湖泊科学   2019, Vol. 31 Issue (2): 429-439.  DOI: 10.18307/2019.0212.
0

研究论文

引用本文 [复制中英文]

吴佳梦, 徐娜娜, 张文珺, 许丽, 胡婧, 朱旭辉, 浙江舟山定海护城河浮游植物优势种生态位与种间联结性季节性分析. 湖泊科学, 2019, 31(2): 429-439. DOI: 10.18307/2019.0212.
[复制中文]
WU Jiameng, XU Nana, ZHANG Wenjun, XU Li, HU Jing, ZHU Xuhui. Seasonal analysis of the niche and interspecific association of dominant species of phytoplankton in the Dinghai Moat, Zhoushan City. Journal of Lake Sciences, 2019, 31(2): 429-439. DOI: 10.18307/2019.0212.
[复制英文]

基金项目

浙江省公益技术应用研究项目(2017C33182)、浙江省自然科学基金青年科学基金项目(LQ15C030001)、水产浙江省一流学科开放课题(20160003)和浙江省教育厅一般科研项目(Y201840369)联合资助

作者简介

吴佳梦(1997~), 女, 学士, E-mail:workwjm@163.com

通信作者

徐娜娜, xunn@zjou.edu.cn

文章历史

2018-07-06 收稿
2018-07-30 收修改稿

码上扫一扫

浙江舟山定海护城河浮游植物优势种生态位与种间联结性季节性分析
吴佳梦 , 徐娜娜 , 张文珺 , 许丽 , 胡婧 , 朱旭辉     
(浙江海洋大学, 舟山 316022)
摘要:以舟山定海护城河为例,分析浮游植物四季优势种生态位与种间联结性,探讨水生态系统浮游植物群落中优势种间相互作用的生态关系,对环境资源共用的季节性变化,为富营养化污染水体浮游植物群落结构特征研究提供重要依据.2016年5月至2017年2月4个季节共出现优势种4门12属14种,其中尖肘杆藻、颗粒沟链藻、绿色颤藻、铜绿微囊藻、四尾栅藻和吻状隐藻6种为富营养化指示种.优势种种类具有明显的季节变化,蓝藻细小隐球藻4个季节均为优势种,并在春、秋、冬季为绝对优势种.根据优势度和生态位宽度,14个优势种可以划分为3个类群.生态位重叠值最大值和最小值分别为0.984和0.004,季节性差异较大,冬季≈秋季>夏季>春季.方差比率法求出的各季节优势种VR值均大于1,统计量W检验结果显示,浮游植物优势种间联结性总体上呈显著正相关.基于2×2联列表的χ2检验,54对优势种对仅有11对有显著联结性,负关联种对多于正关联.总体而言,优势种种间关联程度与生态位重叠程度并不完全一致,可能是浮游植物群落物种多样性高及物种组成季节变化明显所导致.
关键词浮游植物    优势种    生态位    种间联结性    舟山定海护城河    
Seasonal analysis of the niche and interspecific association of dominant species of phytoplankton in the Dinghai Moat, Zhoushan City
WU Jiameng , XU Nana , ZHANG Wenjun , XU Li , HU Jing , ZHU Xuhui     
(Zhejiang Ocean University, Zhoushan 316022, P. R. China)
Abstract: In the present project, niches and species association of seasonal dominant phytoplankton species in Dinghai Moat in Zhoushan City were analyzed, and then interspecific relationship of dominate species and seasonal changes of sharing environmental resources were discussed. A total of 14 dominant species of 12 genera were identified in the Dinghai Moat during four seasons from May 2016 to Feb. 2017, and there were six eutrophication indicator speices, Ulnaria acus, Aulacoseira granulata, Kamptonema chlorinum, Microcystis aeruginosa, Scenedesmus quadricauda and Cryptomonas rostrata. The dominant species changed obviously with the seasons, but Aphanocapsa elachista was dominated absolutely except in summer. According to dominance index and niche width, the 14 dominant species could be divided into three groups. The maximum and minimum niche overlap values were 0.984 and 0.004, respectively, and there was obvious difference among four seasons, winter ≈ autumn > summer > spring. The VR obtained by the variance ratio method were greater than 1 in each season, and their statistic W values indicated significantly overall positive correlation among dominant species. Based on the 2×2 linkage list and χ2 test, only 11 pairs among 54 species pairs showed significant association and negatively associated species pairs were more than positively associated ones. As a whole, associated extent between dominant species was not in accordance with overlapped extent of niche, which is possibly resulted from high diversity of species and obvious seasonality of the species composition.
Keywords: Phytoplankton    dominant species    niche    interspecific association    Dinghai Moat in Zhoushan City    

浮游植物是水生态系统中重要的初级生产者,是生态系统食物网的重要环节,对水质等环境变化十分敏感[1-3],其群落结构特征具有一定的时序变化性,常被用于水质评价[4].种间关系尤其是竞争与捕食是驱动群落结构变化的重要因素[5-6],而优势种(dominant species)对群落结构和群落环境的形成具有明显的影响,因此,群落结构变化主要表现为优势种和优势类群的时序性变化[2].

