湖泊科学   2019, Vol. 31 Issue (2): 507-516.  DOI: 10.18307/2019.0219.
0

研究论文

引用本文 [复制中英文]

赵海超, 李艳平, 王圣瑞, 焦立新, 洱海沉积物有色可溶性有机物(CDOM)三维荧光空间分布特性及指示意义. 湖泊科学, 2019, 31(2): 507-516. DOI: 10.18307/2019.0219.
[复制中文]
ZHAO Haichao, LI Yanping, WANG Shengrui, JIAO Lixin. The spatial distribution and its significance of three-dimensional fluorescence characteristics of CDOM in sediments from Lake Erhai. Journal of Lake Sciences, 2019, 31(2): 507-516. DOI: 10.18307/2019.0219.
[复制英文]

基金项目

云南高原典型湖泊沉积物有机磷生物有效性项目(230200069)和国家高层次人才特殊支持计划项目(312232102)联合资助

作者简介

赵海超(1974~), 男, 博士, 副教授, E-mail:haichaozhao19@163.com

通信作者

王圣瑞; E-mail: wangsr@bnu.edu.cn

文章历史

2018-05-16 收稿
2018-07-15 收修改稿

码上扫一扫

洱海沉积物有色可溶性有机物(CDOM)三维荧光空间分布特性及指示意义
赵海超1,3 , 李艳平2 , 王圣瑞3,4 , 焦立新2     
(1: 河北北方学院农林科技学院, 张家口 075000)
(2: 中国环境科学研究院, 北京 100012)
(3: 北京师范大学水科学研究院, 北京 100875)
(4: 云南省高原湖泊流域污染过程与管理重点实验, 昆明 650034)
摘要:采用荧光光谱区域体积积分法定量研究洱海沉积物有色可溶性有机物(CDOM)三维荧光空间分布特性,结果表明,洱海沉积物CDOM中类腐殖酸组分占比最高(44.5%~74.2%),其次为溶解性微生物代谢产物(10.7%~20.4%)和类富里酸物质(8.19%~19.7%),而类蛋白组分占比最低,类腐殖酸占比与H/C和N/C均呈显著负相关;南部湖心平台区域沉积物类富里酸和类蛋白组分占比较高,其CDOM自生源占比较高;北部水生植物分布区溶解性微生物代谢产物占比较高,CDOM陆源性较强;中部深水区及南北湖湾区域类腐殖酸占比较高,随水深增加沉积物CDOM自生源特征增强.随沉积物深度增加类腐殖酸和溶解性微生物代谢产物占比呈下降趋势,类富里酸占比呈上升趋势,CDOM自生源特征增强,脂肪化程度增高.随湖泊富营养化程度增加沉积物CDOM受微生物代谢产物影响增强,陆源性增加,而自生源性降低,湖泊沉积物CDOM具有富营养化指示意义.
关键词沉积物    CDOM    三维荧光光谱    空间分布    洱海    
The spatial distribution and its significance of three-dimensional fluorescence characteristics of CDOM in sediments from Lake Erhai
ZHAO Haichao1,3 , LI Yanping2 , WANG Shengrui3,4 , JIAO Lixin2     
(1: College of Agricultural Science, Hebei North University, Zhangjiakou 075000, P. R. China)
(2: Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China)
(3: College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China)
(4: Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, P. R. China)
Abstract: The Chromophoric Dissolved Organic Matter(CDOM) was analyzed quantitatively using fluorescence spectroscopy regional volume integral method. The spatial distribution characteristics of CDOM were studied by three-dimensional fluorescence spectroscopy in Lake Erhai sediments. The results showed that the highest proportion was the humic acid (ranging from 44.5% to 74.2% in sediments), followed by soluble microbial metabolites and fulvic acid with their content 10.7%-20.4% and 8.19%-19.7%, respectively. The lowest was the class protein components. The proportion of humic acid was negatively correlated with H/C and N/C. The concentration of fulvic acid and the class protein components accounted for a relatively high proportion in the southern lake core platform, and CDOM had strongly self-origin. The dissolved microbial metabolites accounted for a relatively high proportion in the northern aquatic plant distribution area, and CDOM showed strongly terrestrial origin. The humic acids accounted for a relatively high proportion in the central deep water area and the north and south lake bays, with the increase of water depth, the self-origin characteristics of CDOM was increased in sediments. With the increase of sediment depth, the humic acid and soluble microbial metabolites was decreased, the fulvic acid was increased. The self-generated source characteristics and the degree of fatification of CDOM were increased. As the lake eutrophication increased, the influence of microbial metabolites on the CDOM of sediments was increased, and its terrestrial sources was increased will its self-generated source was reduced. The CDOM of lake sediments had the indicating significance to eutrophication.
Keywords: Sediments    chromophoric dissolved organic matter (CDOM)    three-dimensional fluorescence spectroscopy    spatial distribution    Lake Erhai    

