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Significance

 Our study showcases an 
approach to assess nutrient 
management decision-making in 
aquatic ecosystems. By 
combining fisheries data with 
reconstructed nutrient loads and 
hypoxic extent during the past 
century, we demonstrate why 
nutrient abatement plans 
designed to curtail Lake Erie 
hypoxia appear too restrictive in 
today’s climate yet may be 
insufficient in the future. Beyond 
illustrating how nutrient 
management can cause water 
quality–fisheries tradeoffs that 
can vary with climate change, we 
offer a rare example of nutrient-
driven hypoxia shaping long-term 
fisheries harvest dynamics in a 
large ecosystem. Ultimately, our 
study highlights why adaptive 
ecosystem–based management 
that uses simple predictive 
models to assess tradeoffs 
between management priorities 
over long timescales can help 
sustain valued services in 
ecosystems experiencing change.
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Changes driven by both unanticipated human activities and management actions are cre-
ating wicked management landscapes in freshwater and marine ecosystems that require 
new approaches to support decision- making. By linking a predictive model of nutrient-  
and temperature- driven bottom hypoxia with observed commercial fishery harvest data 
from Lake Erie (United States–Canada) over the past century (1928–2022) and climate 
projections (2030–2099), we show how simple, yet robust models and routine moni-
toring data can be used to identify tradeoffs associated with nutrient management and 
guide decision- making in even the largest of aquatic ecosystems now and in the future. 
Our approach enabled us to assess planned nutrient load reduction targets designed 
to mitigate nutrient- driven hypoxia and show why they appear overly restrictive based 
on current fishery needs, indicating tradeoffs between water quality and fisheries man-
agement goals. At the same time, our temperature results show that projected climate 
change impacts on hypoxic extent will require more stringent nutrient regulations in the 
future. Beyond providing a rare example of bottom hypoxia driving changes in fishery 
harvests at an ecosystem scale, our study illustrates the need for adaptive ecosystem–
based management, which can be informed by simple predictive models that can be 
readily applied over long time periods, account for tradeoffs across multiple manage-
ment sectors (e.g., water quality, fisheries), and address ecosystem nonstationarity (e.g., 
climate change impacts on management targets). Such approaches will be critical for 
maintaining valued ecosystem services in the many aquatic systems worldwide that are 
vulnerable to multiple drivers of environmental change.

hypoxia | ecological forecasting | eutrophication | climate change | fisheries

 Human-caused environmental change is a global problem threatening our ability to sustain 
valued ecosystem services. Humans have altered aquatic and terrestrial ecosystems in both 
conspicuous ( 1 ,  2 ) and surprising ( 3 ) ways, with altering nutrient availability being among 
the most pervasive, especially in coastal ecosystems with vast agriculture watersheds or 
large human populations ( 4 ,  5 ). A rich literature exists on the causes and consequences 
of excessive nutrient inputs that often come from unplanned loads [e.g., cultural eutroph-
ication; ( 6   – 8 )], as well as through nutrient abatement [i.e., planned oligotrophication; 
( 9   – 11 )]. Yet, considerable uncertainty remains concerning the difficult management land-
scape that can be created by altering nutrient inputs, which can differentially impact valued 
ecosystem components (sense ref.  12 ).

 Most conspicuous in both freshwater and marine aquatic ecosystems are tradeoffs 
between water quality and fisheries. Theoretically, every fish population has an optimal 
level of nutrients, high enough to support prey production, but not so high as to degrade 
habitat [via hypoxia, reduced water clarity, and harmful algal blooms (HABs)] such that 
growth, survival, and reproductive fitness are reduced ( 13 ). This nonlinear response to 
nutrient availability, combined with population-specific tolerances to water quality impair-
ments ( 10 ,  14 ), can create a management dilemma because reducing nutrient inputs to 
achieve water quality goals can simultaneously promote and harm fish production depend-
ing on species tolerances ( 12 ). Thus, a need exists to consider possible tradeoffs between 
ecosystem components when setting management targets. Lacking in most ecosystems, 
however, are the needed data and tools to understand and assess these tradeoffs both now 
in the face of future human-driven environmental change.

 As suggested by Sinclair et al. ( 12 ), tradeoffs between water quality and fisheries can 
best be identified and assessed through ecosystem–based management (EBM), which 
facilitates discussion among stakeholders, supports interdisciplinary research and 

OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
59

.2
26

.1
08

.1
16

 o
n 

N
ov

em
be

r 
26

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
15

9.
22

6.
10

8.
11

6.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scavia@umich.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2322595121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2322595121/-/DCSupplemental
mailto:
https://orcid.org/0000-0002-2784-8269
https://orcid.org/0000-0002-3866-2216
https://orcid.org/0000-0002-6152-7979
https://orcid.org/0000-0002-7459-218X
https://orcid.org/0009-0006-1486-2615
https://orcid.org/0000-0002-2432-2624
https://orcid.org/0000-0003-2737-0530
https://orcid.org/0000-0001-9714-5385
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2322595121&domain=pdf&date_stamp=2024-10-23


2 of 12   https://doi.org/10.1073/pnas.2322595121 pnas.org

monitoring, and employs cooperative decision-making ( 15   – 17 ). 
If done well, EBM will address interactions across spatiotemporal 
scales, within and among socioecological systems, and among 
stakeholders and rightsholders interested in the present and future 
health of the ecosystem ( 18   – 20 ). EBM should also be done iter-
atively through adaptive management: defining the problem, 
identifying goals and evaluation criteria, predicting outcomes, 
evaluating tradeoffs, making decisions, implementing actions, 
monitoring and evaluating outcomes, and then adjusting objec-
tives or approaches as necessary ( 19 ,  21 ). Unfortunately, most of 
the world’s ecosystem services are not currently being managed in 
an adaptive EBM context ( 22   – 24 ), which is hampering our ability 
to keep our ecosystems and services that they provide resilient.

 This lack of EBM implementation has many causes, with inad-
equate science support being one of them ( 20 ,  24 ,  25 ). A key gap 
that has limited effective EBM in many places is the lack of models 
that can identify and assess multisectoral (e.g., water quality vs. 
fishery) tradeoffs yet are simple enough for nonscientists to lever-
age. Given that predictive models often fail the test of time ( 26 , 
 27 ), such models should also be easily reassessed and updated. 
This is particularly true in the face of climate change, which is 
likely to alter relationships between human (e.g., nutrient) inputs 
and water-resource outcomes ( 28   – 30 ).