生态位理论常用来解释物种经过特定环境筛以及种间相互作用在一定的生境中定居和共存,即构建群落[7].生态位理论主要研究生态位宽度和生态位重叠值.生态位宽度代表物种在群落中所利用的各种不同资源的总和,反映物种的分布状况、对资源的利用程度以及对环境的适应能力[8].生态位重叠是两个或两个以上生态位相似的物种生活于同一空间时分享或竞争共同资源的现象[8-9].通过环境筛的两个物种常表现出相同的环境资源需求和相似的生态习性,可能会在空间分布上表现为正关联;反之,两个物种的生态位重叠过大则会产生较强的竞争关系或者表现出截然不同的环境资源需求,则可能会在空间分布上表现出负关联.物种间关联研究有利于理解种间关系、功能群的划分,也可以帮助了解群落构建过程与机制[10].然而,目前生态位和种间联结性分析多用于木本植物群落[10-15]、草本植物群落[16-18]研究,将此分析方法应用于对水生态系统中生物群落研究相对较少[19-20].

定海护城河位于浙江省舟山定海古城,是舟山岛上最大的淡水河系,周边人口聚集,主要依靠自然降水和生活污水为水量补充,河水氮磷浓度长期超标,富营养化污染严重,在春末夏初护城河常出现水华现象[21-25].本研究以定海护城河为研究对象,主要探讨护城河浮游植物群落优势种是否具有明显的季节变化,优势种生态位如何分化以及种间联结性强弱,分析水生态系统浮游植物群落中优势种间相互作用的生态关系,及其对环境资源共用的季节性变化.本研究深入探讨浮游植物群落结构特征及其在维持水生态系统稳定性上的生态功能,以期对研究富营养化污染水体浮游植物群落结构特征提供参考.

1 材料与方法 1.1 调查方法

参照《淡水生物资源调查规范》(DB43/T 432 -2009)[26],在定海护城河共设置20个调查站位(图 1),分别于2016年5月29日(春季)、8月31日(夏季)、11月13日(秋季)、2017年2月19日(冬季,S19水体干涸,冬季为19个调查站位)进行浮游植物样品采集,将采集到的样品固定保存、沉降浓缩.依据《中国淡水藻类——系统、分类及生态》,在显微镜下进行种类鉴定和细胞计数,优势种鉴定到种,少见种和偶见种至少鉴定到属,并标准化处理原始数据.

图 1 定海护城河浮游植物群落采样点布设 Fig.1 Sampling point layout of phytoplankton community in Dinghai Moat
1.2 数据分析

优势种由Mcnaughton优势度指数(Y)确定,Y>0.02则为优势种,Y>0.1为绝对优势种[27-28].

生态位宽度(Bi)采用Colwell等加权修正的公式计算[29], 公式为:

${B_\mathit{i}} = \frac{1}{{r\sum\limits_{j = 1}^r {P_{ij}^2} }} $ (1)

式中,Bi为物种的生态位宽度;Pij为物种i在第j个资源状态下的个体数占该种所有个体数的比例. Pi=nij/Nii表示物种,j为资源,nij为种群i利用资源状态j的数量,Ni为种群i的总数量,r为采样点总数.

生态位重叠值(Oik)使用Pianka指数计算[30], 公式为:

${O_{ik}} = \frac{{\sum\limits_{j = 1}^r {\left( {{P_{\mathit{ij}}} \cdot {P_{\mathit{kj}}}} \right)} }}{{\sqrt {\sum\limits_{j = 1}^r {P_{ij}^2 \cdot \sum\limits_{j = 1}^r {P_{kj}^2} } } }} $ (2)
$\Delta {O_{ik}} = \sum\limits_{k = 1} {{O_{ik}} - \sum\limits_{i = 1} {{O_{ik}}} } $ (3)
$R = \frac{{{B_i}}}{{\Delta {O_{ik}}}}\left( {i = k} \right) $ (4)

式中,Oik为重叠值,PijPkj分别表示种i和种k(k为不同于i的另一藻种)在第j个站点中的个体占该种所有个体数比例,r为采样点总数. Oik取值范围为[0, 1],表示种i与种k的资源利用曲线的重叠指数.当ΔOik>0,说明该种处于发展期;ΔOik<0,该种则处于衰退期;ΔOik=0,该种是中性的[28-29]. R表示生态响应速率.

