(2: 西安建筑科技大学环境与市政工程学院, 西安 710055)
(3: 扬州大学环境科学与工程学院, 扬州 225009)
(2: School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China)
(3: Department of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, P. R. China)
溶解性有机质(DOM)主要包括亲水性有机酸、类蛋白、类氨基酸、类腐殖酸和碳水化合物等[1],含有丰富的碳、氮、磷等要素;DOM演变过程涉及到水体污染物质的转化,因此会对水体水质演变有重要影响[2];而且水厂在水处理过程中一些含氮DOM还会与消毒剂发生反应,产生消毒副产物,进而给水质安全带来潜在的危害[3-4].因此,近年来在天然环境水体中有关DOM组分、特性以及演变特征的研究成为热点[5].
紫外-可见以及三维荧光结合平行因子分析技术因其灵敏高效的特征,被广泛用于表征河流[6-7]、河口[8-9]、湖泊[10-11]、水库[12-15]和湿地[16]等不同来源DOM的组成和来源.然而,目前大多研究往往集中于某一特定时期或特定区域的DOM光谱特征解析.比如:乔煜琦等[17]利用平行因子分析(PARAFAC)技术对藻华暴发季节太湖梅梁湾和开敞区水样中有色可溶性有机物进行三维荧光光谱分析,发现藻华的长期暴发可以显著改变湖泊有色可溶性有机物(CDOM)的组成,导致类腐殖酸物质比例提高;聂明华等[18]利用三维荧光光谱技术,结合平行因子分析法及自组织映射神经网络,对南昌市典型湖泊水体中不同粒径胶体的荧光物质组分、来源及结构等进行分析;张博等[19]采用化学连续提取与三维荧光光谱相结合的方法研究了蠡湖沉积物中可提取有机质的组成、结构和空间分布特征,并探讨了可提取态有机质组分与可交换态氮和弱吸附态磷之间的相关关系;文杨等[20]以沈阳市新开河为研究对象, 考察了冰封期前、后河流底泥中DOM组分荧光特性的变化.但是,关于水库季节演替中沉积物上覆水DOM光谱特征的研究却鲜有报道.
众所周知,水库不同于一般的天然水体,因其作为城市的供水水源,担负着保障城市供水水质安全的重任,其水质安全影响人民的切身利益[21-22].众所周知,水库沉积物上覆水作为水库沉积物和水体交换的活跃地带,其水体的水质特征在水库碳、氮、磷等元素的循环中扮演重要角色;加之水库水体存在热分层现象,使沉积物上覆水的DOM变化特征更不同于一般的水体.因此,在季节演变的时间尺度下开展周村水库沉积物上覆水平面空间的DOM光谱解析十分必要.基于此,本研究利用紫外-可见吸收光谱以及三维荧光光谱分析技术,分析2015-2016年四季演替过程中周村水库沉积物上覆水水体的DOM组成和光谱特征.旨在通过该研究,了解沉积物上覆水DOM的结构、来源以及对其生态环境效应的影响,以期为周村水库水体水质污染防治以及运行管理提供必要的科学依据.
1 材料与方法 1.1 采样地点和时间周村水库位于山东省枣庄市孟庄镇周村南,总库容8404万m3,是枣庄市主要的城市供水水源地.本研究选取2015年的9月(秋季)、12月(冬季),2016年的3月(春季)、6月(夏季)周村水库24个点位的沉积物上覆水为研究对象,采样点分布如图 1所示.
将收集到的沉积物上覆水水样用0.45 μm玻璃纤维滤膜(预先450℃灼烧5 h)过滤得到溶解性有机物水体样品,并保存在4℃的冰箱内,在72 h之内完成DOM的光谱分析. 24 h内完成水样中溶解性总氮(DTN)、总氮(TN)、总有机碳(TOC)和溶解性有机碳的测定,其中DTN和TN浓度依据《水和废水监测分析方法》测定[23],TOC和溶解性有机碳浓度用有机碳分析仪测定[24].
