湖泊科学   2019, Vol. 31 Issue (5): 1357-1367.  DOI: 10.18307/2019.0525.
0

研究论文

引用本文 [复制中英文]

陈乐, 周永强, 周起超, 李凯迪, 张运林, 赵玉伟, 陆轶峰, 常军军, 抚仙湖有色可溶性有机物的来源组成与时空变化. 湖泊科学, 2019, 31(5): 1357-1367. DOI: 10.18307/2019.0525.
[复制中文]
CHEN Le, ZHOU Yongqiang, ZHOU Qichao, LI Kaidi, ZHANG Yunlin, ZHAO Yuwei, LU Yifeng, CHANG Junjun. Sources, composition and spatiotemporal variations of chromophoric dissolved organic matter in a deep oligotrophic Lake Fuxian, China. Journal of Lake Sciences, 2019, 31(5): 1357-1367. DOI: 10.18307/2019.0525.
[复制英文]

基金项目

云南省科技计划项目(2016RA081,2017FD029)、国家自然科学基金项目(41601208,41621002)和云南省环境科学研究院创新团队计划项目联合资助

作者简介

陈乐(1994~), 男, 硕士研究生; E-mail:18608839017@163.com

通信作者

周起超, E-mail:qchzhou@ynu.edu.cn
常军军, E-mail:changjunjun@ynu.edu.cn

文章历史

2018-12-10 收稿
2019-04-02 收修改稿

码上扫一扫

抚仙湖有色可溶性有机物的来源组成与时空变化
陈乐1,2 , 周永强3 , 周起超2,4 , 李凯迪2,5 , 张运林3 , 赵玉伟6 , 陆轶峰5 , 常军军5     
(1: 云南大学国际河流与生态安全研究院, 昆明 650500)
(2: 云南省环境科学研究院云南省高原湖泊流域污染过程与管理重点实验室, 昆明 650034)
(3: 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008)
(4: 云南大学资源环境与地球科学学院/高原湖泊生态与治理研究院, 昆明 650500)
(5: 云南大学生态学与环境学院, 昆明 650500)
(6: 玉溪市抚仙湖管理局, 玉溪 653100)
摘要:基于2017年1-12月在抚仙湖开展的逐月观测,利用紫外-可见吸收光谱和三维荧光光谱技术探讨该湖有色可溶性有机物(CDOM)的来源组成及时空变化特征.12个月CDOM吸收值a(254)的均值为3.47±0.57 m-1,范围为1.82~5.22 m-1,说明CDOM丰度较低.平行因子分析结果给出了2种类酪氨酸荧光组分(C1和C3)、1种类色氨酸荧光组分(C2)、1种类腐殖质荧光组分(C4),12个月内源组分(C1+C3)对总荧光强度的平均贡献为65.81%±15.38%,外源组分(C2+C4)的平均贡献为34.19%±15.38%;荧光指数FI的均值为1.73±0.14,腐殖化指数HIX的均值为1.02±0.37,生源化指数BIX的均值为1.23±0.27,说明CDOM主要为微生物内源产生.时空变化方面,春(3-5月)、夏(6-8月)、秋(9-11月)和冬(1、2、12月)季的a(254)分别为3.20±0.47、3.76±0.64、3.67±0.50和3.23±0.38 m-1,夏季和秋季均显著高于冬季和春季;CDOM丰度及内外源组分的空间分布具有季节异质性,可能与流域土地利用、河流输入、降雨、温度、光辐射等因素有关.
关键词有色可溶性有机物    紫外-可见吸收光谱    三维荧光光谱    平行因子分析    云南高原    抚仙湖    
Sources, composition and spatiotemporal variations of chromophoric dissolved organic matter in a deep oligotrophic Lake Fuxian, China
CHEN Le1,2 , ZHOU Yongqiang3 , ZHOU Qichao2,4 , LI Kaidi2,5 , ZHANG Yunlin3 , ZHAO Yuwei6 , LU Yifeng5 , CHANG Junjun5     
(1: Institute of International River and Eco-security, Yunnan University, Kunming 650500, P. R. China)
(2: Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Institute of Environmental Science, Kunming 650034, P. R. China)
(3: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)
(4: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Resource Environment and Earth Science, Yunnan University, Kunming 650500, P. R. China)
(5: School of Ecology and Environmental Science, Yunnan University, Kunming 650500, P. R. China)
(6: Yuxi Fuxian Lake Administration, Yuxi 653100, P. R. China)
Abstract: Lakes are important in terrestrial carbon cycling. Source and optical composition of chromophoric dissolved organic matter (CDOM) in oligotrophic and deep lakes can display distinct properties, because of deep light penetration and long water residence time in these lakes. In this study, the optical properties and spatiotemporal distributions of CDOM were analyzed through monthly field investigation in 2017 in Lake Fuxian, an oligotrophic deep lake in Yunnan Province, China. The results showed that the average value of a(254) was 3.47±0.57 m-1, with the range of 1.82-5.22 m-1, indicating that CDOM abundance in the lake was relatively low compared with other mesotrophic and eutrophic lakes. Moreover, parallel factor analysis was performed to assess CDOM composition from excitation-emission matrix spectra and four components were identified:two tyrosine-like components (C1 and C3), one tryptophan-like component (C2) and one humic-like component (C4). The percentage of fluorescent intensity of C1+C3 was 65.81%±15.38%, and the proportion of C2+C4 was 34.19%±15.38%. The fluorescence index (FI), humification index (HIX) and biological/autochthonous index (BIX) was 1.73±0.14, 1.02±0.37 and 1.23±0.27, respectively. These results demonstrated that the CDOM was primarily originated from endogenous microbes in this lake. The average values of a(254) in spring (March-May), summer (June-August), autumn (September-November) and winter (January, February and December) were 3.20±0.47, 3.76±0.64, 3.67±0.50 and 3.23±0.38 m-1 respectively, with significantly higher values in summer and autumn than those in winter and spring. The abundance and spatial distributions of autochthonous and allochthonous CDOM exhibited seasonal heterogeneity, which might be correlated with land-use pattern, input of terrestrial materials, rainfall, water temperature and irradiance.
Keywords: Chromophoric dissolved organic matter (CDOM)    UV-visible spectroscopy    fluorescence spectroscopy    parallel factor analysis (PARAFAC)    Yunnan Plateau    Lake Fuxian    