 The need for adaptive EBM is especially critical in large aquatic 
ecosystems, including the world’s Great Lakes (e.g., North 
American; East African Rift Valley) and coastal marine ecosystems, 
which are facing multiple anthropogenic stressors ( 31     – 34 ). As with 
large marine ecosystems ( 13 ,  35 ), strong relationships between 
ecosystem productivity and fisheries production have been docu-
mented in lakes ( 36 ,  37 ), with proxies of both often showing 
species-specific unimodal responses such that some fisheries will 
“win” while others will “lose” as water quality changes ( 10 ,  12 , 
 13 ). Such tradeoffs between water quality and fisheries production 
have been explained by changes in habitat quantity (e.g., prey 
availability) and habitat quality (e.g., bottom hypoxia). While 
documented bottom–up effects of increased nutrients have vali-
dated the ascending portion of this unimodal curve (e.g., ref.  38 ), 
long-term consequences of bottom hypoxia on fisheries yields of 
large-bodied species at population or ecosystem scales have 
remained largely elusive in most ecosystems ( 39   – 41 ).

 This difficulty in characterizing long-term effects of nutrient-driven 
hypoxia on fisheries is partly due to its multifaceted effects on eco-
systems ( 40     – 43 ); however, a lack of long-term historical bottom 
dissolved oxygen (DO) data can also be a key limiter. Thus, methods 
to quantify historical variation in DO and its influence on fisheries 
production remain vital in many ecosystems, including Lake Erie 
(United States–Canada), which has experienced large swings in 
hypoxia and fisheries during the past half-century due to both altered 
nutrient loading and climate variation ( 29 ,  44   – 46 ). To illustrate, 
while Sinclair et al. ( 12 ) showed the potential for altered ecosystem 
productivity to differentially affect the harvest of Lake Erie fishes 
and cause water quality–fisheries tradeoffs, the absence of historical 
DO data precluded these authors from identifying the role that 
hypoxia played. Access to long-term, historical data on hypoxia 
extent could allow for an explicit test of its effect on past fisheries 
performance, as well as provide a means to develop and test models 
to forecast the impact of planned watershed management actions on 
water quality (e.g., bottom hypoxia, HABs) and fisheries production 
both now and in the face of continued climate change.

 Herein, we address the dual goal of helping management agencies 
that are focused on hypoxia to better understand the value of adap-
tive EBM approaches and of offering them a simple yet effective 
approach to understand and forecast water quality–fisheries tradeoffs 
in dynamic ecosystems. To do so, we linked a predictive model of 

Lake Erie bottom hypoxia with observed commercial fishery harvest 
data from the past century (1928–2022) and climate projections 
(2030–2099). Beyond demonstrating why managing water quality–
fisheries tradeoffs and EBM itself are wicked problems ( 12 ,  47 ), we 
show how simple yet robust predictive models of nutrient-driven 
hypoxia and routine fisheries monitoring data can be used to identify 
ecosystem tradeoffs and guide nutrient management decision-making 
in large aquatic ecosystems both now and into the future. 

Lake Erie as an Adaptive EBM Problem

Study System and Key Species. Lake Erie, which consists of three 
basins with distinct morphometric attributes, mixing regimes, 
and trophic conditions (48), is the smallest, shallowest, and most 
biologically productive of the North American Great Lakes (Fig. 1). 
It has experienced dramatic, human- driven ecosystem change 
akin to what other freshwater and coastal marine ecosystems have 
experienced (31–34), including eutrophication from excessive point- 
source total phosphorus (TP) loads during the 1950s–1970s (49), 
oligotrophication via TP abatement programs during the 1980s–1990s 
(10), re- eutrophication from nonpoint source agricultural runoff 
since the mid- 1990s (46, 50), and dynamic changes in commercial 
fishery harvests (12). While persistent bottom hypoxia is rare in 
the warm western basin because it is relatively shallow (mean and 
maximum depths: 7.3 and 19 m) and well mixed, and bottom DO 
concentrations in the east basin do not decline to hypoxic conditions 
because it is deep (mean and maximum depths: 24 and 63 m), 
cold, and oligotrophic, the moderately deep (mean and maximum 
depths: 18.3 and 26 m), cool, and mesotrophic central basin typically 
becomes hypoxic (DO < 2 mg/L) or anoxic (DO < 0.5 mg/L) during 
mid- June to mid- October. Geostatistical estimates of summer average 
hypoxic extent ranged from 800 to 8,800 km2 during 1985–2015 
(29, 45), with anoxic extent estimates as high as 15,000 km2 during 
the 1970s (~90% of the central basin’s surface area). Modeling has 
shown decadal variability in hypoxia to be primarily driven by changes 
in long- term variation in TP loads, with interannual variability being 
controlled by weather (e.g., refs. 29, and 51–56).

 Hypolimnetic hypoxia has been hypothesized to influence the 
structure of central Lake Erie’s fish populations and fisheries by alter-
ing access to prey resources and physicochemical habitat, including 
optimal thermal habitat (e.g., cold water) and prey resources (e.g., 
benthic macroinvertebrates) ( 10 ,  57   – 59 ). Indeed, negative effects of 
hypoxia on the movement, foraging, and growth of benthic and ben-
thopelagic fishes have been shown in Lake Erie (e.g., refs.  60   – 62 ) and 
elsewhere, including both freshwater and coastal marine ecosystems 
(e.g., refs.  63         – 68 ). Even so, the influence of hypoxia on fishery yields 
remains speculative in Lake Erie and most other large ecosystems. 
Except for a recent study focused on two small-bodied prey fishes 
that do not solely occupy or feed in bottom waters ( 62 ), no empirical 
study has quantitatively shown recruitment of long-lived, large-bodies 
species to Lake Erie’s fisheries to depend on hypoxia. Further, 
long-term, population-level impacts of hypoxia on fishery yields of 
large-bodied fishes are rare, even in well-studied ecosystems such as 
Chesapeake Bay (United States) and the Northern Gulf of Mexico 
(United States), perhaps owing to the buffering effects of these eco-
systems and (or) species life histories ( 39   – 41 ) (see refs.  42  and  43  for 
two notable exceptions). Thus, whether agencies that manage Lake 
Erie’s most important fisheries (e.g., Walleye, Sander vitreus ; Yellow 
Perch, Perca flavescens ; and Lake Whitefish, Coregonus clupeaformis ) 
need to consider variability in hypoxia remains an open question.  