1.3 紫外-可见吸收光谱的测定紫外-可见光谱采用DR6000分光光度计(美国HACH公司)测定,以Mill-Q水为空白,用1 cm石英比色皿,以1 nm为扫描间隔,在200~700 nm范围内进行吸光度测定.吸收系数计算公式为[25-26]:
$ {a^*}(\lambda ) = 2.303D(\lambda )/r $ | (1) |
$ a(\lambda ) = {a^*}(\lambda ) - {a^*}(700) \cdot \lambda /700 $ | (2) |
$ a(\lambda ) = a(440)\exp [S(440 - \lambda )] $ | (3) |
式中,λ为波长,nm;a*(λ)为未经散射校正的波长为λ处的吸收系数,m-1;a(λ)为经过散射校正过后的波长为λ处的吸收系数,m-1;D(λ)为波长λ处的吸光度;r为光程路径,m.本文选取a254和a355来表示DOM的相对浓度. SR为光谱斜率比,为S275-295/S350-400.与a*(λ)相比,SR更能反映出DOM的来源与分子量信息[27]. E2/E3是250 nm和365 nm处的紫外吸光度之比,其值与相对分子质量大小呈反比[28-29]. E3/E4是300 nm和400 nm处的紫外吸光度之比,用来衡量腐殖质的腐殖化程度和芳香性. SUVA260(a260/DOC)[27]用来表征DOM疏水组分的含量,SUVA280(a280/DOC)[30]用来表征DOM芳香性的强弱.
1.4 三维荧光光谱的测定三维荧光光谱采用F97荧光分光光度计进行测定.设备的激发波长、发射波长以及扫描速度等参数设置同黄廷林等[13]的研究.利用超纯水做空白扣除散射影响,并结合Delaunnay三角形内插值法修正去除拉曼峰散射和瑞利散射[31].利用MATLAB 2014a软件把96个样品的荧光矩阵组合, 采用N-way和DOMFluor工具箱进行平行因子分析[32],并通过核一致性分析确定荧光组分数,利用折半分析来分析结果的可靠性[33].
1.5 三维荧光光谱的特征指数荧光指数(FI=F470/F520)可以评价有机质来源和降解程度,计算方法见文献[34-35];腐殖程度指标HIX[36]为254 nm激光波长下435~480 nm间荧光峰值与300~345 nm间荧光峰值积分值之商(F435~480/F300~345),HIX指数越高则表示DOM腐殖化程度越高[37];生物源指数指标(BIX=F380/F430)反映有机质自生源相对贡献率,同时可以评价生物可利用性的高低[38];新鲜度指数(β :α)为激发波长为310 nm时荧光发射波长在380 nm处荧光强度与荧光发射波长在420~435 nm区间最大荧光强度的比值,是评估水体生物活性的重要依据.
1.6 数据分析实验数据采用SPSS (22.0)软件进行Pearson相关性分析和单因素方差分析.应用Surfer (12.0)软件进行水库沉积物上覆水水体水质及荧光强度分布的绘制.
2 结果与讨论 2.1 水库沉积物上覆水中氮和有机碳的分布特征夏、秋季周村水库大部分区域沉积物上覆水水体的溶解性有机碳浓度要低于冬、春季(图 2),并且各季节间均呈显著差异(P < 0.01),最高值出现在夏季(3.16±0.42 mg/L)(图 2d),最小值出现在春季(1.27±0.31 mg/L)(图 2c).而且靠近入库支流(西北部)和库湾的部分浓度相对较高.周村水库中沉积物上覆水中TN(图 3a)和DTN(图 3b)浓度均在冬季出现最高值,并且与其他各季节呈显著差异(P < 0.001).沉积物上覆水中TOC浓度的最大值出现在秋季(4.49±1.41 mg/L),最小值出现在春季(1.80±0.32 mg/L),并且与其他各季节呈显著差异(P < 0.001) (图 3c).
本研究用a254和a355表示DOM的相对浓度,夏、秋季水库水体的a254和a355明显高于冬、春季(图 4a、b),与溶解性有机碳的分布特征相一致,并且各季节间的a254和a355呈显著差异(P < 0.001).有研究表明[29, 39]:SR>1时,表征DOM主要为生物源;SR < 1时,表征DOM主要为外源.本研究中上覆水的SR值为1.09~1.30,但是4个季节的SR值均大于1(图 4c),表明该时期间隙水中的DOM主要是生物源.