湖泊沉积物既是流域污染物输入的“汇”,又是上覆水体营养盐的“源”,记录了湖泊流域人类活动变化以及湖泊环境演化特征,是湖泊历史信息的重要来源[1].沉积物有色可溶性有机物(CDOM)是水体普遍存在的活跃有机组分[2],源于外源输入和湖泊自生两种途径.近年来国内外学者对其源解析、组分分级、赋存特征和转化行为等方面做了大量探索工作[3]. CDOM是由腐殖质和非腐殖质构成的非均质混合物,其化学组成和结构复杂,可通过络合作用、光催化等方式与金属或有机污染物结合,进而影响水体的酸碱性、污染物迁移转化和生物有效性等,进而影响湖泊生态系统的稳定性[4-5].因此其在沉积物空间分布特征可反映湖泊营养物迁移转化规律[6],并记录湖泊及流域演变信息.

荧光光谱技术(excitation-emission matrix fluorescence,EEM)具有灵敏度高、用量少和不破坏样品结构等优点[7],广泛用于研究湖泊和河流沉积物CDOM组成、来源和生物地球化学循环[3, 5, 8].区域一体化体积积分法(Fluorescence regional integration,FRI)能够对EEM进行定量分析,确定CDOM的配置和异质性[9],同时能定量区分EEM的细微变化,提高谱图的解析能力[10]. Chen等[11]将EEM谱图分为5个区域,通过计算特定区域标准体积及其百分比确定对应区域特定结构荧光物质含量和相对比例.洱海作为典型高原湖泊,近年已处于“富营养化初期”[12]的关键转型期.随流域治理力度不断增加,外源污染输入逐渐减少,而沉积物内源释放对水质影响逐步加剧.作为沉积物有机质的活性组分,CDOM来源和结构是影响洱海沉积物内源释放的重要因子.本研究试图通过对洱海沉积物CDOM三维荧光光谱解析,阐明其沉积物CDOM组分空间分布特征,了解洱海沉积物的沉积及演变过程中CDOM组分变化规律及影响因素及沉积物CDOM组分变化对湖泊富营养化指示意义,以期进一步揭示洱海富营养化机制.

1 材料与方法 1.1 样品采集

根据洱海水下地形及入湖负荷分布特征,于2014年8月在洱海采集14个表层样品(图 1):北部(1#~5#点)、中部(6#~9#点)和南部(10#~14#点),同时在8#点(洱海最深处)和11#点(南部湖心平台)采集两根柱状样.表层沉积物采用彼得森采泥器采集,柱状样采用柱状采样器采集,柱长为50 cm,现场按2 cm分割装入样品袋,于4℃保温箱内带回实验室,冷冻干燥,过100目筛后备用.

图 1 洱海湖底地形及采样点位 Fig.1 Lake bottom terrain and sampling sites of Lake Erhai
1.2 实验方法 1.2.1 沉积物CDOM荧光光谱分析

取一定量的沉积物,按照1:10(质量/体积)比例用1 mol/L的KCl震荡提取(20℃、200转/min、24 h),离心后(5000转/min、15 min)过0.45 μm玻璃纤维滤膜后取上清液测定CDOM. CDOM三维荧光光谱采用Hitachi F-7000型荧光光谱分析仪测定.带通(Bandpass):激发波长(Ex)=5 nm,发射波长(Em)=5 nm;扫描速度:2400 nm/min.三维荧光光谱测定Ex为200~440 nm,Em为250~600 nm,以Milli-Q超纯水做CK[13].