采用Schluter的方差比率法(VR)检验物种间总体关联性[31],将VR定义如下:

$\mathit{\delta }{\mathit{T}^2} = \sum\limits_{i = 1}^S {{P_i}} {\left( {1 - {P_\mathit{i}}} \right)^2} $ (5)
$S{T^2} = \frac{1}{N}\sum\limits_{j = 1}^N {{{\left( {{T_j} - t} \right)}^2}} $ (6)
$VR = \frac{{S{T^2}}}{{\delta {\mathit{T}^2}}} $ (7)

式中,S表示浮游植物优势种总种数;Pi=ni/NN表示总站位数,ni表示物种i出现的站位数. Tj表示站位j内浮游植物优势种出现的种数;t表示站位中物种数的平均数(t=(T1+T2+…+Tn)/N). δT2表示总站位方差,ST2表示总种数方差.当VR=1时,符合所有物种无关联的零假设;当VR < 1时,物种间总体为负协变关系;当VR>1时,物种间总体为正协变关系.采用统计量W=VR×N检验VR值偏离1的显著程度.如果物种间总体无关联,则χ0.95N2 < W < χ0.05N2的概率有90 %.基于2×2列联表,应用Yates连续校正法进行χ2卡方检验[32],若χ2 < 3.84(P>0.05),表示物种间无显著关联性;若3.841≤χ2≤6.635(0.01≤P≤0.05),表示物种间关联显著;若χ2>6.635(P < 0.01),则表示物种间关联性极显著.

2 结果与分析 2.1 优势种

20个采样点全年共出现优势种4门12属14种,其中尖肘杆藻、颗粒沟链藻、绿色颤藻、铜绿微囊藻、四尾栅藻和吻状隐藻6种为富营养化指示种[33-34].优势种的种类、密度和优势度在不同季节均有差异(表 1).蓝藻细小隐球藻4季均为优势种,除夏季其他3个季节其密度和优势度值均较大.春季优势种最少,仅3种,且细小隐球藻的丰度(D=2.63×107 cells/L)和优势度值(Y=0.616)为全年最高;秋季优势种最多,为7种,细小隐球藻和尖肘杆藻为绝对优势种(Y>0.1);夏、冬两季均出现6种优势种,夏季梅尼小环藻为绝对优势种(Y=0.126),冬季蛋白核小球藻优势度值最大(Y=0.347).

表 1 不同季节浮游植物优势种密度(D,×107cells/L)及优势度(Y) Tab. 1 Density and dominance of dominant phytoplankton species in different seasons
2.2 优势种的生态位 2.2.1 生态位宽度分析

14个优势种的生态位宽度变化范围为[0.051,0.699],其中四季均为优势种的细小隐球藻生态位最宽,春季的鱼害微囊藻生态位宽度最小(表 2).根据各优势种在不同季节优势度和生态位宽度将优势种分为3类.

表 2 不同季节浮游植物优势种的生态位宽度 Tab. 2 Niche breadth (Bi) of dominant phytoplankton species in different seasons

第一类:细小隐球藻,在大多数调查站位都出现且四季均是优势种,春、秋、冬季优势度值大于0.1且丰度大于1×107 cells/L,春、夏季生态位宽度值大于0.5.这一类优势种利用资源能力强,具有较广的生态适应幅度.

第二类:包括尖肘杆藻、蛋白核小球藻、锯形短缝藻、梅尼小环藻及吻状隐藻.这一类在各季节都有出现,且在两个季节均成为优势种,大部分物种优势度值介于0.02~0.1之间,多数种类生态位宽度小于第一类,对生境有一定的要求,对环境资源具有较强的选择性,在适宜的环境条件下能够充分地利用资源.

第三类:包括鱼害微囊藻、具星碟星藻、绿色颤藻、颗粒沟链藻、四尾栅藻、铜绿微囊藻、大型鞘丝藻、方鼓藻,仅在某一季节成为优势种.这一类对环境因子有一定的依赖性,只在环境较适合的季节出现,对水环境条件变化较为敏感,适应性较弱.

2.2.2 生态位重叠值分析

14个优势种的生态位重叠值Oik变化区间为[0.004,0.984],季节性差异较大,冬季(平均值为0.739)≈秋季(平均值为0.683)>夏季(平均值为0.519)>春季(平均值为0.210).其中,春季的细小隐球藻和鱼害微囊藻的生态位重叠值最小,仅为0.004,说明两物种之间基本不相交;冬季吻状隐藻和细小隐球藻生态位重叠值最大,为0.984,说明在冬季两者生态位大部分重叠.

除了春季优势种尖肘杆藻和鱼害微囊藻的ΔOik值为正数,夏、秋、冬季优势种均为负值(表 3),表明夏—冬季优势种均为衰退型.春季尖肘杆藻的ΔOik值最大,鱼害微囊藻次之,两者同属于发展型,表明它们具有较大的发展空间,与其他优势种在资源利用上竞争激烈,且占据竞争优势.秋季的7个优势种的ΔOik值为全年最小,铜绿微囊藻(ΔOik=-8.238)<吻状隐藻≈细小隐球藻<梅尼小环藻≈颗粒沟链藻≈四尾栅藻≈尖肘杆藻(ΔOik=-4.910).细小隐球藻全年处于衰退型,且生态响应速率随季节递减,春季(R=-3.135)>夏季(R=-0.204)>秋季(R=-0.042)>冬季(R=-0.035).除了梅尼小环藻和吻状隐藻,其他衰退型的优势种由于较慢的生态响应速率几乎在下一季节均不再是优势种.

表 3 不同季节优势种ΔOik和生态响应速率R Tab. 3 Niche overlap and ecological response rate of dominant species in different seasons
2.3 联结性分析 2.3.1 总体联结性

4个季节VR值均大于1,且统计量W均大于χ20.05(df)(表 4),表明浮游植物优势种间总体上均呈显著正关联.