冬、春季周村水库上覆水DOM的E2/E3值较大,夏、秋季分布较集中;各季节间E2/E3呈显著差异(图 5a);从整体上看,冬、春季上覆水中的富里酸占比较大.一般而言,当E3/E4 < 3.5时腐殖质以腐殖酸为主,E3/E4>3.5时以富里酸为主.本研究中E3/E4的均值均大于3.5(图 5b),说明水库上覆水中DOM以富里酸为主;冬、春季上覆水的E3/E4比夏、秋季高,表明夏、秋季的腐殖化程度较高;冬季上覆水的E3/E4与春、夏、秋季呈显著差异(图 5b).
春季上覆水DOM的SUVA260最高(图 5c),表明春季样品的疏水性组分最高;春季SUVA280同样是最高的,其次依次为夏季、冬季和秋季,表明芳香化程度逐渐减弱(图 5d);各季节上覆水DOM的SUVA260和SUVA280呈显著正相关(P < 0.01),相关系数达到0.911,表明疏水性和芳香性结构关系密切,即芳香性结构主要存在于疏水组分中,与高洁等[27]研究三峡库区DOM的结论相一致.
2.3 沉积物上覆水的DOM三维荧光光谱及荧光组分分析 2.3.1 沉积物上覆水DOM的三维荧光光谱为考察水库沉积物上覆水DOM的分布特征和组成情况,选取了水库主库区22#采样点4个季节的样品进行了三维荧光扫描(图 6), 可以看出,主库区秋季荧光峰有3个:长波类腐殖质(Ex/Em=355 nm/460 nm)、富里酸峰(Ex/Em=340 nm/415 nm)和类蛋白峰(Ex/Em=280 nm/315 nm).但是随着季节的演替峰的强弱发生变化,不同季节间差异明显,因此,很有必要进一步分析其变化原因.
通过平行因子分析对四季水体样品进行三维荧光解析,分析DOM的成分构成.因为PARAFAC对组分数很敏感,只有选择正确的组分数目,解析的结果才能反映真实的谱图.从图 7可以看到,荧光组分从2变为3时,核一致函数值急剧变小,而组分从3变成4时,核一致函数值变化程度减弱,初步确定成分F=3最合适.与此同时,组分为3时核一致性系数为75.88 %,位于80 %附近,并且处于急剧下降段,因此建立因子数为3的PARAFAC模型.与乔煜琦等[17]解析太湖溶解性有机物荧光组分的分析相一致.
周村水库四季沉积物上覆水DOM的荧光光谱图如图 8所示,共解析得到3种组分,类腐殖质(C1)、类富里酸(C2)以及类蛋白(C3).结合前人研究成果(表 1),综合分析得到:C1的荧光峰位置是355 nm/460 nm (Ex/Em),为长波类腐殖质(C峰);C2的荧光峰位置是340 nm/415 nm (Ex/Em),为长波类可见区富里酸;C3的荧光峰位置是280 nm/315 nm (Ex/Em),为类色氨酸.
周村水库沉积物上覆水水体总荧光强度和各组分的荧光强度呈现夏秋季高于冬春季的特征(图 9),并且各季节间均呈现显著差异(P < 0.01).就荧光组分类腐殖质(C1)而言,夏季水库上覆水的荧光强度最大,为885.43±93.72 A.U.,最小值为春季的398.32±24.86 A.U.,夏季的C1荧光强度约为春季的2.22倍,可能与夏季底层沉积物释放以及径流输入有关;就荧光组分富里酸(C2)而言,秋季水库上覆水样品的荧光强度最大,为701.97±17.74 A.U.,最小值为春季的359.11±36.84 A.U., 秋季的C2荧光强度约为春季的1.95倍;就荧光组分类蛋白(C3)而言,夏季水库底层上覆水水体样品的荧光强度最大,达到661.47±44.21 A.U.,最小值为春季的342.26±57.27 A.U.,夏季的C3荧光强度约为春季的1.93倍;总荧光强度最高的为夏季,达到2204.81±157.52 A.U.,最低的为春季的1099.69±112.97 A.U.,夏季的总荧光强度约为春季的2倍.经平行因子分析得到的3种荧光组分中,各个荧光组分在同一季节的相对含量差异不大,夏、秋季的C1在DOM总荧光强度中的占比达到38.69 % ~40.07 %,高于冬、春季的36.42 % ~36.64 %;冬季C2在总荧光强度的占比最大,达到38.51 % ±1.03 %,远高于夏季的29.78 % ±1.63 %;夏季的C3在DOM总荧光强度中的占比达到30.14 % ±2.82 %,高于冬季的24.85 % ±1.22 %.