Great Lakes Adaptive Management. As in other freshwater and 
marine ecosystems (e.g., refs. 69–72), stakeholder engagement and 
adaptive management have a long history in the North American D
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Great Lakes, particularly for Lake Erie (73–75). For example, the 
harvest decisions of many fisheries, including Lake Erie Walleye 
and Yellow Perch and non- native fishes, are managed adaptively, 
with decision- making based on monitoring, research, stakeholder 
input, and management strategy evaluations (e.g., refs. 76 and 
77). Great Lakes water quality management has also been adaptive 
at longer time scales. For example, the first TP load reduction 
goals set in the binational Great Lakes Water Quality Agreement 
(GLWQA) were guided by models and stakeholder input (78), and 
subsequent monitoring and research showed Lake Erie responded 
quickly (79). In response to increased hypoxia and HABs since 
the mid- 1990s (28, 46, 50), the GLWQA was adjusted, guided by 
an ensemble of models (80, 81) and public engagement. Notably, 
agencies have agreed to reduce TP loading into Lake Erie by 40% 
relative to 2008 levels (73, 82).

 Despite this use of adaptive management ( 83 ), EBM in its truest 
sense is not occurring in the Great Lakes basin ( 84 ,  85 ). For example, 
fisheries and water quality decisions are mostly made independently. 
But the call for adaptive EBM has grown ( 12 ,  24 ,  86 ,  87 ), and the 
binational (United States–Canada) Great Lakes Fishery Commission 
(GLFC) and International Joint Commission both have made adap-
tive EBM core elements of their strategic visions ( 73   – 75 ,  85 ). By 
focusing on temperature–nutrient–hypoxia–fisheries–climate inter-
actions in Lake Erie, we seek to help decision-makers both inside 
and outside of the Great Lakes basin better appreciate the value of 
adaptive EBM. To do so, we present a simple, yet robust modeling 
approach that uses routine monitoring and assessment data to 
achieve ecosystem understanding and assess tradeoffs between man-
agement sectors, which in turn can help agencies manage and sustain 
valued services in ecosystems experiencing human-driven environ-
mental change.   

Results

Predictive Model of Hypoxic Extent. We tested the effect of 
several TP loading and air temperature intervals on bottom 
hypoxia, finding March- through- April mean air temperature 
and cumulative TP loads during the previous 6 y best predicted 
hypoxic extent (SI Appendix, Fig. S2). Our resulting model, H 
= 0.000698*TP + 0.709*AT – 4.26, predicted hypoxic area (H; 
103 km2) as a function of 6- y cumulative TP loads (metric tons/
year, MTA) and March–April average air temperature (AT; °C). 
After removing an outlier year (1975) that reduced the variance 
explained (R2) to 0.67 (Fig.  2), our model explained 80% of 
the interannual variability in hypoxia extent during 1959–2022 
(SI Appendix, Fig. S3). The residual SE of the regression (1.6 x 103 
km2) and all other coefficients had low uncertainty (coefficients of 
variation < 0.16), cross- validation resulted in an R2 of 0.77, and 
all pseudoblind forecasts for 1970–2022 resulted in an R2 of 0.67 
(SI Appendix). Thus, our predictive model of hypoxia is robust.

 Comparing the relative contributions of TP loading and air 
temperature in our model illustrates that long-term hypoxia trends 
were driven primarily by TP loads ( Figs. 2 and 3A ). After the TP 
load reductions of the 1980s, however, interannual variability was 
primarily driven by air temperature ( Figs. 2  and  3  and SI Appendix, 
Figs. S4 and S5 ), signifying that continued climate change can be 
expected to affect central Lake Erie bottom hypoxia.          

Observed Variation in Hypoxic Extent. Owing to variation in 
nutrient loads and temperature, we found that bottom hypoxia 
varied considerably during the past century (1925–2022). The 
6- y cumulative TP load had a notable peak during the mid- 1970s 
(Fig.  3A), followed by a rapid reduction through the 1980s, 

Fig. 1.   North American Great Lakes (inlay) and Lake Erie. The location of its three basins is denoted, as are the NOAA National Weather Service weather station 
(USW00014860), NOAA National Data Buoy Center buoy (45005), and five rivers used as a surrogate for the total phosphorous load into the central basin. The 
dashed line depicts the geostatistically determined 1991 hypoxic region (45).
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primarily driven by declines in Detroit River loads (SI Appendix, 
Fig. S4) resultant of point- source TP abatement programs (78). 
Over- lake air temperatures were low during the 1960s and 1970s 
(Fig.  3A). Combining scaled- anoxic extent during 1930–1982 
with hypoxic extent estimates during 1985–2022 showed that 
hypoxia increased until the 1970s, with its mid- 1970s peak being 
over triple the most recent period (1995–2022; Fig. 3A).

Observed Fisheries Harvest in Relation to TP and Hypoxia. 
Commercial fishery harvests of our three focal species 
differentially varied with respect to nutrient- driven hypoxia. 
Lake Whitefish and Walleye harvests were depressed during the 
1960s and 1970s, when both TP loads and hypoxic extent were 
high, whereas Yellow Perch harvest was highest during the same 
period (Fig.  3B). Statistical tests revealed significant fisheries 
harvest thresholds for TP load and hypoxic extent (Fig. 4 and 
SI Appendix, Fig. S6). Lake Whitefish appeared most negatively 
affected by increased TP loads and hypoxic extent, with strong 
harvests being rare above observed loads of 11,870 MTA (95% CI, 
CI = 8,790 to 17,580) and above hypoxic extents of 6,660 km2 
(95% CIs: 3,920 to 9,770 km2). Relative to Lake Whitefish, 
Walleye showed slightly higher but overlapping thresholds (TP: 
12,550 MTA, CI = 9,110 to 17,290 MTA; Hypoxia: 6,700 km2, 
95% CIs: 4,660 to 9,630 km2). Yellow Perch showed opposite 
threshold effects, with weak harvests being conspicuously rare 
with TP loads above 10,900 MTA (95% CI: 8,790 to 15,570) 
and hypoxia above 5,840 km2 (95% CI = 3,920 to 8,340 km2). 
Notably, during 1991–2020, reduced TP loads and bottom 
hypoxia appear to have benefited Walleye and negatively affected 
Yellow Perch, with Lake Whitefish harvests remaining low despite 
water quality returning to levels that once favored strong harvests 
(Fig. 4 and SI Appendix, Fig. S6).

Impact of Current TP Loading Target on Hypoxia and Fisheries. 
To reduce hypoxic extent, the binational GLWQA (82) set the 
central basin TP load reduction target to 40% of the 2008 
load (9,100 MTA). This load was chosen to maintain summer 

mean hypolimnetic DO above 2 mg/l and hypoxic extent below 
2,500 km2 (80). Our model (SI Appendix, Fig. S3) predicts that 
reducing TP loads by 40% would result in a mean hypoxic extent 
of 2,000 km2, a level between the 2,500 km2 target and the 1930 
extent (1,500 km2) that has been characterized by low productivity 
akin to presettlement conditions (88–90) and suboptimal fishery 
harvests for Walleye and Yellow Perch (Fig. 4). Importantly, our 
modeling indicates that a 2,500 km2 extent would, on average, 
require only a 33% (not 40%) TP load reduction from 2008.