天然水体中溶解性有机物(dissolved organic matter, DOM)是地球上最大的有机碳库,DOM的来源主要包括陆源的输入(外源)和微生物、藻类等的释放(内源)[1-2],其迁移转化过程与碳循环及气候变化过程息息相关[3-4].湖泊接纳上游水系携入的陆源DOM,经一系列合成及微生物与光化学降解过程,最后难降解的DOM继续向下游输移,因而湖泊是地表碳循环的重要枢纽[5-6].光化学降解与湖泊太阳辐射尤其是紫外短波辐射的漫衰减息息相关,而微生物降解程度可随湖泊水力滞留时间的延长而显著上升[7],意味着清澈型深水湖泊DOM的转化特征或不同于其他类型的湖泊.气象[2, 8]、水文[9]等自然条件与人类活动[10]的变化可对湖泊DOM的来源产生重要影响,而水体DOM组成的微小变化可引起水生态系统的巨大变化[11].例如,陆源DOM的输入增加可导致水体二氧化碳及甲烷排放量增加[12]、初级生产量减少[13-14],故湖泊生态系统中DOM的来源组成与含量的变化值得关注.

DOM由腐殖酸、富里酸、脂肪族及芳烃聚合物等一系列结构复杂的有机物构成,运用传统的化学分析手段难以准确揭示其浓度及组成结构的变化情况[15].值得指出的是有色可溶性有机物(chromophoric dissolved organic matter, CDOM)是DOM中能强烈吸收紫外辐射的那部分物质,因而运用CDOM吸收光谱特征波段及波谱形态特征即可在一定程度上揭示DOM浓度与组成[16].另外还有一部分DOM在短波激发条件下会发出荧光,这部分有机物为发荧光DOM,即Fluorescent DOM(FDOM),近年来FDOM三维荧光光谱与平行因子分析相结合被广泛运用于揭示各类天然水体中有色可溶性有机物来源与组成[17-19].

在我国,已有不少学者开展了湖泊CDOM光学特性、来源组成与时空分布方面的研究.例如,Song等研究了我国主要湖泊CDOM的光学特性,发现咸水湖CDOM吸收值比淡水湖高[20];程庆霖等利用平行因子分析法(PARAFAC)解析了滇池CDOM的三维荧光光谱,显示其外源的贡献率为74.18 % [21];Su等比较了云南15个高山湖泊CDOM的光学特性,发现树线以上湖泊CDOM的内源性要强于树线以下湖泊[22];Zhang等研究了太湖CDOM光学特性的季节变化与空间分布,发现其时空变化与河流输入和藻类水华程度有关[23].抚仙湖是我国内陆淡水湖中水质较好、蓄水量最大的深水贫营养湖泊,兼具饮用水、防洪、灌溉、渔业及旅游等综合功能;尽管我们的前期研究关注了该湖CDOM丰度的季节与空间变化及其对水下光辐射衰减的影响[24-25],但仍不清楚其CDOM的来源组成,其时空分布特征亦需进一步研究.因此,本研究基于2017年1 -12月的逐月观测,结合CDOM紫外-可见吸收光谱、三维荧光与平行因子分析法,探讨了抚仙湖CDOM的来源组成与时空变化特征.