表 4 浮游植物优势种总体关联性 Tab. 4 General interspecific association test of dominant phytoplankton species
2.3.2 种间联结性

在54个种对内,联结性不显著(χ2 < 3.841(P>0.05))的种对有43对,联结性显著的有11对(图 2).其中,正联结显著(3.841≤χ2≤6.635(0.01≤P≤0.05),ad < bc)的种对有2对,为冬季吻状隐藻分别与大型鞘丝藻和锯形短缝藻形成的种对;负联结显著(3.841≤χ2≤6.635(0.01≤P≤0.05),ad>bc)的种对有5对,均出现在夏、冬季;负联结极显著(χ2>6.635(P < 0.01),ad < bc)的种对有4对,也出现在夏、冬季.

图 2 浮游植物优势种间χ2检验半矩阵(□,χ2<3.841(P>0.05);☆,χ2>6.635(P<0.01),ad<bc;○,3.841≤χ2≤6.635(0.01≤P≤0.05), ad<bc;△,3.841≤χ2≤6.635(0.01≤P≤0.05), ad>bc;1,尖肘杆藻;2,梅尼小环藻;3,具星碟星藻;4,锯形短缝藻;5,颗粒沟链藻;6,细小隐球藻;7,绿色颤藻;8,大型鞘丝藻;9,铜绿微囊藻;10,鱼害微囊藻;11,蛋白核小球藻;12,方鼓藻;13,四尾栅藻;14,吻状隐藻) Fig.2 Half matrix of the association coefficients χ2 test among the dominant phytoplankton species(□, χ2<3.841(P>0.05); ☆, χ2>6.635(P<0.01), ad<bc; ○, 3.841≤χ2≤6.635(0.01≤P≤0.05), ad<bc; △, 3.841≤χ2≤6.635(0.01≤P≤0.05), ad>bc; 1, Ulnaria acus; 2, Cyclotella meneghiniana; 3, Discostella stelligera; 4, Eunotia serra; 5, Aulacoseira granulata; 6, Aphanocapsa elachista; 7, Kamptonema chlorinum; 8, Lyngbya major; 9, Microcystis aeruginosa; 10, Microcystis ichthyoblabe; 11, Chlorella pyrenoidesa; 12, Cosmarium quadrum; 13, Scenedesmus quadricauda; 14, Cryptomonas rostrata)
3 讨论 3.1 优势种生态位宽度与重叠值

生态位宽度反映物种占有空间资源的多少及分布范围和均匀程度[35].如蓝藻细小隐球藻细胞体积较小,具有相对较大的比表面积[36-37],在获取营养盐上具有明显的优势,在护城河各调查站位均有分布,且4个季节均为优势种(表 2),这表明生态位宽度较大的优势种一般分布也较广较均匀、占有空间资源也较多,具有较强的适应多样化生境能力.反之,生态位宽度较小的优势种则分布范围狭小,持续时间较短,如鱼害微囊藻仅在春季占显著优势,分布的调查站位也相对集中.

生态位重叠值不仅反映了物种之间利用资源或对环境适应能力的相似程度[38],也体现了物种对资源的利用状况和物种间分布地段的交错程度[39].在春季,优势种细小隐球藻(Bi=0.699)和鱼害微囊藻(Bi=0.051)重叠值最小,仅为0.004,说明在春季细小隐球藻和鱼害微囊藻利用资源较少交错,对环境适应能力的差异较大(表 5),因而两个物种之间竞争较弱.在冬季,细小隐球藻(Bi=0.128)和吻状隐藻(Bi=0.186)重叠值最大,为0.984,但细小隐球藻的密度(D=1.05×107 cells/L)和优势度值(Y=0.150)明显高于吻状隐藻(D=0.18×107 cells/L,Y=0.025),表明这两个生态位重叠值较大的微藻物种对资源的利用情况具有很大的差异.细小隐球藻全年均是群落优势种,而吻状隐藻仅在秋末到冬季才能成为优势种(表 5),因此两个物种在冬季的种群大小存在明显差异.

表 5 14个浮游植物优势种形态特征与生态习性* Tab. 5 Morphology characteristics and ecological habitat of fourteen phytoplankton dominant species

根据ΔOik值,仅春季尖肘杆藻和鱼害微囊藻为发展型,但尖肘杆藻适于冬、春季节生长,而鱼害微囊藻最适于冬季到夏初生长(表 5),故而夏季这两个物种不再为优势种.而其他优势种在四个季节均为衰退型(表 3).这可能是由于在春季浮游植物群落优势种仅有3种,优势种间相互竞争压力较小,而其他季节优势种数量增加了1倍,导致种间对资源利用的竞争压力增大.衰退型优势藻种在群落中能够保持主导优势,但是种群大小以及在群落中的主导作用减小.如梅尼小环藻秋季的密度(D=0.31×107 cells/L)和优势度值(Y=0.063)低于夏季(D=0.35×107 cells/L,Y=0.126),吻状隐藻冬季(D=0.18×107 cells/L,Y=0.025)低于秋季(D=0.20×107 cells/L,Y=0.041).但全年均为优势种且属于衰退型的细小隐球藻的主导优势变化规律并非随季节递减,春季>秋季>冬季>夏季(表 1),这可能是由于夏季高温不适宜于细小隐球藻的生长繁殖.