 Regardless, both the 33% and 40% TP load reduction appear 
more restrictive than necessary to support contemporary fishery 
harvests. Taking a precautionary approach, we used the lower 95% 
CIs from our threshold analyses ( Fig. 4  and SI Appendix, Fig. S6 ) 
to estimate the impacts of altered nutrient loading on Lake Erie’s 
fisheries. Our analyses showed that hypoxic extents below ~4,700 
km2  and ~3,900 km2  appear sufficient to offer the potential for 
high Walleye and Lake Whitefish harvests, respectively. According 
to our model under current climate conditions, maintaining 
hypoxic extent below ~4,300 km2  (the mean of the lower 95% 
CIs for Walleye and Lake Whitefish thresholds) on average would 
require only a 7% reduction  from the 2008 TP load, much less 
than the current 40% target reduction. This lower reduction target 
would also be more protective of the Yellow Perch fishery given 
that harvests appear to benefit from high TP loads and do not 
appear limited by bottom hypoxia ( Fig. 4  and SI Appendix, 
Fig. S6 ). However, because projected climate warming, even as 
soon as 2030–2059, is expected to increase bottom hypoxia (e.g., 
refs.  29 , and  91   – 93 ; below), a 7% TP load reduction is unlikely 
to be appropriate for the future.  

Projected Impacts of Climate Change on Hypoxia and Fisheries. 
Lag times of impacts on nutrient export from watersheds range 
from years to decades owing to land use changes taking years 
to implement, as well as watershed retention (e.g., refs. 94–97) 
and internal cycling of lake P (98, 99). Thus, the results of land 
management actions (e.g., agricultural conservation practices) will 
play out on climatic timescales.

Fig. 2.   Observed (black dots) and predicted (sum of stacked areas) hypoxic extent in central Lake Erie, 1959–2022. The relative contributions of cumulative TP 
load (light gray) and air temperature (dark gray) are presented. An outlier year, 1975, is depicted by the gray datapoint (SI Appendix, Fig. S3). Observation error 
bars are from geostatistical estimates (45).
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 Substantial interannual variability in hypoxia has been driven 
by air temperature, especially during recent years when TP loads 
have been more stable and interannual variability in spring tem-
peratures has been more variable ( Fig. 3  and SI Appendix, Figs. S4 
and S7 ). Thus, climate warming is expected to increase hypoxia 
and potentially offset TP abatement efforts. While both air and 
water temperatures increased during 1985–2022 (SI Appendix, 
Fig. S7 ), we did not find a statistically significant change in 
hypoxic area during 1985–2022, perhaps because TP load grad-
ually declined. Even so, our modeling showed that a 710 km2  
increase in hypoxic area occurred for every 1 °C increase in mean 
March–April air temperature. We also found that both mean 
hypoxic thickness and volume increased after a change-point ( 100 ) 
detected around 1996 (SI Appendix, Fig. S7 ). Likewise, hypoxic 
duration, which was historically confined to August and 
September, has expanded to July and October in some years after 
2010 (SI Appendix, Fig. S7 ).

 Given that continued warming is expected to directly affect 
thermal stratification, causing it to occur earlier and last longer 
( 101 ,  102 ), we explored how warming might impact future 
hypoxic extent and fishery harvests. Using output from 15 CMIP6 
climate models and three greenhouse gas mitigation pathways 
(SI Appendix ) to modify temperatures in our hypoxia model, we 
learned that the TP load reduction required to achieve the hypoxia 
target will increase through time ( Fig. 5 ). For example, under the 
climate mitigation pathway most like the path we are currently 
on (SSP2-4.5), we projected that 80% of the time a 7% reduction 
from the 2008 load would result in hypoxic areas less than 7,100 
km2  and 7,900 km2  by mid- and late century. Protecting Walleye 

and Lake Whitefish harvests by keeping hypoxic area below 4,000 
km2  80% of the time ( Fig. 4 ) would require TP loading reductions 
of 55% by midcentury. A less aggressive greenhouse gas mitigation 
scenario (SSP5-8.5) would require 60% reductions, and an even 
the more aggressive mitigation scenario (SSP1-2.6) would still 
require 51% reductions ( Table 1  and SI Appendix, Fig. S8 ). 
Importantly, while implementing 50 to 60% load reductions 
under future climates would support the potential for high Walleye 
and Lake Whitefish commercial harvests, they would come at the 
expense of the Yellow Perch commercial fishery, owing to its 
dependency on high nutrient inputs.            

Discussion

 To help facilitate management decision-making in ecosystems expe-
riencing bottom hypoxia, we calibrated a predictive model of Lake 
Erie hypoxia that allowed us to delineate the relative importance of 
nutrient loading and temperature as drivers of hypoxia and recon-
struct hypoxic extent during the past century such that we could 
quantify its impact on the harvest dynamics of three important 
fisheries. Beyond showing how nutrient inputs and temperature in 
large freshwater ecosystems can interact to drive long-term hypoxia 
dynamics, as well as why climate change needs to be considered 
when setting nutrient-management targets, we demonstrated how 
management plans designed to mitigate hypoxia can lead to water 
quality–fisheries tradeoffs that complicate management. Given that 
both freshwater and marine ecosystems worldwide are experiencing 
hypoxia and climate warming, our study findings and approach can 
help agencies both anticipate and navigate the wicked landscape of 

Fig. 3.   (Top) Cumulative (6- y) TP load (solid black), 
mean March–April air temperature (dotted line), 
and (Fig.  2) hypoxic area (black dots), 1925–2020. 
(Bottom) Running average (6- y) of Lake Whitefish 
(thin black line), Walleye (dotted line), and Yellow 
Perch (dashed black line) commercial harvests and 
modeled hypoxia (thick black line).
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nutrient management decision-making, as well as understand why 
adaptive EBM is vital to sustaining valued societal services in eco-
systems experiencing human-driven stress. 