1 材料与方法 1.1 抚仙湖概况

抚仙湖(24°21′~24°38′N, 102°49′~102°57′E)是我国第二深的淡水湖,位于云南省玉溪市境内,流域面积674.69 km2,湖泊面积211 km2,海拔1721 m,平均水深89.6 m,最大水深155 m.湖区属中亚热带半湿润季风气候,流域年均气温15.5℃,年降雨量800~1100 mm,旱雨季分明. 1980s以来,抚仙湖出现了不同程度的营养状态上升、透明度下降、浮游植物生物量升高、土著水生植物物种丰度下降等问题[24, 26-29].

图 1 抚仙湖采样点位置 Fig.1 Location of sampling sites in Lake Fuxian
1.2 样品采集与前处理

在抚仙湖布设16个固定采样点(图 1),于2017年1 -12进行逐月采样,共采集192个水样.采样过程中,利用有机玻璃采水器采集水下0.5 m处水样,随后置于保温冷藏箱并尽快带回实验室分析.用高温(450℃持续4 h)灼烧过的Whatman GF/F膜(0.7 μm)过滤水样,滤液再用Millipore膜(0.22 μm)过滤以用于CDOM吸收和三维荧光的测定.滤液均采用酸洗后的棕色玻璃瓶装盛,并保存在-20℃冰箱直至测样.

1.3 参数测定 1.3.1 CDOM吸收

水样经Millipore膜(0.22 μm)过滤后,滤液采用Shimadzu UV-2550紫外-可见分光光度计测定200~800 nm处的吸光度OD(λ). CDOM吸收系数的计算、校正参照公式(1)和(2)[23],以a(254)来表征CDOM丰度[30-31].

$ a ^ { \prime } ( \lambda ) = 2.303 \mathrm { OD } ( \lambda ) / r $ (1)
$ a ( \lambda ) = a ^ { \prime } ( \lambda ) - a ^ { \prime } ( 700 ) \cdot \lambda / 700 $ (2)

式中,a′(λ)和a(λ)分别为未经散射校正的波长为λ处的吸收系数和经过散射校正过后的波长为λ处的吸收系数,m-1λ为波长,nm;r为光程路径,为0.05 m.

吸收光谱斜率S值的确定:CDOM吸收系数随波长的增加大致呈现指数衰减规律,S值的计算公式[7]为:

$ a ( \lambda ) = a \left( \lambda _ { 0 } \right) \exp \left[ S \left( \lambda _ { 0 } - \lambda \right) \right] $ (3)

式中,λ0为参照波长(nm),选取440 nm;S为指数函数曲线光谱斜率,nm-1.选取275~295 nm波段拟合得到S275~295. S275~295值越小,陆源信号越强[7].

1.3.2 CDOM三维荧光

水样经Millipore膜(0.22 μm)过滤后,滤液采用Hitachi F-7000三维荧光光谱仪测定,得到三维荧光光谱.激发波长为200~450 nm,间隔5 nm;发射光波长为250~600 nm,间隔1 nm.扫描速度为2400 nm/min,激发及发射光的狭缝宽度均设置为5 nm.

初始数据中包含拉曼散射峰的影响.把样本的三维荧光图谱扣除Milli-Q水的空白三维荧光图谱来去除纯水散射的影响,再通过drEEM工具箱线性插值的办法剔除第1顺序和第2顺序瑞利散射峰.使用MATLAB R2015b中的DOMFluor工具箱,对样本三维荧光图谱进行平行因子分析[32],得到可识别的荧光峰,以及每个样本每个组分的荧光强度和发射、激发光负荷.

荧光指数FI:激发波长为370 nm时,发射光谱在450与500 nm处的荧光强度比值,可用于判断微生物源和陆源CDOM[33].腐殖化指数HIX:激发波长为255 nm时,发射波长在435~480 nm与300~345 nm波段中的荧光强度平均值之比,用于估计腐殖化程度[34].生源指数BIX:激发波长为310 nm时,发射波长在380与430 nm处荧光强度的比值,可用于衡量新近的水生生物生产贡献[34].

1.3.3 Chl.a浓度

Chl.a浓度测定方法参照《水和废水监测分析方法》(第四版)[35].

1.4 统计分析

春季为3 -5月,夏季为6 -8月,秋季为9 -11月,冬季为1、2和12月;以2、5、8、11月数据开展空间变化分析,1#~9#点代表“北部”,10#~16#点代表“南部”.使用IBM SPSS Statistics 25软件进行统计分析,包括平均值和标准差计算、平均值t检验和Pearson相关性分析.

