or organic pollutants various organisations 

throughout the world have set some distinct regulatory standards and guidelines. These regulations provide 

the tolerable limit of compounds in an aqueous environment. Exceeding these concentrations for a long 

duration can pose a risk to the environment (Kovalakova et al., 2020). As far as the emerging contaminants 

are concerned there are no rigorous guidelines or standards, which is possibly due to the insufficient 

information about the behaviour and occurrence of these contaminants in the environment. However, two of 

the world’s biggest environmental agencies the USEPA and the European Parliament Committee have listed 

various contaminants potentially concerning for the environment, under the Candidate Contaminant List 

(USEPA) and priority list or watch list (EU) and provided some admissible limit for few of these 

contaminants. 

7.1. EU watchlist 

The EU is among the fastest to document some guidelines/measures for the concerning contaminants in water. 

In the year 2000, the EU launched Directive 2000/60/EC (European Union Directive 2000/60/EC, 2000) to 

establish a framework and plan of action in the field of water policy. In this Water Directive, the commission 

had to identify priority substances having significant risk and further set up the European quality standards. 

The first list of 33 priority substances and 8 other contaminants was launched under directive 2008/105/EC 

(European Union Directive 2008/105/EC, 2008). This included contaminants like Atrazine, DDT, 

Naphthalene, Polyaromatic hydrocarbons (PAHs) and many more. Five years later the directive was amended 

with the launch of directive 2013/39/EU (European Union Directive 2013/11/EU, 2013). Along with the 
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demand for new treatment technologies this directive has also suggested the monitoring of 45 priority 

substances which included, metals cadmium, lead, mercury nickel and 41 organic substances. Furthermore, 

this directive has proposed a framework for the development of a Watch List of contaminants for their 

monitoring throughout the union in the field of water policy. This list was published in 2015/495/EU on 20 

March 2015 (Table 2). The watch list considered 10 groups of substances further including 17 contaminants 

of emerging concerns. 

Table 2 

Watch List of substance group for union-wide monitoring as per Directive 2015/495/EU 

Name of substance/group of substances CAS number 

17-Alpha-ethinylestradiol (EE2) 57-63-6 

17-Beta-estradiol (E2), Estrone (E1) 50-28-2, 53-16-7 

Diclofenac 15307-86-5 

2,6-Ditert-butyl-4-methylphenol 128-37-0 

2-Ethylhexyl 4-methoxycinnamate 5466-77-3 

Macrolide antibiotics  

Methiocarb 2032-65-7 

Neonicotinoids  

Oxadiazon 19666-30-9 

Tri-allate 2303-17-5 

 

7.2. USEPA candidate contaminant list 

The United States is also actively working to regulate the occurrence of emerging contaminants in the 

environment. For instance, EPA has published the list of potential contaminants, under the Candidate 

Contaminant Lists (CCL), which is updated every five years by the EPA. The first ever CCL was published 

in 1998, it majorly included pesticides, metal contaminants and some other organic contaminants. A list 

highlighting almost similar contaminants CCL2 was published in 2005. Succeeding to this in 2009 CCL3 was 
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published, including a total of 116 contaminants (104 chemical and 12 microbial contaminants). The list 

incorporated various pharmaceuticals, biological toxins and industrial emerging contaminants like 17alpha-

estradiol, erythromycin equilenin, estrone, PFOS, PFOA and many more. Furthermore, CCL4 published in 

November 2016 included 97 chemical and 12 microbial contaminants. As a highlight, this list categorised 

organophosphate flame retardants as compounds of high priority with the requirement of extensive 

investigation on their impacts (Contaminant Candidate List 4, 2016). Lastly, in 2022 the latest contaminant 

list CCL 5 was published. This included 66 chemicals from three chemical groups namely, per- and 

polyfluoroalkyl substances (PFAS), disinfection byproducts (DBPs) and cyanotoxins, and 12 microbes 

(Contaminant Candidate List 5, 2022). 

7.3. Other recommendations 

Except for the EU and USEPA lists of priority substances, there is not much legislation available globally 

about the ECs in the environment. However, the European Parliament Committee on the Environment, Public 

Health and Food Safety gave a proposal to incorporate some more ECs under the priority list. This proposal 

recommended amidotrizoate, bisphenol A, carbamazepine, diclofenac, iopamidol etc. for the potential 

priority substances in water (EPRS, European Union, 2023). In 2011, WHO also amended the Guidelines for 

Drinking Water Quality to include certain chemicals that were not previously considered. Furthermore, 

similar to EU and US Australian guidelines for water recycling under National Health and Medical Research 

Council (NHMRC) provided limits for the ECs in wastewater in the Australian environment. Here NHMRC 

documented the guidelines for various pharmaceutical and non-pharmaceutical ECs in drinking water. N, N-

diethyltoluamide, 4-Nonylphenol (4NP), 4-tert-octylphenol, amoxicillin, azithromycin, sulfamethoxazole, 

carbamazepine are some of the pharmaceuticals included in the Australian guidelines. 