Hypoxia Drivers. Our modeling showed that climate variation 
has become an important driver of hypoxic extent during recent 
decades. The large increase in hypoxia during 1960–1975 and 
subsequent rapid decrease through the 1980s were driven primarily 
by changes in the cumulative TP load (Fig. 3). This influence of 
cumulative TP load is consistent with long- term “memory” effects 
observed in other lakes and the potentially large flux of P from 
central basin sediments (98, 99, 103, 104), and is supported by 
empirical measurements (105) and modeling output from Lake Erie 
(106, 107). The lower and relatively constant hypoxic extent after 
the 1990s tracks the slower decline in TP loads, with interannual 
variability since 1996 being controlled primarily by air temperature, 
which has increased the strength and duration of stratification while 
lowering the DO saturation concentration (29, 53, 56, 92, 108). 
This secondary control of bottom hypoxia by meteorology also is 
well documented in other freshwater and marine ecosystems (e.g., 
refs. 109–111), indicating that climate change must be considered 
in water quality planning and management.

 Increased hypoxic extent after the mid-1990s has been attrib-
uted to re-eutrophication, consistent with increased dissolved P 
loads and HABs in the western basin (e.g., refs.  46 ,  50  and  106 ). 
However, our extended dataset allowed us to learn that small 
hypoxic extents (e.g., 1993–1997) are more likely related to the 
low temperatures and delayed summer stratification than TP loads 

(i.e., temperatures during these years were below the long-term 
mean; see SI Appendix, Fig. S5 ). The dependence of bottom 
hypoxia on temperature has been previously suggested for Lake 
Erie ( 112 ), as well as in other freshwater and marine ecosystems 
(e.g., refs.  92 ,  109 ,  110  and  113 ). This finding highlights the value 
of long-term monitoring data, exploring multiple drivers when 
attributing causal mechanisms of hypoxia, and periodically reas-
sessing modeling predictions.

 While the impact of climate change on nonpoint source (water-
shed) TP loading into Lake Erie remains unresolved due to poten-
tially opposing effects of increased evapotranspiration and 
precipitation ( 30 ,  114 ), continued warming is expected to increase 
bottom hypoxia and anoxia ( 53 ,  54 ,  91   – 93 ). Our modeling sup-
ported this prediction with hypoxia thickness, volume, and dura-
tion increasing as temperature increased. Our results are consistent 
with those from other ecosystems, including Chesapeake Bay, 
United States ( 110 ), the northern Gulf of Mexico, United States 
( 115 ), Lake of Zurich, Switzerland ( 92 ), Blelham Tarn, United 
Kingdom ( 91 ), and Lake Fuxian, China ( 93 ). Collectively, these 
studies and our modeling indicate that continued climate change 
holds the potential to offset impending efforts to reduce hypoxia 
in freshwater and marine ecosystems alike.  

Hypoxia Thresholds and Water Quality–Fisheries Tradeoffs. 
Documented bottom–up effects of increased nutrients on prey 
availability have validated the ascending portion of the unimodal 
nutrient- fish productivity curve (e.g., ref. 38). However, long- term 
consequences of bottom hypoxia on fisheries yield have remained 

Fig. 4.   Commercial harvests of Lake White-
fish (Top), Walleye (Middle), and Yellow Perch 
(Bottom) in Lake Erie (1000s of kg, round 
weight) as a function of 5- y running means 
of simulated hypoxic extent (1000s of km2; 
Left) and reconstructed cumulative TP loading 
(1000s of metric tons annually; Right), 1932–
2020. Dashed vertical lines represent the 
best threshold in each panel (all P < 0.0001), 
with the rectangle indicating the upper and 
lower 95% CI around the mean threshold 
(SI Appendix).
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elusive in most freshwater and marine ecosystems (39–41) due 
partly to a lack of long- term historical DO data. Herein, we 
demonstrated a direct quantitative relationship between bottom 
hypoxia and commercial fisheries harvest monitoring data during 
the past century (1932–2022). We also showed that reducing 
TP inputs to mitigate bottom hypoxia can be expected to cause 
tradeoffs in fisheries harvests, with some species “winning” under 
TP abatement (e.g., Lake Whitefish and possibly Walleye), and 
others “losing” (e.g., Yellow Perch).

 While our threshold relationships between fisheries harvest and 
hypoxic extent are correlative, they hold even after accounting for 
potential confounding effects on fisheries harvest, including inva-
sive species and climate variation (SI Appendix, Figs. S9–S16 ). 
They (and their resultant tradeoffs) are also supported by knowl-
edge of each species physiological tolerances and habitat needs. 
Lake Whitefish is expected to be highly limited by bottom hypoxia 
because of its dependence on cold temperatures found only in 
bottom waters during summer and on benthic macroinvertebrates 
as prey ( 59 ,  116 ). Lost access to benthic thermal habitat and prey 
can negatively affect foraging and population growth of core-
gonines (e.g., refs.  63 ,  64  and  117 ) and has been implicated in 
reduced Lake Whitefish fitness and recruitment to the fishery in 
Lake Erie ( 10 ,  57 ,  59 ). Conversely, benthic omnivores like Yellow 

Perch, which are tolerant of warmer water and capable of feeding 
on planktonic prey as juveniles and adults, can persist during 
hypoxia by residing in areas above the hypoxic zone or in oxygen-
ated nearshore waters ( 58 ,  60 ,  62 ). Such species will be less ham-
pered by hypoxia than Lake Whitefish if sufficient pelagic prey 
(e.g., zooplankton) is abundant. Species with intermediate thermal 
tolerances and that are not facultative benthivores, such as pisciv-
orous Walleye, would be expected to show an intermediate 
response, as reduced access to cool bottom waters could be offset 
by potentially increased access to prey fish that aggregate at the 
edges of the hypoxia zone ( 118 ). These species-specific tolerances 
to hypoxia and flexibility in feeding and habitat use help explain 
why coregonines like Lake Whitefish tend to decline with eutroph-
ication and are succeeded by more tolerant species such as Walleye 
and eventually Yellow Perch ( 119 ,  120 ).

 Our modeling suggests that the degree to which such tradeoffs 
occur in Lake Erie will ultimately depend on management targets 
(e.g., achieving the 4,000 km2  hypoxia threshold on average vs. 80% 
of the time), given that the targets could potentially be above or 
below the hypoxia thresholds identified for our three focal species. 
These varied responses to hypoxia highlight the need for fisheries 
management to consider species-specific thresholds and be adaptive 
when setting quotas and managing their constituents.