2 结果 2.1 a(254)的时空变化

抚仙湖2017年12个月 a(254)的均值为3.47±0.57 m-1,范围为1.82~5.22 m-1;春、夏、秋和冬季的a(254)分别为3.20±0.47、3.76±0.64、3.67±0.50和3.23±0.38 m-1,夏季和秋季的a(254)均显著高于冬季和春季(P < 0.01). 3月,全湖各点位的a(254)相对较低,其均值为2.63±0.14 m-1;8月,全湖各点位的a(254)相对较高,其均值为4.08±0.4 m-1(图 2a). 2、5、8和11月北部a(254)的均值分别为3.18±0.20、3.68±0.35、3.91±0.46和3.38±0.84 m-1,南部a(254)的均值分别为2.93±0.42、3.24±0.11、4.30±0.18和3.81±0.51 m-1(图 3a~d),5月北部的a(254)显著高于南部(P < 0.01).

图 2 抚仙湖a(254) (a)和S275~295 (b)的逐月变化(箱体中间粗线代表中位数,正方形代表均值) Fig.2 Monthly variations of a(254) (a) and S275~295 (b) of CDOM in Lake Fuxian (The thick line in the box represents the median value, the square represents the mean value)
图 3 2017年2月、5月、8月、11月抚仙湖a(254) (a~d)和S275~295(e~h)的空间分布 Fig.3 Spatial distributions of a(254) (a-d) and S275~295 (e-h) of CDOM in Lake Fuxian in February, May, August and November of 2017
2.2 S275~295的时空变化

抚仙湖2017年12个月的S275~295均值为37±6 μm-1,范围为23~60 μm-1;春、夏、秋和冬季的S275~295分别为39±7、35±8、35±4和38±3 μm-1(图 2b),春季的S275~295显著高于夏季和秋季(P < 0.05),冬季的S275~295显著高于秋季(P < 0.05). 2、5、8和11月北部S275~295的均值分别为38±2、35±2、34±1和35±4 μm-1,南部S275~295的均值分别为38±1、39±2、33±3和34±3 μm-1(图 3e~h),5月南部的S275~295显著高于北部(P < 0.01).

2.3 CDOM荧光组分荧光特性及时空变化

经PARAFAC分析确定了4种荧光组分,其中C1和C3代表了类蛋白(类酪氨酸)、C2代表了类蛋白(类色氨酸)、C4代表了紫外光类腐殖质(表 1图 4);4种荧光组分荧光强度、Chl.a浓度间的相关性分析结果见表 2. 12个月C1对总荧光强度的平均贡献为27.06 % ±27.14 %,C3的平均贡献为25.21 % ±11.52 %,C2的平均贡献为38.75 % ±20.17 %,C4的平均贡献为8.98 % ±4.54 %. 12个月FI的均值为1.73±0.14,范围为1.28~2.12(图 5a);全年192个样本的HIX值均小于2,12个月的均值为1.02±0.37,各月份的值差异不大(图 5b);12个月BIX的均值为1.23±0.27,范围为1.03~2.04(图 5c).

表 1 抚仙湖CDOM荧光组分特征 Tab. 1 Fluorescent component characteristics of CDOM in Lake Fuxian
图 4 抚仙湖4种荧光组分激发发射荧光谱图(a:组分C1;b:组分C2;c:组分C3;d:组分C4) Fig.4 Excitation-emission fluorescence spectral shapes of the four components of CDOM in Lake Fuxian (a: Component 1; b: Component 2; c: Component 3; d: Component 4)
图 5 抚仙湖CDOM的FI (a)、HIX (b)和BIX (c)的逐月变化(箱体中间粗线代表中位数,正方形代表均值) Fig.5 Monthly variations of FI (a), HIX (b) and BIX (c) of CDOM in Lake Fuxian (The thick line in the box represents the median value, the square represents the mean value)
表 2 各荧光组分荧光强度、叶绿素a浓度的Pearson相关系数矩阵 Tab. 2 Pearson correlation between fluorescent intensity of each fluorescent component and chlorophyll-a concentration

根据各组分内外源性质,可将C1~C4划分为C1+C3和C2+C4两组,其荧光强度的逐月变化如图 6所示. 12个月C1+C3的荧光强度均值为15.68±22.62 R.U.,范围为2.21~139.61 R.U.,月均最小和最大值分别为4.36±1.16 R.U. (11月)和46.84±37.10 R.U. (8月)(图 6a);C2+C4的荧光强度均值为4.00±1.12 R.U.,范围为2.23~9.80 R.U.,月均最小和最大值分别为2.60±0.19 R.U. (1月)和5.64±0.79 R.U. (8月)(图 6b). 12个月C1+C3对总荧光强度的平均贡献为65.81 % ±15.38 %,C2+C4的平均贡献为34.19 % ±15.38 %.