Pearson相关性分析表明,周村水库沉积物上覆水DOM中类腐殖质(C1)与可见光区富里酸(C2)以及类蛋白(C3)两两间存在显著正相关性(表 2),表明3种组分具有同源性.其中组分C1与组分C2的相关系数最高,达到0.940(P < 0.01),预示着C1与C2来源及物质组分有着较高的相似性.
Huguet等[38]指出BIX在0.7~0.8之间时,具有中度新近自生源特征;BIX在0.8~1.0之间时,具有较强的自生源特征;BIX大于1.0时,为生物活动产生.本实验中BIX在0.8~1.0之间(图 10a),表明周村水库各季节的DOM呈现较强的自生源特征. Lavonen等[35]提出FI可以作为物质的来源以及DOM降解程度的指示指标,FI>1.8表示以自生源为主,FI < 1.2表示以陆源输入为主.冬、春、夏、秋季周村水库上覆水DOM的FI分别为1.87±0.05、1.76±0.06、1.63±0.04和1.72±0.04,冬季最高,表明冬季呈现自生源为主的特征,这与冬季水库径流少、外源输入贡献量低相一致,并且与张博等[46]研究发现太湖五里湖水体悬浮物中水溶性有机质FI均值为1.83、生物源大于陆源输入的结论相一致.
Huguet等[38]指出4<HIX < 6代表弱腐殖化特征及较强的自生源特征;HIX < 4表示以自生源为主.本研究中周村水库沉积物上覆水DOM的HIX指数都小于4(图 10b),并且春、夏季水体HIX指数要低于秋、冬季;表明春、夏季沉积物上覆水DOM的自生源特征更明显,与BIX指数以及紫外-可见吸收光谱SR的结论非常吻合;与张海威等[47]研究得到的新疆艾比湖入湖河流DOM的HIX < 4,主要受到人类活动和微生物活动影响的结果相一致.不同季节间HIX的差异显著(P < 0.001),表明不同季节沉积物上覆水的DOM来源存在差异.新鲜度指数(β :α)反映了新产生的DOM在整体DOM中所占的比例,是评估水体生物活性的重要依据.周村水库β :α分布在0.80~1.05之间(图 10c),除春、秋季以及秋、冬季样品的β :α不存在显著差异(P>0.05)外,其他各季节间均存在显著差异(P < 0.01).
2.5 DOM的荧光组分与环境因子的相关分析为了进一步研究周村水库四季演变过程中DOM荧光组分和环境因子的关系,本研究进行了主成分分析(PCA)和Pearson相关性分析. PCA分析结果(图 11)表明,PC1和PC2分别解释了71.27 %和13.72 %,总共解释84.99 %的变化,PCA分析都能够很好地反映总体的变化.同一季节的水体样本点分布相对集中,不同季节间分布差异明显;冬、春季的样本点位于PCA1的正半轴,而夏、秋季的样本点位于PCA1的负半轴. a254、a355、HIX和DOC与C1、C2、C3呈正相关,DTN、FI、BIX、β :α、SUVA260以及SUVA280与C1、C2、C3呈负相关.综上,可以侧面解释周村水库不同季节沉积物上覆水水体DOM组分和特征差异.