Fig. 5.   (Top) Hypoxic extent as a function of mean 
March–April air temperature. Mean hypoxic extent 
(thick, ascending black line) and upper and lower 
60% prediction intervals (thinner, ascending gray 
lines) for a 7% reduction in TP loads relative to 
2008. Vertical lines represent current (1992–2022; 
solid), mid- century (2030–2059; dashed), and 
late- century (2060–2099; dotted) temperature 
conditions for the middle- of- the- road (SSP2- 4.5) 
greenhouse gas emission scenario. Hypoxic values 
at the upper prediction interval are met 80% of the 
time. Precautionary hypoxia thresholds (lower 95% 
CI, per Fig. 4) for Walleye (horizontal solid line) and 
Lake Whitefish (horizontal dashed line). (Bottom) 
Percent TP load reduction required to meet the 
hypoxia target on average (solid ascending line) 
and 80% of the time (dashed ascending line) at the 
mid-  and late century. Results for the sustainable 
development (SSP1- 2.6) and no additional climate 
policy (SSP5- 8.5) scenarios are presented in 
SI Appendix, Fig. S8.
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 While our study focused on three specific Lake Erie fishes, their 
collective response to nutrient- and climate-driven hypoxia is rel-
evant to other aquatic ecosystems. Each of these species is of eco-
logical, cultural, and economic importance and exhibits life-history 
traits similar to commercially exploited fishes found in other large 
aquatic ecosystems, including marine systems ( 121 ,  122 ). 
Additionally, these species span a wide range of thermal tolerance 
and sensitivity to bottom hypoxia, which is typical of fish commu-
nities residing in other freshwater and marine ecosystems ( 123   –
 125 ). And the behavioral and demographic responses of our three 
species to hypoxia are like those observed in other hypoxia-sensitive 
freshwater and marine fishes ( 13 ,  42 ,  43 ,  66 ,  67 ,  126 ). Similar 
fisheries tradeoffs are therefore expected to occur in other ecosys-
tems as nutrients are managed to mitigate bottom hypoxia and 
climate change continues [e.g., Baltic Sea: ( 111 ,  127 ); Chesapeake 
Bay: ( 110 ,  128 ); Northern Gulf of Mexico: ( 109 ,  129 )].  

Management Implications. Our analysis offers important insights 
into the impact of hypoxia on three culturally, ecologically, and 
economically important fishes: Lake Whitefish, Walleye, and 
Yellow Perch. While other factors also contributed to the decline of 
Lake Whitefish and Walleye leading up to the peak eutrophication 
period in Lake Erie during the 1960s and 1970s [e.g., overharvest, 
invasive species; (57, 130); and SI Appendix, Figs. S9–S16], we 
view bottom hypoxia as an important environmental change that 
has negatively influenced commercial harvests. This view supports 
previous, more speculative studies that could not quantitatively 
relate hypoxia to harvest levels (10, 57, 59) because of an absence 
of long- term DO data and is relevant to the myriad of other 
aquatic ecosystems worldwide that are facing multiple stressors, 
including climate change and bottom hypoxia.

 Collectively, our findings highlight the need for fishery man-
agement to acknowledge changing ecosystem conditions, espe-
cially those brought on by nutrient management and climate 
change. As is the case in most other large lake and coastal marine 
ecosystems experiencing anthropogenic environmental change 
( 31     – 34 ,  131 ), Lake Erie has been nonstationary and is likely to 
remain that way with continued climate change ( 110 ,  132 ,  133 ). 
Such nonstationarity, whether due to planned management 
actions (e.g., nutrient abatement, fishery harvest) or unplanned 
perturbations (e.g., climate change, invasive species), reaffirms the 
need for management agencies in both freshwater and marine 
ecosystems to be flexible and adaptive.

 This same lesson applies to water quality management. While 
a less stringent TP reduction target under the current climate 
should be considered, its effectiveness might be short-lived in a 
future climate. This same conclusion has been drawn in coastal 
marine ecosystems where bottom hypoxia is mostly controlled by 

nitrogen inputs ( 109   – 111 ,  127   – 129 ). Thus, nutrient management 
planners also need to be receptive to new modeling forecasts and 
be willing and prepared to modify ongoing strategies. Patience 
will also be required as it may take many years to implement 
significant land-use changes, followed by long lag times for water-
shed loads to respond, and additional time for the lake to respond. 
The fact that results of management actions are likely to play out 
over multidecadal periods, which matches observations in other 
aquatic ecosystems (e.g., refs.  134 , and  135 ), with climate change 
being an important mediating factor ( 101 ,  102 ,  109   – 111 ,  127   –
 129 ,  136 ), reinforces the value of adaptive EBM strategies.

 If done well, adaptive EBM ensures the needed updating and 
reevaluating of models used to make forecasts with new data (sensu 
refs.  26 , and  27 ), which can lead to more reliable identification and 
evaluation of management targets and tradeoffs ( 19 ,  20 ,  76 ). In 
addition, because stakeholder and rightsholder expectations of water 
quality and fisheries production can shift with changing ecosystem 
conditions ( 137 ,  138 ), adaptive EBM plans that consider their per-
ceptions and values ( 18 ,  19 ) can help secure plan buy-in, which is 
key to successful implementation ( 24 ). Such buy-in is critical, given 
that the fishery-water quality tradeoffs shown herein, along with 
the human health issues from HABs and concerns of the agriculture 
industry over TP load reduction targets ( 139 ), create a wicked man-
agement landscape. Successful use of adaptive EBM, like what is 
being called for inside ( 24 ,  86 ,  87 ) and outside of the Great Lakes 
Basin ( 19 ,  140   – 142 ), can provide a means to identify, understand, 
and navigate wicked management dilemmas both now and in the 
face of future human-driven environmental change and help keep 
the many services that our ecosystems provide sustainable.

 When developing models to support adaptive EBM efforts, we 
encourage the use of simple models akin to what was used herein. 
While complex models like Ecopath with Ecosim and Atlantis are 
being increasingly used to support aquatic ecosystem manage-
ment, and do have their benefits ( 143 ,  144 ), their use in manage-
ment decision-making has been limited because of inflexible 
management structures that are ill-equipped to handle new, more 
complex outputs, undertrained staff that cannot run or interpret 
output, and the fear of setting a new precedent among other things 
( 144 ). The use of simpler models that are more understandable 
and easily modified, like whose used herein, should be considered 
as an alternative or complementary approach, which may increase 
their use in management.  