图 6 抚仙湖CDOM的C1+C3(a)和C2+C4(b)荧光强度的逐月变化(箱体中间粗线代表中位数,正方形代表均值) Fig.6 Monthly variations of C1+C3 (a) and C2+C4 (b) of CDOM in Lake Fuxian (The thick line in the box represents the median value, the square represents the mean value)

抚仙湖2、5、8和11月的荧光组分空间分布如图 7所示. 2月,C1+C3的荧光强度峰值出现在西北部近岸和中东部近岸;C2+C4无明显的峰值区域. 5月,C1+C3的荧光强度峰值出现在西北部近岸和西部近岸;C2+C4无明显的峰值区域. 8月,C1+C3的荧光强度峰值出现在西南部近岸,东北部近岸和中东部近岸区域的值也较大;C2+C4的荧光强度的峰值出现在西北部近岸和南部近岸,中部区域的荧光强度值也稍高. 11月,C1+C3的荧光强度无明显峰值区域;C2+C4的峰值区域出现在中北部湖心.

图 7 抚仙湖2017年2、5、8和11月荧光组分C1+C3(a~d)和C2+C4(e~h)的空间分布 Fig.7 Spatial distributions of the fluorescent component C1+C3 (a-d) and C2+C4 (e-h) of CDOM in Lake Fuxian in February, May, August and November of 2017
3 讨论

CDOM丰度具有湖区、湖泊间异质性. Song等对我国234个湖泊的调查表明a(254)的范围为1.39~530.03 m-1,其中淡水湖泊a(254)的平均值为19.55 m-1;在淡水湖泊中,云贵高原湖区a(254)的平均值低于除青藏高原湖区之外的其他湖区[20]. Zhang等对我国22个湖泊的调查表明a(254)的范围为1.68~92.65 m-1,平均值为13.51±9.79 m-1,并指出a(254)值与湖泊营养状态有关,a(254) < 4 m-1可作为判断贫营养湖泊的参考依据[36].抚仙湖是云贵高原的贫营养湖泊,其12个月a(254)的范围为1.82~5.22 m-1,平均值为3.47±0.57 m-1,说明该湖CDOM丰度处于较低水平.

平行因子分析的结果给出了4种组分,包括类酪氨酸蛋白荧光组分(C1和C3)、类色氨酸蛋白荧光组分(C2)和类腐殖质荧光组分(C4).其中,C1和C3可以表征内源CDOM,其主要成分包括细菌产生的胞外酶和生物裂解释放的蛋白质[37];C2主要为陆源微生物作用而产生的氨基酸类物质,如来源于垃圾渗滤液和污水[21];C4主要为陆源的类腐殖质,普遍存在于受农业影响的河流、近岸水体和废水中[38].本研究中,C1和C3总荧光强度的年均贡献达77 % (月均贡献范围为51 % ~89 %),C2和C4的贡献仅为23 %,说明抚仙湖CDOM以内源组分为主.抚仙湖是高原清澈型湖泊,光辐射背景强、漫射衰减系数小[25],意味着CDOM的光降解强烈,而陆源腐殖质类DOM比内源蛋白类DOM更容易被光降解[39];同时,抚仙湖CDOM本底低,其外源腐殖质DOM能被细菌以及浮游动物利用而转化为内源DOM[40],且外源氮磷营养盐及碳源输入会促使水体内源蛋白质类DOM增加[41].类似地,抚仙湖颗粒态有机碳的研究结果表明,该湖内源颗粒态有机碳的贡献(61 %)明显大于陆源(22 %)和底泥再悬浮(17 %)的贡献[42].进一步分析发现,抚仙湖CDOM荧光特性与地下水和泉水的相似[43],其FIHIXBIX特征说明该湖(内源)CDOM主要为微生物产生的.本研究中,FI相对集中于1.4~1.9之间,说明CDOM荧光组分主要为微生物源[43]BIX均大于1,与Huguet等发现的微生物主导的内源CDOM特性相似[34];C1、C3与Chl.a相关性不显著,也说明内源CDOM荧光组分主要不是浮游植物直接产生的;此外,HIX较低,说明腐殖质类CDOM主要是生物性残渣产生的且腐殖化程度较低[44].