从周村水库4个季节上覆水水体样品的3个荧光组分与DOM特征参数以及水质参数的相关性(表 3)可以看出,腐殖质组分C1与a254、a355、SUVA260、SUVA280、FI、BIX、β :α、DTN以及DOC呈显著相关(P < 0.01);富里酸组分C2与a254、a355、SUVA260、SUVA280、BIX、β :α(P < 0.05)、HIX以及DOC呈显著相关(P < 0.01);类蛋白C3与a254、a355、SUVA260、SUVA280、FI、BIX、β :α、HIX、DTN以及DOC呈显著相关(P < 0.01).同时基于主要的相关性指标(R2>0.5)对荧光组分(C1、C2、C3)和水质指标(DTN和DOC)进行了多元线性回归,结果显示多元线性回归拟合的方程很好(表 4),将来可以通过水体的DOM特征参数和水质参数对水体DOM组分以及水质进行分析,有利于评估季节演变过程中溶解性有机物以及水质的特征,便于水库管理人员对有机污染物和水质进行评价.
1) 紫外-可见光谱特征显示夏、秋季周村水库上覆水DOM的吸收系数a254和a355均高于冬、春季,与有机物的分布相一致;全年上覆水DOM以富里酸为主,主要表现为生物源;SUVA260和SUVA280呈显著正相关(P < 0.01),表明水体样品中DOM的芳香性结构主要存在于疏水组分中.
2) 三维荧光光谱解析得到类腐殖质(C1)、富里酸(C2)和类蛋白(C3)各1种. 3种荧光组分具有显著的相关性(P < 0.01);DOM总荧光强度以及各组分荧光强度存在显著的季节性差异(P < 0.001);结合三维荧光特征指数FI、BIX以及HIX得到周村水库上覆水水体DOM具有以自生源为主、低腐殖化的特点.
3) PCA分析显示周村水库沉积物上覆水DOM荧光特征季节差异明显,并且组分C1、C2和C3与DOM特征参数(a254、SUVA280、HIX、FI、BIX)以及水质参数(DOC)存在显著相关性(P < 0.01);多元线性回归分析能够很好地预测荧光组分和水质(DTN和DOC)的变化.
[1] |
Driscoll CT, Lehtinen MD, Sullivan TJ. Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 1994, 30(2): 297-306. DOI:10.1029/93WR02888 |
[2] |
KirchmanI D ed. The contribution of monomers and other low-molecular weight compounds to the flux of dissolved organic material in aquatic ecosystems. Aquatic ecosystems:interactivity of dissolved organic matter. San Diego: Academic Press, 2003: 218-241.
|
[3] |
Beggs KM, Summers RS. Character and chlorine reactivity of dissolved organic matter from a mountain pine beetle impacted watershed. Environmental Science & Technology, 2011, 45(13): 5717-5724. DOI:10.1021/es1042436 |
[4] |
Hur J, Lee MH, Song H et al. Microbial transformation of dissolved organic matter from different sources and its influence on disinfection byproduct formation potentials. Environmental Science and Pollution Research, 2013, 20(6): 4176-4187. DOI:10.1007/s11356-012-1384-0 |
[5] |
Kalbitz K, Schmerwitz J, Schwesig D et al. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 2003, 113(3): 273-291. DOI:10.1016/S0016-7061(02)00365-8 |
[6] |
Knapik HG, Fernandes CV, de Azevedo JCR et al. Biodegradability of anthropogenic organic matter in polluted rivers using fluorescence, UV, and BDOC measurements. Environmental Monitoring and Assessment, 2015, 187(3): 1-15. DOI:10.1007/s10661-015-4266-3 |
[7] |
Yu H, Song Y, Du E et al. Comparison of PARAFAC components of fluorescent dissolved and particular organic matter from two urbanized rivers. Environmental Science and Pollution Research, 2016, 23(11): 10644-10655. DOI:10.1007/s11356-016-6232-1 |
[8] |
Sun Q, Wang C, Wang P et al. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environmental Science and Pollution Research, 2014, 21(5): 3460-3473. DOI:10.1007/s11356-013-2287-4 |
[9] |
Canuel EA, Hardison AK. Sources, ages, and alteration of organic matter in estuaries. Annu Rev Mar Sci, 2016, 8(1): 409-434. DOI:10.1146/annurev-marine-122414-034058 |
[10] |
Kellerman AM, Kothawala DN, Dittmar T et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nature Geoscience, 2015, 8(6): 454-457. DOI:10.1038/ngeo2440 |
[11] |
Ziegelgruber KL, Zeng T, Arnold WA et al. Sources and composition of sediment pore-water dissolved organic matter in prairie pothole lakes. Limnology and Oceanography, 2013, 58(3): 1136-1146. DOI:10.4319/lo.2013.58.3.1136 |