8. Human health risk assessment 

The potential risk to human health posed by the presence of emerging contaminants in aquatic environments 

has been a topic of global concern. In the past decade, many researchers from different parts of the world 

have assessed the risk to human health due to the presence of ECs in regional water matrices (Schriks et al., 

2010; Sharma et al., 2019). Following a similar approach, this study performed an age-specific risk analysis 

for ten different emerging contaminants, taking into account their intake through drinking water. Therefore, 

their concentrations in surface water, groundwater and drinking water were considered in the risk analysis. 
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Figure 5 represents the variation of risk quotients (RQ) for three age groups namely infants (Fig. 5. (a)), 

children (Fig. 5. (b)) and adults (Fig. 5. (c)). The figure shows that for infants EDCs possess the highest risk 

with estrone and BPA having most of the points under potential risk. Conversely, diclofenac, 17β-estradiol 

and sulfamethoxazole exhibit a similar trend, where the majority of data fell under the no appreciable risk 

category and some data indicated the need for further assessment, accompanied by a few points in the 

potential risk category. Furthermore, the observed trends for ibuprofen, naproxen, carbamazepine, triclosan 

and erythromycin indicated a minimal proportion of data falling within the potential risk category (Fig. 5. 

(a)). The observed trends in RQ for children and adults were largely comparable to those observed in infants, 

with the only notable difference being a reduction in the risk of each contaminant moving from infants to 

adults. For instance, in the case of infants and children, sulfamethoxazole has some points showing potential 

risk, whereas, in the case of adults almost all the points were under the no risk or showed the need for further 

assessment, decrease in risk among the age groups is also evident in case of BPA where infants are at highest 

risk and the risk decreases as we move from children to adults. 

 

Fig. 5. Categorical spread of risk quotient (a) infants, (b) children, and (c) adults 
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The identification of location-specific risks associated with considered contaminants can provide a more 

in-depth understanding of the potential severity of these ECs in the global portable water environment. 

Figure 6 illustrates the risk posed by various contaminants to infants and children in different locations 

around the world. Antibiotics (Fig. 6. (a)) exhibit a low risk profile globally, with majority of the 

locations indicating no potential risk with some exceptions in Africa and South America indicating the 

need for detailed study and potential risk respectively. A nearly similar trend was followed by 

carbamazepine beside a few locations in South America showing potential risk (Fig. 6. (b)). EDCs on 

the other hand showed a high risk in almost all the continents around the world with South America 

having some locations under potential risk and the remaining indicated the requirement of detailed 

assessment. Furthermore, as evident from the figure the high risk of BPA is well distributed around the 

globe, but South America and Asia have also shown some high risk due to estrone, whereas a high risk 

due to 17β-estradiol can be seen in Africa and South America (Fig. 6. (c)). NSAIDs also majorly had a 

low risk profile around the world with very few areas indicated potential risk, however, need for further 

study in case of NSAIDs was observed all over the globe (Fig. 6. (d)). Lastly, triclosan (Fig. 6. (e)) has 

profile with no appreciable risk beside Asia having the only location indicating the need for further study. 
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Fig. 6 a.  Location-wise characterisation of RQ for infants and children due to presence of antibiotics 

 

Fig. 6 b.  Location-wise characterisation of RQ for infants and children due to presence of carbamazepine
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Fig. 6 c.  Location-wise characterisation of RQ for infants and children due to presence of EDCs 
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Fig. 6 d.  Location-wise characterisation of RQ for infants and children due to presence of NSAIDs
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Fig. 6 e.  Location-wise characterisation of RQ for infants and children due to presence of triclosan 
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As discussed earlier, the potential risk was reduced when higher age groups are considered, the same is 

well evident from the figure (Fig. 7) which depicts the risk any considered contaminant can pose to adults. 

The overall trend for all the contaminants was almost similar to the case of infants and children. For example, 

antibiotics and carbamazepine had no appreciable risk at majority of the locations and the very few locations 

with possible risk were identified in the region of South America (Fig. 7. (a and b)). In the case of EDCs 

estrone and BPA have more locations characterised as potential risk sites. Europe and South America had 

some serious risks to EDCs followed by Asia and Africa then Oceania and lastly North America (Fig. 7. c)). 