3.2 优势种种间联结性

各季节优势种物种间总体上呈显著正相关,表明群落结构和物种组成较为稳定.然而,54个种对中有高达43个种对为不显著联结,即这些种对的优势种相互独立.这可能是由于这些优势种生长适宜季节存在一定差异(表 5),并且群落物种组成又较为复杂,4个季节浮游植物物种总数依次为96、91、114和87种,物种多样性高,导致优势种同域同季节出现几率较低,种间关联性相互独立[20].

优势种种间联结性结果显示,负关联种对(9对)远远大于正关联种对(2对),冬季显著关联的种对最多,6个种对呈显著负相关(方鼓藻和锯形短缝藻、方鼓藻和细小隐球藻、吻状隐球和细小隐球藻、大型鞘丝藻和锯形短缝藻、大型鞘丝藻和细小隐球藻、锯形短缝藻和细小隐球藻),2个种对呈显著正相关(大型鞘丝藻和吻状隐藻、锯形短缝藻和吻状隐藻)(图 2).这可能是因为浮游植物群落的季节演替比较快,物种组成季节变化比较大(表 6),而一般认为较为稳定的群落结构中种对正关联比较高[13].

表 6 不同季节定海护城河浮游植物种类组成 Tab. 6 Taxonomic composition of phytoplankton in Dinghai Moat in different seasons

夏季,锯形短缝藻和梅尼小环藻的生态位重叠值为0.839,但两个物种之间联结性不存在显著相关;而锯形短缝藻和细小隐球藻、具星碟星藻和锯形短缝藻、绿色颤藻和细小隐球藻3个种对的联结性呈显著负相关,3个种对间的生态位宽度重叠值分别为0.522、0.574和0.667.冬季,显著负相关的6个种对生态位重叠值为0.288~0.984,显著正相关的2个种对的生态重叠值分别为0.768和0.964.这表明浮游植物优势种的生态位重叠值的大小即物种对生境的趋同性或趋异性可能并不影响种间联结性的趋向,这可能是由浮游植物群落物种组成和优势种的季节变化大而导致.在森林木本植物群落中发现,物种分布的频度和多度与种间关联程度呈极显著正相关,强的正关联在一定程度上由两个物种多度较高而导致的[10].然而,浮游植物相对于多年生的木本植物而言,个体营浮游生活,生命周期短,繁殖快,对环境变化敏感,种群大小时空变化快,本研究中14个优势种仅有2个种对存在显著正关联(图 2),浮游植物群落中物种多优度对物种关联的影响也并不显著.因此,从生态位理论来解释浮游植物优势种种间关联性存在一定的局限性.

本研究发现定海护城河浮游植物群落全年共有14个优势种,根据优势度和生态位宽度可以分为三大类.优势种种类随季节变化大,但每个季节优势种中均有富营养化指示种.各个季节优势种生态位宽度变化范围较大,仅梅尼小环藻、细小隐球藻和吻状隐藻3个藻种连续两个季节为群落优势种,其中细小隐球藻全年均是优势种,但属于衰退型.各季节种间总体上均呈显著正相关,但绝大多数优势种种间无显著联结性,而且种间关联程度与种间生态位重叠程度并不是完全一致.