[12] |
Fang KK, Huang TL, Zhang CH et al. Summer absorption characteristics, spatial distribution and source analysis of CDOM in Zhoucun Reservoir in Huaihe Catchment. J Lake Sci, 2017, 29(1): 151-159. [方开凯, 黄廷林, 张春华等. 淮河流域周村水库夏季CDOM吸收光谱特征、空间分布及其来源分析. 湖泊科学, 2017, 29(1): 151-159. DOI:10.18307/2017.0117] |
[13] |
Huang TL, Fang KK, Zhang CH et al. Optical characteristics differences of dissolved organic matter from two different full mixed reservoirs in winter based on UV-vis and EEMs. Environmental Science, 2016, 37(12): 4577-4585. [黄廷林, 方开凯, 张春华等. 利用UV-vis及EEMs对比冬季完全混合下两个不同特征水库溶解性有机物的光学特性. 环境科学, 2016, 37(12): 4577-4585.] |
[14] |
Huang TL, Fang KK, Zhang CH et al. Analysis of distribution characteristics and source of dissolved organic matter from Zhoucun Reservoir in summer based on fluorescence spectroscopy and PARAFAC. Environmental Science, 2016, 37(9): 3394-3401. [黄廷林, 方开凯, 张春华等. 荧光光谱结合平行因子分析研究夏季周村水库溶解性有机物的分布与来源. 环境科学, 2016, 37(9): 3394-3401.] |
[15] |
Lu S, Jiang T, Zhang JZ et al. Three-dimensional fluorescence characteristic differences of dissolved organic matter (DOM) from two typical reservoirs. China Environmental Science, 2015, 35(2): 516-523. [卢松, 江韬, 张进忠等. 两个水库型湖泊中溶解性有机质三维荧光特征差异. 中国环境科学, 2015, 35(2): 516-523.] |
[16] |
Chen M, Jaffé R. Photo-and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Research, 2014, 61: 181-190. DOI:10.1016/j.watres.2014.03.075 |
[17] |
Qiao YQ, Jiang HY, Li X et al. Impacts of cyanobacterial blooms outbreak and decline on chromophoric dissolved organic matter in Lake Taihu. J Lake Sci, 2018, 30(4): 907-915. [乔煜琦, 江海洋, 李星等. 蓝藻水华暴发和衰亡对太湖有色可溶性有机物的影响. 湖泊科学, 2018, 30(4): 907-915. DOI:10.18307/2018.0404] |
[18] |
Nie MH, Huang X, Yan CX et al. Fluorescence characterization of fractionated colloids in different sources of waters based on PARAFAC and SOM. Acta Scientiae Circumstantiae, 2018, 38(9): 3672-3681. [聂明华, 黄娴, 晏彩霞等. 利用PARAFAC及SOM研究不同来源及粒径胶体的三维荧光光谱特征. 环境科学学报, 2018, 38(9): 3672-3681.] |
[19] |
张博, 王书航, 姜霞等. 湖泊沉积物有机质的连续提取与荧光光谱特征分析. 环境科学学报, 2017, 37(8): 2878-2888. |
[20] |
Wen Y, Xue S, Chen J et al. Changes in fluorescence characteristics of dissolved organic matter fractions in the sediments of river before and after the icebound season. Acta Scientiae Circumstantiae, 2015, 35(4): 1106-1115. [文杨, 薛爽, 陈静等. 冰封期前后河流底泥中溶解性有机物组分的荧光特性的变化. 环境科学学报, 2015, 35(4): 1106-1115.] |
[21] |
Zeng MZ, Huang TL, Qiu XP et al. Seasonal stratification and the response of water quality of a temperate reaervoir-Zhoucun Reservoir in north of China. Environmental Science, 2016, 37(4): 1337-1344. [曾明正, 黄廷林, 邱晓鹏等. 我国北方温带水库——周村水库季节性热分层现象及其水质响应特性. 环境科学, 2016, 37(4): 1337-1344.] |
[22] |
Huang TL. In situ control of water pollution of water reservoirs is the prerequisite to improve the safety of drinking water quality. Water & Wastewater Engineering, 2017, 53(1): 1-3, 69. [黄廷林. 水源水库水质污染原位控制与改善是饮用水水质安全保障的首要前提. 给水排水, 2017, 53(1): 1-3, 69. DOI:10.3969/j.issn.1002-8471.2017.01.001] |
[23] |