抚仙湖CDOM丰度为夏、秋季总体高于冬、春季,与此前针对该湖秋、冬季的研究结果类似[25].夏、秋季相对高温促使水体中微生物活性增加,且夏、秋季正值云南高原的雨季,降水充沛不仅会将陆源CDOM直接带入湖体[8-9],亦可为水体微生物异养代谢提供相对充足的碳源;光化学降解是水体DOM损失的重要途径之一[7],云南高原夏、秋季的总辐射低于冬、春季[45],加之抚仙湖紫外线B穿透深度的季节异质性(如,秋季小于冬季)[25],或意味着该湖夏、秋季CDOM的光降解弱于冬、春季.根据抚仙湖海口站观测资料(2010 -2014年),2、5、8和11月的平均降水量分别为9.28、94.08、104.86和18.18 mm. CDOM丰度在旱季(2和11月)并无南北部间的显著性差异,可能与降水稀少导致外源有机污染物输入少有关;5月,S275~295的南北差异显示北部的陆源CDOM高于南部,而北部入湖河流的径流贡献较大(澄江县境内入湖河流的年径流总量占流域的63.7 %)[46]且有机污染高于南部[47],加之5月降水量大,进而导致湖体北部的a(254)显著高于南部;8月,南部部分近岸区的CDOM丰度较高(内源和外源CDOM的荧光强度均较高),或与大鲫鱼沟等南部主要入湖河流的贡献有关.类似地,抚仙湖内外源CDOM的空间分布具有一定的季节异质性,或受流域土地利用类型、入湖河流分布和降雨条件等的综合影响.例如,CDOM内源荧光组分(C1+C3)的荧光强度在2月的北部近岸、5月的西北部和西部近岸较高,这些区域存在较多的农业、生活污染源或来自旅游业的污染(西岸旅游业较发达且5月为旅游旺季),Dai等的研究亦显示抚仙湖北部和西部入湖河流的有机污染总体较南部和东部高[47],而有机污染物输入会促使对应区域近岸水体微生物生长[48];CDOM外源荧光组分(C2+C4)的荧光强度在8月的西北部和南部近岸较高,或与这些区域的外源CDOM易受雨水冲刷分别进入山冲河(西北部)、大鲫鱼沟(南部)等入湖河流进而输入近岸水体有关.需指出的是,11月C2+C4的荧光强度峰值出现在湖心敞水区,与一般湖库陆源CDOM分布规律相反[19],需进一步研究.当然,CDOM的空间分布情况,亦不排除水动力条件的影响.

虽然目前抚仙湖的CDOM丰度较低且以微生物内源为主,但该湖已呈现营养状态上升、浮游植物生物量增加的趋势[26-27],意味着藻源CDOM有进一步增加的可能;随着社会经济的迅速发展,抚仙湖流域内点源、面源污染逐渐加剧,或可导致外源CDOM输入增加,亦可能间接促进内源CDOM增加.需指出的是,监测数据表明抚仙湖已呈现有机污染水平升高的趋势[26-27],并可引起该湖水体透明度下降[24, 28],加之CDOM是该湖光衰减的主要影响因子之一[24-25],意味着光穿透深度下降与CDOM光化学降解作用减弱(丰度升高)可能存在正反馈作用,进而不利于沉水植物的生长与分布.根据本研究结果,抚仙湖CDOM丰度较高的区域主要分布于人口相对集中区域或靠近受污染河流入湖口,故应加强(尤其雨季)对主要入湖河流(有机)污染的管控.鉴于抚仙湖是典型的清澈型贫营养深水湖泊,今后可开展CDOM垂向剖面分析,亦有必要结合光衰减、热力分层及有关其他水质参数乃至CDOM的流域输入等开展进一步研究,深入探讨抚仙湖CDOM的内外源贡献及其迁移转化规律与驱动机制.

4 结论

抚仙湖CDOM丰度较低,2017年12个月的CDOM均以内源为主.利用平行因子分析法得到了4种荧光组分,包括2种类酪氨酸蛋白荧光组分、1种类色氨酸蛋白荧光组分和1种类腐殖质荧光组分;CDOM表现出较强的微生物源荧光特性,腐殖化特征不明显.时空变化方面,冬、春季CDOM丰度较低,夏、秋季较高;CDOM丰度及内外源组分的空间分布具有季节异质性,内源CDOM主要分布在受人类活动影响较大的近岸区,可能与流域土地利用、河流输入、降雨、温度、光辐射等因素有关.

致谢: 玉溪市抚仙湖管理局综合行政执法二大队协助了野外调查,李光旭、王荣华、黄立成、王玮璐、秦江、刘宁超等协助了野外调查或样品分析,特此致谢!