4 参考文献

[1]
Luan QS, Sun J, Song SQ et al. Canonical correspondence analysis of phytoplankton community and environmental factors in the yangtze river estuary in summer. Journal of Plant Ecology, 2007, 31(3): 445-450. [栾青杉, 孙军, 宋书群等. 长江口夏季浮游植物群落与环境因子的典范对应分析. 植物生态学报, 2007, 31(3): 445-450. DOI:10.3321/j.issn:1005-264X.2007.03.014]
[2]
Tian YQ, Yu CC, Wang L et al. Distribution characteristics of phytoplankton community and its affecting factors in Beixi, Jiulongjiang, Fujian. Journal of Applied Ecology, 2012, 23(9): 2559-2565. [田永强, 俞超超, 王磊等. 福建九龙江北溪浮游植物群落分布特征及其影响因子. 应用生态学报, 2012, 23(9): 2559-2565.]
[3]
Shen HT, Liu CQ. Canonical correspondence analysis of phytoplankton community and its environmental factors in the Lake Baiyangdian. J Lake Sci, 2008, 20(6): 773-779. [沈会涛, 刘存歧. 白洋淀浮游植物群落及其与环境因子的典范对应分析. 湖泊科学, 2008, 20(6): 773-779. DOI:10.18307/2008.0616]
[4]
Pang K, Yao JX, Wang H et al. Community structure characteristics of phytoplankton in argun River Drainage Area in autumn. Chinese Journal of Ecology, 2011, 31(12): 3391-3398. [庞科, 姚锦仙, 王昊等. 额尔古纳河流域秋季浮游植物群落结构特征. 生态学报, 2011, 31(12): 3391-3398.]
[5]
Zhao PP, Wei ZH, Wu QT et al. Response of planktonic copepods to seasonal fishing moratorium in Erhai Lake, Yunnan, China. Journal of Applied and Environmental Biology, 2012, 18(3): 421-425. [赵萍萍, 卫志宏, 吴秋婷等. 洱海浮游桡足类群落结构对季节性休渔的响应. 应用与环境生物学报, 2012, 18(3): 421-425.]
[6]
Hu MH, Yang LL, Liu QG. Effects of predation and competition on zooplankton community structure in Lake Qiandao. J Lake Sci, 2014, 26(5): 751-758. [胡梦红, 杨丽丽, 刘其根. 竞争捕食作用对千岛湖浮游动物群落结构的影响. 湖泊科学, 2014, 26(5): 751-758. DOI:10.18307/2014.0513]
[7]
Keddy PA. Assembly and response rules:Two goals for predictive community ecology. Journal of Vegatation Science, 1992(3): 157-164.
[8]
Tan L. Statistical ecology. Beijing: China Forestry Publishing House, 2009. [覃林. 统计生态学. 北京: 中国林业出版社, 2009.]
[9]
Sagar T, Wilson P. Niches of common bryophytes in a semi-arid landscape. Bryologist, 2009, 112(1): 30-41. DOI:10.1639/0007-2745-112.1.30
[10]
Liu XY, He D, Tian WF et al. Patterns of species associations in woody plants in forest communities of Putuoshan Island, Zhejiang, China. Journal of Plant Ecology, 2017, 41(12): 1219-1227. [刘翔宇, 何东, 田文斌等. 浙江普陀山岛森林木本植物的种间关联格局. 植物生态学报, 2017, 41(12): 1219-1227.]
[11]
Zhang GL, Zhang JT. Analysis on niche of dominant species in Shenweigou of Guandi Mountain. Journal of Plant Science, 2002, 20(3): 203-208. [张桂莲, 张金屯. 关帝山神尾沟优势种生态位分析. 植物科学学报, 2002, 20(3): 203-208. DOI:10.3969/j.issn.2095-0837.2002.03.009]
[12]
Wang WJ, Zhang M, Liu DF et al. Interspecific association of two successional stages in the tropical mountain rain forest of Diaoluo Mountain, Hainan Island. Biodiversity, 2007, 15(3): 257-263. [王文进, 张明, 刘福德等. 海南岛吊罗山热带山地雨林两个演替阶段的种间联结性. 生物多样性, 2007, 15(3): 257-263. DOI:10.3321/j.issn:1005-0094.2007.03.006]
[13]
Zhou XY, Wang BS. Interspecific association analysis of communities during secondary succession of forests in Heishiding Nature Reserve, Guangdong. Chinese Journal of Plant Ecology, 2000, 24(3): 332-339. [周先叶, 王伯荪. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性. 植物生态学报, 2000, 24(3): 332-339. DOI:10.3321/j.issn:1005-264X.2000.03.015]
[14]
Li JM, Xie F, Chen CJ et al. Interspecific association of dominant species in Betula luminifera natural forest communities of Shaowu, Fujian Province. Chinese Journal of Applied Ecology, 2001, 12(2): 168-170. [李建民, 谢芳, 陈存及等. 光皮桦天然林群落优势种群的种间联结性研究. 应用生态学报, 2001, 12(2): 168-170. DOI:10.3321/j.issn:1001-9332.2001.02.002]
[15]
Li YD, Xu H, Chen DX et al. Discussing on the ecological species groups and functional groups division based on the interspecific association-A case study on the arbor layer data in tropical lowland rain forest of Jianfenling, Hainan Island, China. Scientia Silvae Sinicae, 2007, 43(4): 9-16. [李意德, 许涵, 陈德祥等. 从植物种群间联结性探讨生态种组与功能群划分——以尖峰岭热带低地雨林乔木层数据为例. 林业科学, 2007, 43(4): 9-16.]
[16]