1.2.2 沉积物元素分析

沉积物中C、N、H元素用元素分析仪(Vario EL Ⅲ,Elemeraor)进行测定.

1.3 数据分析

采用Excel 2007和SPSS 17.0软件进行数据分析,三维荧光使用Matlab 2007软件进行处理.

2 结果与分析 2.1 洱海表层沉积物CDOM荧光光谱特征

运用荧光光谱FRI对洱海不同点位沉积物CDOM的EEM光谱进行定量分析.从图 2可见,洱海沉积物CDOM三维荧光光谱均可以分为5个区域:区域Ⅰ(P)为络氨酸类蛋白质(Ex/Em=220~250/280~330 nm),区域Ⅱ(P)为色氨酸类蛋白质(Ex/Em=220~250/330~380 nm),区域Ⅲ(P)为类富里酸(Ex/Em=220~250/380~550 nm),区域Ⅳ(P)为溶解性微生物代谢产物(Ex/Em=250~400/280~380 nm),区域Ⅴ(P)为类腐殖酸(Ex/Em=250~400/380~550 nm)[12].但不同点位的CDOM各荧光区域差异较大,北部2#和3#、中部的6#和南部13#点沉积物CDOM的P占比明显较高,南部10#和11#点沉积物CDOM的P和P占比明显较高.

图 2 洱海不同点位表层沉积物CDOM三维荧光图 Fig.2 EEM spectra of CDOM in surface sediments of different sampling sites in Lake Erhai
2.2 洱海沉积物CDOM荧光组分空间分布特征

洱海沉积物CDOM组分区域变化如图 3所示,洱海沉积物CDOM的P(Ⅰ, n)总体在1.0 % ~9.7 %之间,平均值为3.7 %,高值区分布在洱海污染物沉积区,如南部湖心平台区域(10#、11#点)和北部红山湾口区域(1#点);低值区主要分布在洱海有水生植物的浅水区,如南部湖泊出口区(14#点)和北部沙坪湾(2#点). CDOM的P(Ⅱ, n)总体在2.3 % ~8.2 %之间,平均值为4.7 %,区域分布与P(Ⅰ, n)基本相同. CDOM的P(Ⅲ, n)总体在8.2 % ~19.7 %之间,平均值为15.0 %,高值区主要分布在受污染物沉积影响较大的南部湖心平台区和北部狭口区(4#、5#点),低值区主要分布在受入湖河流冲击影响较大的北部沙坪湾口(3#点)和南部波罗江入湖口区(13#点). CDOM的P(Ⅳ, n)总体在10.7 % ~20.4 %之间,平均值为16.8 %,高值区分布在南部湖心平台区,中部深水区(8#点)和北部红山湾口区,低值区分布在南部出水口区和沙坪湾. CDOM的P(Ⅴ, n)总体在44.5 % ~74.2 %之间,平均值为59.7 %,高值区分布在南部出湖口区和北部的沙坪湾,低值区分布在湖心平台.总体来看,洱海沉积物CDOM各组分占比大小顺序为类腐殖酸>溶解性微生物代谢产物>类富里酸>色氨酸类蛋白质>络氨酸类蛋白质;在北部水生植物分布区类腐殖酸占比较高,类蛋白质占比较低,受污染物沉积影响较大的南部湖心平台区域类蛋白质和类富里酸占比较高,中部深水区溶解性微生物代谢产物占比较高.