Editorial board of "Water and wastewater monitoring and analysis method", Ministry of Environmental Protection of the People's Republic of China ed. Monitoring and analysis methods of water and wastewater: fourth edition. Beijing: China Environmental Science Press, 2002. [国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法: 第4版.北京: 中国环境科学出版社, 2002. ]
|
[24] |
Huang TL, Zhou SL, Zhang HH et al. Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from oligotrophic drinking water reservoir, Zoogloea sp. N299. International Journal of Molecular Sciences, 2015, 16(5): 10038-10060. DOI:10.3390/ijms160510038 |
[25] |
Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visibledomains. Limnology and Oceanograpgy, 1981, 26(1): 43-53. DOI:10.4319/lo.1981.26.1.0043 |
[26] |
Keith DJ, Yoder JA, Freeman SA. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island:Implications for phytoplankton in coastal waters. Estuarine, Coastal and Shelf Science, 2002, 55(5): 705-717. DOI:10.1006/ecss.2001.0922 |
[27] |
Gao J, Jiang T, Li LL et al. Ultraviolet-Visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter(DOM) in soils of water-level fluctuation zones of the Three Gorges reservoir region. Environmental Science, 2015, 36(1): 151-162. [高洁, 江韬, 李璐璐等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征. 环境科学, 2015, 36(1): 151-162. DOI:10.3969/j.issn.1673-288X.2015.01.042] |
[28] |
Niu C, Zhang YL, Zhu GW et al. Comparison of optical properties of DOM and CDOM in Lake Tianmuhu catchment. Research of Environmental Sciences, 2014, 27(9): 998-1007. [牛城, 张运林, 朱广伟等. 天目湖流域DOM和CDOM光学特性的对比. 环境科学研究, 2014, 27(9): 998-1007.] |
[29] |
Li LL, Jiang T, Yan JL et al. Ultraviolet-visible (UV-Vis) spectral characteristics of dissolved organic matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir areas. Environmental Science, 2014, 35(3): 933-941. [李璐璐, 江韬, 闫金龙等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征. 环境科学, 2014, 35(3): 933-941.] |
[30] |
Liang J, Jiang T, Lu S et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of Three Gorges Reservoir areas:fluorescence spectra. Environmental Science, 2016, 37(7): 2506-2514. [梁俭, 江韬, 卢松等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征:荧光光谱. 环境科学, 2016, 37(7): 2506-2514.] |
[31] |
Zepp RG, Sheldon WM, Moran MA. Dissolved organic fluorophores in southeastern US coastal waters:correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Marine Chemistry, 2004, 89(1): 15-36. DOI:10.1016/j.marchem.2004.02.006 |
[32] |
Liu HL, Wu XJ, Tian GJ. Three-Dimensional fluorescence spectroscopy combined with parallel factor analysis as a complementary technique for Green Tea characterization. Chinese Journal of Lasers, 2008, 35(5): 685-689. [刘海龙, 吴希军, 田广军. 三维荧光光谱技术及平行因子法在绿茶分析及种类鉴别中的应用. 中国激光, 2008, 35(5): 685-689. DOI:10.3321/j.issn:0258-7025.2008.05.010] |
[33] |
Stedmon CA, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 2005, 50(2): 686-697. DOI:10.4319/lo.2005.50.2.0686 |
[34] |
Cory RM, Mcknight DM. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 2005, 39(21): 8142-8149. DOI:10.1021/es0506962 |
[35] |
Lavonen E, Kothawala D, Tranvik L et al. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production. Water Research, 2015, 85: 286-294. DOI:10.1016/j.watres.2015.08.024 |