Wang GL, Liu GB. Study on the interspecific association of the Artemisia sacrorum community in Loess Hilly Region. Grassland of China, 2002, 24(3): 1-6. [王国梁, 刘国彬. 黄土丘陵沟壑区铁杆蒿群落种间联结性研究. 中国草地学报, 2002, 24(3): 1-6.]
[17]
Lou YJ, Zhao KY. Analysis of interspecific associations of Carex lasiocarpa community in recent 30-year succession in Sanjiang Plain. Chinese Journal of Ecology, 2008, 27(4): 509-513. [娄彦景, 赵魁义. 三江平原毛苔草群落近30年演替过程中的种间联结性分析. 生态学杂志, 2008, 27(4): 509-513.]
[18]
Fang F, Hu YK, Zhang W et al. Numerical analysis of inter-specific relationships in Alpine steppe community in Bayanbulak. Chinese Journal of Ecology, 2012, 32(6): 1898-1907. [房飞, 胡玉昆, 张伟等. 高寒草原植物群落种间关系的数量分析. 生态学报, 2012, 32(6): 1898-1907.]
[19]
Xu CY, Yu QJ, Xu FJ et al. Phytoplankton dominant species niche in Dianshan Lake. Journal of Applied Ecology, 2012, 23(9): 2550-2558. [徐春燕, 俞秋佳, 徐凤洁等. 淀山湖浮游植物优势种生态位. 应用生态学报, 2012, 23(9): 2550-2558.]
[20]
Li CN, Shui YY, Tian K et al. The niche and interspecific association of major swimming animals in Wenzhou Bay in spring. Chinese Journal of Ecology, 2017, 37(16): 5522-5530. [李超男, 水玉跃, 田阔等. 温州湾春季主要游泳动物生态位与种间联结性. 生态学报, 2017, 37(16): 5522-5530.]
[21]
Zhoushan Evening News. The treatment of the water on the shore and the sea, Dinghai "five waters co-governance" achieved remarkable success. http://dhnews.zjol.com.cn/dhnews/system/2016/09/26/020773689.shtml. [舟山晚报.水上治标岸上治本, 定海"五水共治"成效明. http://dhnews.zjol.com.cn/dhnews/system/2016/09/26/020773689.shtml. ]
[22]
Zhoushan Daily. Who polluted the river? Volunteers shoot customers to find the "culprit". http://dhnews.zjol.com.cn/dhnews/system/2014/03/28/017830305.shtml. [舟山日报.谁弄脏了河水?义工拍客找"元凶". http://dhnews.zjol.com.cn/dhnews/system/2014/03/28/017830305.shtml. ]
[23]
Zhejiang Online News Website. Dinghai moat eutrophication pollution remains serious. http://zjnews.zjol.com.cn/05zjnews/system/2008/03/18/009314796.shtml. [浙江在线新闻网站.定海护城河富营养化污染仍然严重. http://zjnews.zjol.com.cn/05zjnews/system/2008/03/18/009314796.shtml. ]
[24]
Dinghai News Network. Dinghai moat backwater seawater drainage. http://dhnews.zjol.com.cn/dhnews/system/2008/12/29/010829960.shtml. [定海新闻网.定海护城河倒灌海水排污. http://dhnews.zjol.com.cn/dhnews/system/2008/12/29/010829960.shtml. ]
[25]
Dinghai News Network. Dinghai spring moat dredging and busy. http://dhnews.zjol.com.cn/dhnews/system/2017/04/06/030021821.shtml. [定海新闻网.定海春季护城河清淤忙. http://dhnews.zjol.com.cn/dhnews/system/2017/04/06/030021821.shtml. ]
[26]
Ministry of Environmental Protection. Freshwater biological resources survey specifications(DB43/T 432-2009). Beijing: Ministry of Environmental Protection, 2009. [环境保护部. 淡水生物资源调查规范(DB43/T 432-2009). 北京: 国家环境保护部, 2009.]
[27]
Mcnaughton SJ. Relationships among functional properties of californian grassland. Nature, 1967, 216(5111): 168-169.
[28]
Habib OA, Tippett R. Seasonal changes in phytoplankton community structure in relation to physicochemical factors in loch lomond, scotland. Hydrobiologia, 1997, 350: 63-79. DOI:10.1023/A:1003037012226
[29]
Colwell RK, Futuyma DJ. On the measurement of Niche Breadth and Overlap. Ecology, 1971, 52(4): 567-576. DOI:10.2307/1934144
[30]
Pianka ER. The structure of lizards communities. Annual Review of Ecology and Systematics, 1973, 4: 53-74. DOI:10.1146/annurev.es.04.110173.000413
[31]
Schluter D. A variance test for detecting species associations, with some example applications. Ecology, 1984, 65(3): 998-1005. DOI:10.2307/1938071
[32]
Li RQ, Wang MS, Sun M et al. Indicator composition and species diversity of algae in Chicheng Lake. Anhui Agricultural Sciences, 2009, 37(2): 773-776. [李仁全, 王明书, 孙敏等. 赤城湖指示藻类的组成及物种多样性指数分析. 安徽农业科学, 2009, 37(2): 773-776. DOI:10.3969/j.issn.0517-6611.2009.02.132]
[33]
Kuang QJ, Ma PM, Hu ZY et al. Advances in the evaluation and treatment of algae biology in eutrophic lakes. Journal of Safety and Environment, 2005, 5(2): 87-91. [况琪军, 马沛明, 胡征宇等. 湖泊富营养化的藻类生物学评价与治理研究进展. 安全与环境学报, 2005, 5(2): 87-91. DOI:10.3969/j.issn.1009-6094.2005.02.024]
[34]