图 3 洱海表层沉积物荧光组分空间分布 Fig.3 The spatial distribution of CDOM EEM components in surface sediments of Lake Erhai

洱海沉积物CDOM组分垂向变化如图 4所示.可见洱海沉积物CDOM组分呈现类腐殖质和溶解性微生物代谢产物表层富集现象,随着深度的增加洱海沉积物CDOM类腐殖质和溶解性微生物代谢产物占比降低,类富里酸和类蛋白占比增高.洱海沉积物CDOM的P(Ⅰ, n)随深度的增加呈波动式变化,表层高于亚表层,在28 cm处出现峰值.洱海沉积物CDOM的P(Ⅱ, n)随着深度的增加呈上升趋势,6 cm以下趋于稳定呈波动式变化,峰值位置与P(Ⅰ, n)基本相同.洱海沉积物CDOM的P(Ⅲ, n)随深度的增加呈上升趋势,6 cm以下趋于稳定呈波动式变化.洱海沉积物CDOM的P(Ⅳ, n)随深度的增加呈下降趋势,表层最高,6 cm以下趋于稳定.洱海沉积物CDOM的P(Ⅴ, n)随深度的增加呈波动式下降趋势,4 cm层最高.表明近年来洱海沉积物类富里酸和类蛋白占比降低,类腐殖质和溶解性微生物代谢产物增加,CDOM组分结构趋于复杂化.

图 4 洱海沉积物荧光组分垂向分布 Fig.4 The vertical distribution of CDOM EEM components in sediments of Lake Erhai
2.3 洱海沉积物CDOM荧光参数时空变化特征

洱海不同区域沉积物CDOM荧光参数变化如图 5所示.荧光参数是揭示沉积物CDOM来源及降解特征的重要指标,能够在一定程度反映湖泊沉积物的来源及演化规律,进而反映湖泊营养状况.荧光指数(fluorescence index,f450/500)是激发光波长370 nm时,荧光发射光谱中450和500 nm处荧光强度比值,可用来区别有机质的来源[14]. Mcknight等[15]认为,f450/500>1.9表明CDOM主要来源于沉积物中微生物代谢产物,f450/500<1.4表明CDOM主要来源于外来输入和湖内营养盐的沉降.洱海表层沉积物中CDOM的f450/500在1.57~1.67之间,平均值为1.61.高值区主要分布在中部湖心区、南部湖心平台、南部罗时江入湖口、南部出湖口以及北部湖心深水区.因此洱海深水区及湖心平台沉积物中的CDOM主要来源于微生物代谢,西部和北部湖湾浅水区沉积物CDOM主要来源于外源输入.自生源指数(biological index,BIX)是激发波长254 nm下,发射波长在380和430 nm处的荧光强度比值[16],亦可用来区别有机质的来源. Huguet等[16]研究表明,随着BIX的增加CDOM自生源特征增强,陆源特征降低.洱海表层沉积物BIX在0.59~1.13之间,平均值为0.76. BIX的高值区分布在中部湖心区,且随着水体深度变浅呈下降趋势.这表明随着水体深度的增加沉积物中CDOM自生源特征增强.湖心区沉积物CDOM主要是浮游植物和细菌的有机体降解产物,洱海西部及水生植物分布区陆源输入是CDOM的主要来源.

图 5 表层沉积物荧光指数的空间分布 Fig.5 Spatial distribution of EEM indexes of CDOM in surface sediments

洱海沉积物CDOM荧光指数垂向变化如图 6所示.其中f450/500随着深度的增加呈波动式下降趋势,表层最高,4 cm以下基本呈波动式变化.表明近年来洱海表层沉积物CDOM受微生物代谢产物影响增强. BIX随着深度的增加总体呈波动式上升趋势,0~10 cm呈上升趋势,10 cm以下呈波动式上升趋势.表明随着沉积物深度的增加CDOM自生源特征增强,根据洱海沉积物沉积速率(0.20 cm/a)[17],近50年来洱海沉积物外源输入呈增加趋势,但近10年来随着洱海流域治理力度的增强,外源输入减弱,生物转化作用加强,CDOM受微生物代谢影响增加.