5 参考文献

[1]
Zhang Y, Zhang E, Yin Y et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography, 2010, 55(6): 2645-2659. DOI:10.4319/lo.2010.55.6.2645
[2]
Yao X, Zhang Y, Zhu G et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere, 2011, 82(2): 145-155. DOI:10.1016/j.chemosphere.2010.10.049
[3]
Coble AA, Marcarelli AM, Kane ES. Ammonium and glucose amendments stimulate dissolved organic matter mineralization in a Lake Superior tributary. Journal of Great Lakes Research, 2015, 41(3): 801-807. DOI:10.1016/j.jglr.2015.05.015
[4]
Shang P, Lu Y, Du Y et al. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Science of the Total Environment, 2018, 612: 1442-1453. DOI:10.1016/j.scitotenv.2017.08.322
[5]
Cole JJ, Prairie YT, Caraco NF et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget. Ecosystems, 2007, 10(1): 171-184. DOI:10.1007/s
[6]
Tranvik LJ, Downing JA, Cotner JB et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 2009, 54(6): 2298-2314. DOI:10.4319/lo.2009.54.6_part_2.2298
[7]
Helms JR, Stubbins A, Ritchie JD et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 2008, 53(3): 955-969. DOI:10.4319/lo.2008.53.3.0955
[8]
Zhang Y, Gao G, Shi K et al. Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu, China. Atmospheric Environment, 2014, 98: 483-491. DOI:10.1016/j.atmosenv.2014.09.038
[9]
Zhou Y, Zhang Y, Shi K et al. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China. Environmental Science and Pollution Research, 2015, 22(17): 12992-13003. DOI:10.1007/s11356-015-4556-x
[10]
Lu YH, Bauer JE, Canuel EA et al. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry, 2014, 119(1/2/3): 275-292. DOI:10.1007/s10533-014-9965-2
[11]
Prairie YT. Carbocentric limnology:Looking back, looking forward. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65(3): 543-548. DOI:10.1139/f08-011
[12]
Lapierre JF, Guillemette F, Berggren M et al. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nature Communications, 2013, 4: 7. DOI:10.1038/ncomms3972
[13]
Seekell D, Lapierre JF, Ask J. The influence of dissolved organic carbon on primary production in northern lakes. Limnology and Oceanography, 2015, 60(4): 1276-1285. DOI:10.1002/lno.10096
[14]
Thrane JE, Hessen DO, Andersen T. The absorption of li ght in lakes:Negative impact of dissolved organic carbon on primary productivity. Ecosystems, 2014, 17(6): 1040-1052. DOI:10.1007/s10021-014-9776-2
[15]
Zhou Y, Jeppesen E, Zhang Y et al. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake. Chemosphere, 2016, 144: 503-509. DOI:10.1016/j.chemosphere.2015.09.027
[16]
Yamashita Y, Jaffe R, Maie N et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 2008, 53(5): 1900-1908. DOI:10.4319/lo.2008.53.5.1900
[17]
Zhao Y, Song K, Wen Z et al. Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Biogeosciences, 2016, 13(5): 1635-1645. DOI:10.5194/bg-13-1635-2016
[18]
Margolin AR, Gonnelli M, Hansell DA et al. Black Sea dissolved organic matter dynamics:Insights from optical analyses. Limnology and Oceanography, 2018, 63(3): 1425-1443. DOI:10.1002/lno.10791
[19]
Zhou Y, Yao X, Zhang Y et al. Response of dissolved organic matter optical properties to net inflow runoff in a large fluvial plain lake and the connecting channels. Science of the Total Environment, 2018, 639: 876-887. DOI:10.1016/j.scitotenv.2018.05.180
[20]
Song K, Shang Y, Wen Z et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water Research, 2019, 150: 403-417. DOI:10.1016/j.watres.2018.12.004
[21]
Cheng QL, Zheng BH, Wang SR et al. Optical signatures of chromophoric dissolved organic matter in water body of Tien Lake. Spectroscopy and Spectral Analysis, 2014, 34(3): 698-703. [程庆霖, 郑丙辉, 王圣瑞等. 滇池水体有色溶解性有机质(CDOM)三维荧光光谱特征. 光谱学与光谱分析, 2014, 34(3): 698-703. DOI:10.3964/j.issn.1000-0593(2014)03-0698-06]
[22]
Su Y, Chen F, Liu Z. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line:Insights into sources of CDOM. Photochemical & Photobiological Sciences, 2015, 14(5): 1047-1062. DOI:10.1039/c4pp00478g
[23]