Future Directions. One of the key findings of our work is that 
warming associated with climate change exacerbates hypoxia and 
will continue to do so in the future. The other primary factor in 
our model is nutrient loading. Studies have shown that nutrient 
export is itself sensitive to temperature and precipitation changes 

Table  1.   Lake Erie hypoxic extent and required TP load reductions under current conditions and three future 
greenhouse gas emission scenarios (SSP2: middle of the road; SSP1: sustainable development; SSP5: no additional 
climate policy) during midcentury (2030–2059) and late century (2060–2099)

Projected hypoxic area with a 7% load 
reduction from 2008

Percent reduction from 2008 needed for 
hypoxia <4,000 km2

Mean 80% of the time Mean 80% of the time
Climate mitigation 
pathway Current climate 4,000 5,800 8% 35%

 SSP2  Midcentury  5,300  7,100  27%  55%
 Late century  6,000  7,900  39%  68%

 SSP1  Midcentury  4,900  6,800  22%  51%
 Late century  5,200  7,100  26%  55%

 SSP5  Midcentury  5,500  7,400  31%  60%
 Late century  7,500  9,400  62%  91%
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resulting from climate change (e.g., refs. 28, 30, 95, 96, and 145). 
In some cases, increased evapotranspiration caused by warmer 
temperatures and less snowpack may partially or even fully offset 
the effects of increased precipitation (30, 114). However, other 
studies suggest that increased precipitation- driven discharge under 
a warming climate may increase nutrient loads from tributaries in 
Lake Erie (146) and in the northern Gulf of Mexico (129). These 
factors were not included in our model but incorporating them 
as part of future work would make it possible to further refine 
projections of hypoxia under future climate conditions.

 Opportunities also exist with respect to modeling fisheries 
responses, which are relevant to developing adaptive EBM plans in 
Lake Erie and beyond. Herein, we focused on the role of hypoxia 
in driving variation in fishery harvests. However, invasive species, 
variation in exploitation and harvest levels, and changes in thermal 
conditions also influenced recruitment to the commercial fisheries 
of all three species during the past century ( 57 ,  133 ,  147   – 149 ), with 
their effects likely most evident during years with low hypoxic extent 
(i.e., small hypoxic extents provide the potential for high fishery 
harvests but do not guarantee them). For example, climate-induced 
reductions in ice cover, which are expected to reduce Lake Whitefish 
survival during the egg and larval stage ( 149 ,  150 ), could explain 
why harvest of this species has not achieved high levels like those 
prior to the 1960s (despite their being ample TP;  Fig. 4 ). Similarly, 
while hypoxia can limit Yellow Perch foraging and growth habitat 
in Lake Erie ( 58 ,  60 ), reduced watershed inputs of TP that limit 
zooplankton production ( 151 ) appear to be a stronger driver of 
fishery dynamics ( Fig. 4 ). These complexities point to the need to 
consider more than the influence of hypoxia on fisheries dynamics. 
For example, adding a predictor variable that accounts for the 
impact of climate change on thermal habitat, predator abundance, 
and prey availability ( 147 ,  148 ,  152   – 154 ) could further enhance 
forecasts of nutrient-driven changes in hypoxia on fishery yields, 
and allow for interactive effects of these stressors to be assessed, while 
keeping the overall model simple enough for others less adept at 
modeling to understand and use. Clearly, this suggestion is appli-
cable to any ecosystem experiencing multiple anthropogenic stress-
ors, such as eutrophication-driven hypoxia and climate change.   

Conclusions

 Results presented herein reveal useful insights that can benefit 
nutrient management decision-making on Lake Erie, with impor-
tant implications for other aquatic systems worldwide. Our study 
demonstrates a simple, general approach that could be adapted to 
other ecosystems to help agencies navigate the wicked manage-
ment landscape posed by multisector management in a nonsta-
tionary ecosystem. By updating an existing hypoxia model with 
newer data, we were able to fill gaps in the historical record and 
then tie this record to historical fishery harvest data to provide a 
clear, unique illustration of how hypoxia has negatively impacted 
key fisheries over a multidecadal period. Our approach also 
allowed us to identify TP loading and hypoxic extent thresholds 
above which some key fisheries species were negatively impacted.

 Interestingly, not all species responded negatively to hypoxic con-
ditions as they were differentially limited by reduced nutrient loading. 
This finding illustrates the need for nutrient management 
decision-makers to consider potential fisheries tradeoffs when miti-
gating water quality impairments such as hypoxia. The simple 
nutrient-temperature-hypoxia and hypoxia-fisheries models used 
herein allowed us to quantitatively assess the efficacy of current man-
agement nutrient targets under current and future climates. 
Importantly, we showed for Lake Erie that current nutrient load 
reduction targets are likely overly restrictive from the perspective of 

fishery needs, but that those reductions—and likely more—appear 
necessary as the climate continues to warm. This result aligns with 
hypoxia modeling studies conducted in other coastal ecosystems (e.g., 
Baltic Sea, Chesapeake Bay, northern Gulf of Mexico), although an 
extension to fisheries in those ecosystems was not found.

 Finally, our study demonstrates the advantage of considering mul-
tiple ecosystem sectors/services (e.g., water quality and fisheries) when 
developing management plans for nonstationary ecosystems experi-
encing anthropogenic change and highlights how adaptive EBM 
approaches that are supported by simple, updated models can help 
inform future management decision-making. With the continued 
growth of such approaches, we expect the ability of agencies to under-
stand and successfully navigate the complex landscape created by 
management decision-making and continued human-driven envi-
ronmental change to increase, which will go a long way to protecting 
the many services that our  ecosystems provide to society.  

Methods

Bottom Hypoxia. Areal hypolimnetic hypoxic extent estimates with uncertainty 
bounds generated via Monte Carlo simulations were derived from DO profiles 
collected from 10 fixed stations in the offshore waters of the central basin, sam-
pled at approximately 3- wk intervals between June and October, 1985–2022, 
by the U.S. Environmental Protection Agency, augmented with samples from 
Environment and Climate Change Canada and the National Oceanic and 
Atmospheric Administration (NOAA), as described by Zhou et al. (45). The hypoxic 
extent conditional realizations from individual cruises were first averaged within 
early and late seasons, and the resulting estimates were averaged between the 
early and late season to create an estimate of the seasonally averaged hypoxic 
extent and its uncertainty. Seasonally averaged hypoxic extent estimates were 
therefore obtained for all years for which at least one cruise is available during 
both the early and late season (resulting in the exclusion of 1986, 1992, 1994, 
1995, 2009, and 2011). We also used these profiles to estimate the thickness of 
the hypoxic layer by determining the depth at which DO fell below 2 mg/l from 
each vertical profile. We then multiplied the average thickness for each date with 
the associated areal extent to estimate hypoxic volume.

Anoxic area was determined (along with hypoxic area) for each sampling date 
(1985–2022, n = 151) using a bottom- water DO threshold of 0.5 mg/L, the same 
value used by Herdendorf [(44); pers. comm.]. We converted anoxic area from 
before 1985 (44) to hypoxic area using a least- squares regression relationship 
between the hypoxic/anoxic ratio (h) and anoxic extent (A): h = 3.241A−0.365  
(n = 151, R2 = 0.95).