图 6 洱海沉积物荧光参数垂向分布 Fig.6 The vertical distribution of CDOM EEM parameter in sediments of Lake Erhai
3 讨论 3.1 洱海沉积物CDOM影响因素

湖泊沉积物CDOM含量及组分受多种因素影响,这些因素包括分子结构作用、有机和无机基质组分和沉积条件等[18].特别是H、C、N元素及其量比关系能够反映CDOM的结构特征. H/C比是反映有机物价键结构的重要参数,较小的H/C值表明有机质不饱和程度和芳香性较高,较大的H/C值则表明其脂肪化程度高[19].沉积物富里酸的芳香性比土壤富里酸要强,这可能与水体和沉积物中有水生植物以及微生物降解作用有关[20].研究表明随着枯落物碎屑N/C比的增加,细菌的生长效率大幅度升高(即被分配用来生长的碳部分增加)[21].从洱海沉积物CDOM各组分与元素间的相关性分析(表 1)可以看出:沉积物CDOM的P(Ⅰ, n)、P(Ⅱ, n)和P(Ⅲ, n)均与H/C呈显著正相关;P(Ⅴ, n)与H/C和N/C均呈显著负相关. P(Ⅱ, n)、P(Ⅲ, n)和P(Ⅳ, n)均与N/C呈显著正相关;P(Ⅱ, n)与H元素呈显著正相关.表明CDOM的P(Ⅰ, n)、P(Ⅱ, n)和P(Ⅲ, n)组分不饱和程度较高,随着P(Ⅱ, n)、P(Ⅲ, n)和P(Ⅳ, n)组分的增加促进微生物的生长效率,随着P(Ⅴ, n)组分的增加细菌生长效率降低.可见湖心区和沉水植物分布区不饱和程度和芳香性较高,且随着沉积物深度的增加CDOM的脂肪化程度增高,不饱和程度和芳香性降低.南部湖心平台区、北部狭口区和西部沉积物CDOM受微生物活动影响较大,而深水区和水生植物分布区受微生物影响较少,且随着水体深度的增加微生物影响减弱,但近10年洱海沉积物微生物活力有所下降.

表 1 沉积物CDOM荧光组分与不同元素相关性分析 Tab. 1 Correlations of EEM components of CDOM in the sediments and different parameters
3.2 洱海沉积物CDOM环境指示意义

云贵高原是我国断陷湖泊聚集区域,由于流域经济和人类活动等的差异,这些湖泊富营养化程度差异较大,滇池为富营养化严重湖泊[22],程海呈现富营养化特征[23],洱海处于中营养向富营养转变的关键时期[24],泸沽湖为贫营养湖泊[25].洱海与李秋才[26]对滇池、程海和泸沽湖的研究结果对比分析如图 7所示,贫营养湖泊沉积物CDOM类腐殖酸占比较低,且随着湖泊富营养化程度的增加,沉积物CDOM的f450/500呈上升趋势,BIX呈下降趋势.洱海沉积物深水区、南部湖湾类腐殖酸占比较高,f450/500较大,表明该湖区富营养化程度较严重.此外,洱海沉积物随着深度的增加CDOM类腐殖酸占比和f450/500下降、BIX升高,表明近年来洱海富营养化加重.

图 7 云贵高原不同湖泊沉积物荧光参数[26] Fig.7 EEM parameter of CDOM in sediments of different lakes in Yunnan-Guizhou Plateau
4 结论

1) 洱海沉积物CDOM以类腐殖酸为主,但不同区域沉积物CDOM各组分差异较大,在水生植物分布区类腐殖酸(P(Ⅴ, n))占比较高,类蛋白质(P(Ⅰ, n)和P(Ⅱ, n))占比较低,南部湖心平台区类蛋白质和类富里酸(P(Ⅲ, n))占比较高,深水区溶解性微生物代谢产物占比较高.深水区和北部湖湾区溶解性微生物代谢产物(P(Ⅳ, n))占比较高.

2) 洱海沉积物CDOM随深度增加类蛋白占比呈上升趋势,类富里酸占比呈上升趋势,溶解性微生物占比呈下降趋势,类腐殖质占比呈波动式下降趋势.洱海沉积物呈现类腐殖质和溶解性微生物代谢产物表层富集现象.