[36] |
Ohno T, Fernandez IJ, Hiradate S et al. Effect of soil acidification and forest type on water soluble soil organic matter properties. Geoderma, 2007, 140(1/2): 176-187. DOI:10.1016/j.geoderma.2007.04.004 |
[37] |
Zsolnay A, Baigar E, Jimenez M et al. Differentiating with fluorescence spectroscopy the source of dissolved organic matter in soils subjected to drying. Chemosphere, 1999, 38(1): 45-50. DOI:10.1016/S0045-6535(98)00166-0 |
[38] |
Huguet A, Vacher L, Relexans S et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 2009, 40(6): 706-719. DOI:10.1016/j.orggeochem.2009.03.002 |
[39] |
Li SD, Jiang QL, Li Y et al. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake, Kunming. Spectroscopy and Spectral Analysis, 2017, 37(5): 1448-1454. [李帅东, 姜泉良, 黎烨等. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析. 光谱学与光谱分析, 2017, 37(5): 1448-1454.] |
[40] |
Zhou QQ, Su RG, Bai Y et al. Characterization of chromophoric dissolved organic matter (CDOM) in Zhoushan Fishery using Excitation-Emission Matrix Spectroscopy(EEMs) and Parallel Factor Analysis(PARAFAC). Environmental Science, 2015, 36(1): 163-171. [周倩倩, 苏荣国, 白莹等. 舟山渔场有色溶解有机物(CDOM)的三维荧光-平行因子分析. 环境科学, 2015, 36(1): 163-171.] |
[41] |
Shi J, Wang ZG, Feng K. Characterization techniques of dissolved organic pollutants in wastewater by Three-Dimensional fluorescent spectroscopy and its application in environmental analysis. Journal of Atmospheric and Environmental Optics, 2011, 6(4): 243-251. [施俊, 王志刚, 封克. 水体溶解有机物三维荧光光谱表征技术及其在环境分析中的应用. 大气与环境光学学报, 2011, 6(4): 243-251. DOI:10.3969/j.issn.1673-6141.2011.04.001] |
[42] |
OuYang EM, Zhang XH, Wang W. Three-dimensional fluorescence spectroscopy in the analysis of organic pollution type of urban waters. Water Resources Protection, 2007, 23(3): 56-59. [欧阳二明, 张锡辉, 王伟. 城市水体有机污染类型的三维荧光光谱分析法. 水资源保护, 2007, 23(3): 56-59. DOI:10.3969/j.issn.1004-6933.2007.03.017] |
[43] |
Borisover M, Laor Y, Parparov A et al. Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin. Water Research, 2009, 43(12): 3104-3116. DOI:10.1016/j.watres.2009.04.039 |
[44] |
Ni B, Fang F, Xie W et al. Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research, 2009, 43(5): 1350-1358. DOI:10.1016/j.watres.2008.12.004 |
[45] |
Ziegmann M, Abert M, Müller M et al. Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa. Water Research, 2010, 44(1): 195-204. DOI:10.1016/j.watres.2009.09.035 |
[46] |
Zhang B, Wang SH, Jiang X et al. Identification of WSOM fluorescence spectral components in suspended solids and correlation analysis with nitrogen forms of Lake Wuli, Lake Taihu. J Lake Sci, 2018, 30(1): 102-111. [张博, 王书航, 姜霞等. 太湖五里湖水体悬浮物中水溶性有机质(WSOM)的荧光光谱组分鉴别及其与氮形态的关系. 湖泊科学, 2018, 30(1): 102-111. DOI:10.18307/2018.0110] |
[47] |
Zhang HW, Li F, Li Z et al. Characteristics of three dimensional fluorescence spectra and its correlation with water quality in Jinghe and Bortala River from Lake Ebinur's major inflow tributaries, Xinjiang. J Lake Sci, 2017, 29(5): 1112-1120. [张海威, 张飞, 李哲等. 新疆艾比湖主要入湖河流精河与博尔塔拉河三维荧光光谱特性及其与水质的关系. 湖泊科学, 2017, 29(5): 1112-1120. DOI:10.18307/2017.0509] |