Temperature. Mean monthly over- lake air temperatures for 1950–2023, used 
as input to the hypoxia model (see below), were provided by the U.S. Army Corps 
of Engineers (D. Fielder, USACE, personal communication), developed using the 
approach of Hunter et al. (155). March–April over- lake average air temperature (y) 
before 1950 was predicted from a least- squares regression model (y = –0.332 + 
0.718x; R2 = 0.74) with March–April average air temperature (x) at the National 
Weather Service station (Fig. 1, USW00014860). Daily water and air temperatures, 
obtained from National Data Buoy Center, buoy 45005 (156) were also used to 
assess recent climate trends.

TP Loading Estimates. We used the Detroit, Maumee, Raisin, Cuyahoga, and 
Sandusky rivers (DRT) as surrogates for the water- year TP load into the central 
basin (Fig. 1). To be consistent with GLWQA targets and other efforts, we divided 
our TP estimates by 0.78 (SD = 0.017), which is the 2003–2013 average ratio of 
these loads to the total central basin load (157).
1960–2022 Tributary Loads. Daily TP loading estimates start in 1974 for the Sandusky 
River, in 1975 for the Maumee, 1981 for the Cuyahoga, and 1982 for the Raisin (158). 
Daily loads for these periods were calculated by multiplying the daily flow- weighted 
mean TP concentration (FWMC) by daily United States Geological Survey (USGS) flow 
for each river. In the instance of missing data (<5% of the time), daily FWMCs were 
interpolated from previous days (159). We estimated daily loads from 1960 to the 
onset of monitoring for each river using relationships between daily discharge and TP 
load or FWMC from the first 3 y of monitoring. More specifically, the first 3 y of each 
monitoring period for each river were separated into three hydrologically important D
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periods: March–June, July–October, and November–February. Linear relationships were 
developed for log10- load vs. log10- flow and polynomial relationships for log10- FWMC 
vs. log10- flow for each season. The estimated daily concentration, calculated as the aver-
age of the two approaches, was multiplied by observed daily USGS flow for each river.
1967–2022 Detroit River. Detroit River loads for 1967–1974 came from Fraser 
(160). The loads for 1975–1981 were averages of estimates by Fraser (160) and 
Yaksich et al. (161). Estimates for 1982–1997 were based on linear interpolation 
of FWMC and discharge from the USGS gage at Ft. Wayne (#04165710). Loads 
for 1998–2022 were estimated by adding loads leaving Lake St. Clair to those 
entering the Detroit River (following ref. 162).
1922–2022 Total Load. Estimates of TP load into the central basin during 1922–
1967 came from Chapra (163), based on transfer coefficients associated with the 
1) sewered population; 2) runoff from agricultural, urban, and forested areas; 
and 3) and the atmosphere. These estimates explained 7% of the variability of 
loads across the Great Lakes basin. When used as input to a mass- balance model, 
they explained 88% of the TP concentration variability across the five lakes. We 
calculated the 1967–2022 estimates by summing the DRT loads, scaled per above.

Fisheries Data. No fisheries- independent data or harvest- per- unit- effort data 
exist in Lake Erie before 1969. Thus, we used total annual commercial harvests (kg, 
round weight) of Lake Whitefish, Walleye, and Yellow Perch during 1928–2020 
as our proxy for fisheries production. Data came from GLFC (164) and were cor-
rected to account for changes in harvest regulations among jurisdictions and 
reporting tendencies through time, following Sinclair et al. (12). Additionally, 
as demonstrated by Sinclair et al. (12), the commercial harvest of each species 
tracked estimated indices of abundance and population size, as well as known 
historical responses of each species to eutrophication, during recent decades.

Hypoxia Model. Our predictive model of hypoxic extent expands the model 
developed by Del Giudice et al. (29). That model predicted hypoxic extent for 30 y 
between 1985 and 2015 as a function of the cumulative TP load from four tribu-
taries (without the Detroit River) from the previous 9 y and average March–April 
air temperature. The latter term was used as a surrogate representing increased 
surface temperatures, lengthened and strengthened stratification, increased algal 
production and sedimentation, and reduced transport of DO to the hypolimnion 
(29). We expanded the model by adding Detroit River loads and increasing the 
calibration dataset from 25 to 53 y (as available, from 1959 to 2022).
Model development and testing. We calibrated our model using observed mean 
summertime hypoxic extent, which is when bottom hypoxia has been most severe 
in central Lake Erie. We developed a Bayesian multiple linear regression model 
using the rstanarm package (165) in R (166) with Stan (167) to predict hypoxic 
area from the cumulative TP load and the spring air temperature (SI Appendix). We 
tested model robustness using leave- one- out cross- validation where each year’s 
observation was predicted after recalibrating the model to a reduced dataset 
where the observation from the forecast year was removed. We also conducted 
pseudoblind forecasts to test the model when calibrated only to the observations 
from previous years by calibrating the model with observations from 1959 to 
the year preceding the forecast year. This process was repeated for 1970–2022.
Response curves. Producing annual forecasts of hypoxic area from cumulative TP 
load and spring air temperature is straightforward when both types of data exist. 
For future conditions in which air temperature is unknown, we developed a TP 
load- response curve based on 10,000 Monte Carlo simulations with air temper-
ature drawn from a normal distribution fit to observed data during 1992–2022 
(mean = 3.4, SD = 1.46) and adding the resulting variances to model parame-
ter and residual error variance. Doing so allowed us to quantify 95% prediction 

intervals (CIs), as well as more policy- relevant 60% CIs where the upper CI rep-
resents reaching a specific hypoxic extent 80% of the time.
Climate forecasts. For future climate scenarios, we used temperature forecasts 
from 15 models with three socioeconomic pathways listed in Fig. 5 (168). To do 
so, we increased the air temperature distribution in the Monte Carlo simulations 
above current conditions (2012–2022) with distribution increments between 
CMIP6 current distributions and those for mid- century (2030–2059) and late- 
century (2070–2099) projections (SI Appendix).

Fisheries Response to Loads and Hypoxia. To quantify the response of Yellow 
Perch, Walleye, and Lake Whitefish commercial harvests to hypoxic extent and TP 
loads during 1925–2020, we used two- dimensional Kolmogorov–Smirnov tests 
(2dKS; 169). These tests allowed us to identify the existence of any thresholds 
(with 95% CIs) in hypoxic extent and TP load four each species, above which or 
below which harvest distributions changed (SI Appendix, Fig. S6).

Data, Materials, and Software Availability. All data used in the analysis are now 
included in the supporting information. The data used in the fisheries modeling 
was included as the last table in this document, which has been uploaded here.
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