3) 洱海沉积物CDOM在水生植物分布区陆源性较强,南部湖心平台区自生源性较强,洱海西部比东部陆源性强.随着水体深度的增加沉积物中CDOM自生源特征增强,湖心深水区主要是浮游植物和细菌的有机体降解产物.随着沉积物深度的增加CDOM自生源特征增强,陆源特征降低,受微生物代谢产物影响减弱.洱海沉积物随着深度的增加CDOM的脂肪化程度增高,不饱和程度和芳香性降低.

4) 富营养化湖泊DOM以生物源为主,中营养湖泊DOM以陆源为主,贫营养湖泊DOM以自生源为主,湖泊沉积物DOM具有富营养化指示意义,通过洱海沉积物CDOM组分特征可见近年来富营养化程度加重.

5 参考文献

[1]
Liu EF, Shen J, Liu XQ et al. Variation characteristics of heavy metals and nutrients in the core sediments of Taihu Lake and their pollution history. Science in China:Series D, 2006, 49(1): 82-91. DOI:10.1007/s11427-005-0188-6
[2]
Kang S, Xing B. Humic acid fractionation upon sequential adsorption onto goethite. Langmuir, 2008, 24(6): 2525-2531. DOI:10.1021/la702914q
[3]
Fan CH, Chang M, Zhang YC. Spectral characteristics of dissolved organic matter (DOM) derived from water and sediment in normal flow period of the intersection zone of Jing river and Wei river. Spectroscopy and Spectral Analysis, 2016, 36(9): 2863-2869. [范春辉, 常敏, 张颖超. 泾渭河交汇区域平水期水体和表层沉积物溶解性有机质的光谱性质. 光谱学与光谱分析, 2016, 36(9): 2863-2869.]
[4]
Hosen JD, Mcdonough OT, Febria CM et al. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environmental Science & Technology, 2014, 48(14): 7817-7824.
[5]
Zhai TN, Huo SL, Zhang JT. Spectral characteristics of vertical distribution of dissolved organic matters in sediments. Chinese Journal of Environmental Engineering, 2017, 11(11): 6196-6204. [翟天恩, 霍守亮, 张婧天. 沉积物中溶解性有机质的垂向分布光谱特性. 环境工程学报, 2017, 11(11): 6196-6204. DOI:10.12030/j.cjee.201701115]
[6]
Ziegelgruber KL, Chin YP, Zeng T et al. Sources and composition of sediment pore-water dissolved organic matter in prairie pothole lakes. Limnology and Oceanography, 2013, 58(3): 1136-1146. DOI:10.4319/lo.2013.58.3.1136
[7]
Li YP, Wang SR, Zhang L. Composition, source characteristic and indication of eutrophication of dissolved organic matter in the sediments of Erhai Lake. Environmental Earth Sciences, 2015, 74(5): 3739-3751. DOI:10.1007/s12665-014-3964-4
[8]
He XS, Xi BD, Wei ZM et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. Journal of Hazardous Materials, 2011, 190: 293-299. DOI:10.1016/j.jhazmat.2011.03.047
[9]
He X, Xi B, Wei Z et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere, 2011, 82(4): 541-548. DOI:10.1016/j.chemosphere.2010.10.057
[10]
Wu HY, Zhou ZY, Wang HT et al. Effect of spectra correction on the fluorescence characteristics of dissolved organic matter. Spectroscopy and Spectral Analysis, 2012, 32(11): 3044-3048. [吴华勇, 周泽宇, 王洪涛等. 光谱校正对溶解有机物三维荧光光谱特征影响. 光谱学与光谱分析, 2012, 32(11): 3044-3048. DOI:10.3964/j.issn.1000-0593(2012)11-3044-05]
[11]
Chen W, Westerhoff P, Leenheer JA et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science Technology, 2003, 37(24): 5701-5710. DOI:10.1021/es034354c
[12]
Chen XH, Qian XY, Li XP et al. Long-term trend of eutrophication state of lake Erhai in 1988-2013 and analyses of its socio-economic drivers. J Lake Sci, 2018, 30(1): 70-78. [陈小华, 钱晓雍, 李小平等. 洱海富营养化时间演变特征(1988-2013年)及社会经济驱动分析. 湖泊科学, 2018, 30(1): 70-78. DOI:10.18307/2018.0107]