Similar to the lower age group NSAIDs in the case of adults also followed a low risk profile, with some 

locations in Africa showing potential risk and need for detailed assessment for diclofenac. Whereas no 

potential risk was identified for ibuprofen and naproxen and both the drugs have a completely no risk profile 

all around the globe (Fig. 7. (d)). Furthermore, no appreciable risk has been identified for triclosan, with all 

the locations identified as no risk sites (Fig. 7. (e)). 
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Fig. 7 a.  Location-wise characterisation of RQ for adults due to presence of antibiotics 
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Fig. 7 b.  Location-wise characterisation of RQ for adults due to presence of carbamazepine 
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Fig. 7 c.  Location-wise characterisation of RQ for adults due to presence of EDCs 
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Fig. 7 d.  Location-wise characterisation of RQ for adults due to presence of NSAIDs 
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Fig. 7 e.  Location-wise characterisation of RQ for adults due to presence of triclosan 
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9. Summary 

The ubiquitous presence of emerging contaminants in water can be due to the continuously increasing use of 

compounds like pharmaceuticals, personal care products, industrial chemicals and others belonging to the 

category. The majority of these contaminants enter the global water matrices via different wastewater streams, 

due to the lack of proper regulatory structure these chemicals are being regularly discharged into the 

environment without proper treatment. Also, from the study it was found that the efficiency of treatment 

varies with the considered contaminants. For instance, the biological activated carbon has shown good 

removal for antibiotics and analgesics but the removal is comparatively less when EDCs are considered. On 

the other hand, chemical technologies like UV photolysis/H2O2 were among the best techniques in the 

removal of majority of the ECs but the removal efficiency was relatively less when EDCs were considered. 

This could be due to the complex structure and toxic nature of emerging contaminants which can impact the 

efficiency of treatment technologies. Furthermore, Ozonation based hybrid systems have shown good 

removal for most of the emerging contaminants. The present study provides a critical review of the 

effectiveness of different treatment systems when the removal of ECs is considered. As discussed above the 

properties of contaminants largely affect the efficiency of treatment so a more detailed assessment of the 

interaction between different contaminants and treatment systems can provide a better insight into the factors 

governing the efficiency of each treatment method in case of different contaminants. 

The occurrence of ECs is widespread throughout the globe, but some relatively high concentrations of 

the ECs were detected in countries in Asia and Latin America. The resulting high concentrations of ECs in 

global water matrices can lead to adverse effects on human health following the consumption of water with 

the presence of contaminants of emerging concern. Previously, few studies also estimated the potential risk 

due to the presence of ECs in water (Schriks et al., 2010; Sharma et al., 2019). In this study, the most spatially 

variable age-pecific risk was found due to the presence of EDCs like estrone and BPA. Although EDCs 

indicated a potential risk all around the world, a relatively high risk due to multiple contaminants was 

identified in South American, European and Asian countries. Overall, the study indicated a good resistance 

to all the considered contaminants except a few. Additionally, some contaminants have also indicated the 

need for detailed assessment. From the study it was seen that the lack of proper regulatory structure has 

contributed to the high persistence of emerging contaminants in global water matrices. So, a proper general 
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or local regulatory framework is needed to be developed to mitigate the risk due to presence of emerging 

contaminants in water. 

10. Future scope and limitations 

There is a significant deficit of information pertaining to the prevalence of emerging contaminants (ECs) in 

drinking water on a global scale. Although the topic has recently gained the interest of stakeholders, the 

majority of studies have focused on pharmaceuticals and personal care products, while other classes of ECs, 

such as PFAS, PFOS, flame retardants and others, have not been given the requisite attention. The global 

prevalence of ECs underscores the necessity for the establishment of an effective regulatory framework and 

the implementation of mitigation strategies to prevent the entry of such chemicals into the global water 

matrices. To improve the current situation, a source identification for different ECs in fresh water can be 

carried out on a global scale through the execution of small pilot studies, thereby facilitating the formulation 

of region-specific remediation plans. 

The current study is limited to the occurrence of a few pharmaceutical and personal care products in the 

water matrices; however, the actual situation may differ considering the broad classes of ECs. Furthermore, 

the risk analysis was carried out considering the single contaminant separately. A risk analysis considering 

the mixture of different ECs in water must be carried out to get a clearer understanding of the actual situation. 
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Environmental Implications 

The research underscores the pressing environmental implications of emerging contaminants 

(ECs) in aquatic systems. The compilation of global data on the occurrence of ECs provides 

insight into their extensive presence and facilitates the identification of regions and water 

matrices most affected. This information can inform targeted monitoring and management 

strategies in areas with raised contamination levels. The study also emphasises need for more 

generalised and robust regulatory framework to mitigate the presence of emerging contaminants 

in environmental water. Moreover, with the risk assessment the study also supports the 

development of targeted risk management strategies. 
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Highlights 

 The occurrence of selected ECs in global water matrices is reviewed. 

 EC removal efficiency of existing treatment technologies are discussed. 

 Highest human health risk attributed to EDCs found in global water matrices. 

 This review will serve as a basis for developing a more robust regulatory framework. 
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