Liu X. Research on eutrophication of MiYunReservoir[Dissertation]. Beijing: Capital Normal University, 2002. [刘霞.密云水库水体富营养化研究[学位论文].北京: 首都师范大学, 2002. ]
[35]
Jiang WX, Fu XC, Tang T et al. Community structure and niche of macrobenthos in Xiangxi River water system. Journal of Applied and Environmental Biology, 2009, 15(3): 337-341. [蒋万祥, 傅小城, 唐涛等. 香溪河水系大型底栖动物的群落结构及生态位. 应用与环境生物学报, 2009, 15(3): 337-341.]
[36]
Gaedke U. The size distribution of plankton biomass in a large lake and its seasonal variability. Linmology and Oceanography, 1992, 37(6): 1202-1220.
[37]
Hein M, Riemann B. Nutrient limitation of phytoplankton biomass or growth rate:An experimental approach using marine enclosures. Journal of Experimental Marine Biology and Ecology, 1995, 188(2): 167-180. DOI:10.1016/0022-0981(95)00002-9
[38]
Wang G, Zhao SL, Zhang PY et al. Discussion on the definition of niche and the improvement of measurement formula of niche overlap. Chinese Journal of Ecology, 1984, 4(2): 119-127. [王刚, 赵松岭, 张鹏云等. 关于生态位定义的探讨及生态位重叠计测公式改进的研究. 生态学报, 1984, 4(2): 119-127.]
[39]
Wang RZ. Study on niche breadth and niche overlapping of main plant populations in leymus chinensis grassland affected by grazing. Journal of Plant Ecology, 1997, 21(4): 304-311. [王仁忠. 放牧影响下羊草草地主要植物种群生态位宽度与生态位重叠的研究. 植物生态学报, 1997, 21(4): 304-311. DOI:10.3321/j.issn:1005-264X.1997.04.002]
[40]
Hu HJ, Wei YX eds. Freshwater algae in China-system, classification and ecology. Beijing: Science Press, 2006: 33. [胡鸿钧, 魏印心. 中国淡水藻类——系统、分类及生态. 北京: 科学出版社, 2006: 33.]
[41]
Luo XY, Qin HC, Huang YH. Analysis of nutrient composition of Synedra acus. City and Town Water Supply, 2011(6): 65-66. [罗小勇, 秦洪超, 黄永红. 尖针杆藻营养成分分析. 城镇供水, 2011(6): 65-66.]
[42]
Mitrovic SM, Hitchcock JN, Davie AW et al. Growth responses of Cyclotella meneghiniana (Bacillariophyceae) tovarious temperatures. Journal of Plankton Research, 2010, 32(8): 1217-1221. DOI:10.1093/plankt/fbq038
[43]
Bigler C, Hall RI. Diatoms as quantitative indicators of July temperature:a validation attempt at century-scale with meteorological data from northern Sweden. Palaeogeography, 2003, 189(3/4): 147-160.
[44]
Catalan J, Ventura M, Brancel A et al. Seasonal ecosystem variability in remote mountain lakes:implications for detecting climatic signals in sediment records. Journal of Paleolimnology, 2002, 28(1): 25-46. DOI:10.1023/A:1020315817235
[45]
Zhou FX, Chen JH eds. Freshwater microbiograph. Beijing: Chemical Industry Press, 2005. [周凤霞, 陈剑虹. 淡水微型生物图谱. 北京: 化学工业出版社, 2005.]
[46]
Wang C, Li X, Lai Z et al. Seasonal variations of Aulacoseira granulata population abundance in the Pearl River Estuary. Estuarine Coastal & Shelf Science, 2009, 85(4): 585-592.
[47]
He CH, Huang XH, Li CL et al. Limiting conditions of tempreture, illumination intensity, salinity and pH on growth of Oscillatoria sp. Fishery Modernization, 2011, 38(6): 20-25. [贺春花, 黄翔鹄, 李长玲等. 温度、光照度、盐度和pH对颤藻生长的限制条件研究. 渔业现代化, 2011, 38(6): 20-25. DOI:10.3969/j.issn.1007-9580.2011.06.005]
[48]
Shen XS, Sun LG, Yin XB et al. On preliminary observation of Lyngbya major in The King George Island of the Antarctica. Marine Sciences, 2003, 27(1): 47-49. [沈显生, 孙立广, 尹雪斌等. 南极乔治王岛大型鞘丝藻植物形态的初步观察. 海洋科学, 2003, 27(1): 47-49. DOI:10.3969/j.issn.1000-3096.2003.01.013]
[49]
Reynolds CS. The ecology of phytoplankton. Cambridge: Cambridge University Press, 2006.
[50]
Reynolds CS, Huszar V, Kruk C et al. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 2002, 24(5): 417-428. DOI:10.1093/plankt/24.5.417
[51]
Zhu Z, Ren QF, A YQL et al. Effects of seasons and N and P nutrition on the growth of Chlorella pyrenoidosa. Journal of Southwest University:Natural Science, 2010, 32(6): 152-156. [朱智, 任秋芳, 阿依巧丽等. 不同季节和N、P营养条件对蛋白核小球藻(Chlorella pyrenoidosa)生长的影响. 西南大学学报:自然科学版, 2010, 32(6): 152-156.]
[52]
Li YX, Ju Z, Zhao W et al. Community structure of phytoplankton in Baishi Reservoir. Journal of Dalian Fisheries University, 2016(4): 404-409. [李沂軒, 鞠哲, 赵文等. 白石水库浮游植物的群落结构研究. 大连海洋大学学报, 2016(4): 404-409.]