[13]
Wang SR. Sediment-water interface process of lakes theories and methods. Beijing: Science Press, 2014: 108-111. [王圣瑞. 湖泊沉积物-水界面过程基本理论与常用测定方法. 北京: 科学出版社, 2014: 108-111.]
[14]
Wolfe AP, Kaushal SS, Fulton JR et al. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environmental Science & Technology, 2002, 36: 3217-3223.
[15]
Mcknight DM, Boyer EW, Westerhoff PK et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 2001, 46(1): 38-48. DOI:10.4319/lo.2001.46.1.0038
[16]
Huguet A, Vacher L, Relexans S et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 2009, 40: 706-719. DOI:10.1016/j.orggeochem.2009.03.002
[17]
Zhang ZK, Wu RJ, Zhu YX et al. Lacustrine records of human activities in the catchment of Erhai Lake, Yunnan Province. Acta Geographica Sinica, 2000, 55(1): 66-74. [张振克, 吴瑞金, 朱育新等. 云南洱海流域人类活动的湖泊沉积记录分析. 地理学报, 2000, 55(1): 66-74. DOI:10.3321/j.issn:0375-5444.2000.01.008]
[18]
Elizabeth JW, Elizabeth AC. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Organic Geochemistry, 2008, 39: 422-439. DOI:10.1016/j.orggeochem.2008.01.011
[19]
Thurman EM. Organic geochemistry of natural waters. Boston, Dordrecht: Martinus Nijhoff/Dr Junk W Publishers, 1985: 497.
[20]
He MC, Shi YH, Lin CY. Characterization ofhumic acids extracted from the sediments of the various rivers and lakes in China. Journal of Environmental Sciences, 2008, 20: 1294-1299. DOI:10.1016/S1001-0742(08)62224-X
[21]
Goldman JC, Caron DA, Dennett MR. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography, 1987, 32(6): 1239-1252. DOI:10.4319/lo.1987.32.6.1239
[22]
Wang Q, Gao XQ, Xiao NW et al. Distribution pattern of submerged macrophytes and its influencing factors of water environment in Lake Dianchi. J Lake Sci, 2018, 30(1): 157-170. [王琦, 高晓奇, 肖能文等. 滇池沉水植物的分布格局及其水环境影响因子识别. 湖泊科学, 2018, 30(1): 157-170. DOI:10.18307/2018.0116]
[23]
Chen JY, Zhang EL. Sediment record of subfossil chironomid assemblages in the ecosystem evolution of Lake Chenghai. Ecological Science, 2015, 34(2): 1-8. [陈静逸, 张恩楼. 云南程海湖泊生态系统演化的摇蚊亚化石沉积记录. 生态科学, 2015, 34(2): 1-8. DOI:10.3969/j.issn.1671-6361.2015.02.001]
[24]
Zhao HC, Zhang L, Wang SR et al. Features and influencing factors of nitrogen and phosphorus diffusive fluxes at the sediment-water interface of Erhai Lake. Environmental Science and Pollution Research International, 2018, 25: 1933-1942. DOI:10.1007/s11356-017-0556-3
[25]
Wu H, Chang FQ, Zhang HC et al. Grain-size distribution patterns of the surface sediments and their influential factors in Lake Lugu. Acta Sedimentologica Sinica, 2016, 34(4): 679-687. [吴汉, 常凤琴, 张虎才等. 沪沽湖表层沉积物粒度空间分布特征及其影响因素. 沉积学报, 2016, 34(4): 679-687.]
[26]
Li QC. The characteristic of dissolved organic nitrogen (DON) in lake sediments and their responses to drainagebasin[Dissertation]. Guilin: Guilin University of Technology, 2015: 21-24. [李秋才.高原湖泊沉积物溶解性有机氮(DON)特征及其与流域间变化[学位论文].桂林: 桂林理工大学, 2015: 21-24. ]