Zhang Y, Yin Y, Liu X et al. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Organic Geochemistry, 2011, 42(5): 510-519. DOI:10.1016/j.orggeochem.2011.03.007
[24]
Zhou Q, Zhang Y, Li K et al. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China. Journal of Environmental Sciences, 2018, 72: 185-197. DOI:10.1016/j.jes.2018.01.005
[25]
Zhou QC, Zhang YL, Zhou YQ et al. Spectral attenuation of ultraviolet and visible radiation and its relationship with chromophoric dissolved organic matter in autumn/winter in Lake Fuxian, China. J Lake Sci, 2016, 28(6): 1316-1327. [周起超, 张运林, 周永强等. 抚仙湖秋、冬季光衰减特征及其与有色可溶性有机物的关系. 湖泊科学, 2016, 28(6): 1316-1327. DOI:10.18307/2016.0617]
[26]
Gao W, Chen Y, Xu M et al. Trend and driving factors of water quality change in Lake Fuxian (1980-2011). J Lake Sci, 2013, 25(5): 635-642. [高伟, 陈岩, 徐敏等. 抚仙湖水质变化(1980-2011年)趋势与驱动力分析. 湖泊科学, 2013, 25(5): 635-642. DOI:10.18307/2013.0503]
[27]
Chen JX, Lv Y, Zhao ZF et al. Using the multidimensional synthesis methods with non-parameter test, multiple time scales analysis to assess water quality trend and its characteristics over the past 25 years in the Fuxian Lake, China. Science of the Total Environment, 2019, 655: 242-254. DOI:10.1016/j.scitotenv.2018.11.144
[28]
Zhou Q, Wang W, Huang L et al. Spatial and temporal variability in water transparency in Yunnan Plateau lakes, China. Aquatic Sciences, 2019, 81(2): 36. DOI:10.1007/s00027-019-0632-5
[29]
Wang S, Wang J, Li M et al. Six decades of changes in vascular hydrophyte and fish species in three plateau lakes in Yunnan, China. Biodiversity and Conservation, 2013, 22(13): 3197-3221. DOI:10.1007/s10531-013-0579-0
[30]
Henderson RK, Baker A, Murphy KR et al. Fluorescence as a potential monitoring tool for recycled water systems:A review. Water Research, 2009, 43(4): 863-81. DOI:10.1016/j.watres.2008.11.027
[31]
Ou HS, Wei CH, Deng Y et al. Principal component analysis to assess the composition and fate of impurities in a large river-embedded reservoir:Qingcaosha Reservoir. Environmental Science Processes & Impacts, 2013, 15(8): 1613-21. DOI:10.1039/c3em00154g
[32]
Stedmon C, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:A tutorial. Limnology and Oceanography-Methods, 2008, 6: 572-579. DOI:10.4319/lom.2008.6.572
[33]
McKnight DM, Boyer EW, Westerhoff PK et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 2001, 46(1): 38-48. DOI:10.4319/lo.2001.46.1.0038
[34]
Huguet A, Vacher L, Relexans S et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 2009, 40(6): 706-719. DOI:10.1016/j.orggeochem.2009.03.002
[35]
Editorial board of "Water and wastewater monitoring and analysis method", Ministry of Environmental Protection of the People's Republic of China ed. Monitoring and analysis methods of water and wastewater: fourth edition. Beijing: China Environmental Science Press, 2002. [国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法: 第4版.北京: 中国环境科学出版社, 2002. ]
[36]
Zhang Y, Zhou Y, Shi K et al. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients:Implications for monitoring and assessing lake eutrophication. Water Research, 2018, 131: 255-263. DOI:10.1016/j.watres.2017.12.051
[37]
Huang CC, Li Y, Wang Q et al. Components optical property of CDOM in lake Taihu based on three-dimensional excitation emission matrix fluorescence. J Lake Sci, 2010, 22(3): 375-382. [黄昌春, 李云梅, 王桥等. 基于三维荧光和平行因子分析法的太湖水体CDOM组分光学特征. 湖泊科学, 2010, 22(3): 375-382. DOI:10.18307/2010.0309]
[38]
Osburn CL, Handsel LT, Mikan MP et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environmental Science & Technology, 2012, 46(16): 8628-8636. DOI:10.1021/es3007723
[39]
Zhu WZ, Zhang J, Yang GP. Mixing behavior and photobleaching of chromophoric dissolved organic matter in the Changjiang River estuary and the adjacent East China Sea. Estuarine, Coastal and Shelf Science, 2018, 207: 422-434. DOI:10.1016/j.ecss.2017.07.019
[40]
Sun H, Zhang YD, Yu JL et al. Contribution of allochthonous dissolved organic carbon to the carbon source of planktonic crustaceans in Lake Fuxian. J Lake Sci, 2017, 29(4): 887-895. [孙欢, 张永东, 于谨磊等. 外源溶解性有机碳对抚仙湖甲壳类浮游动物碳源的贡献. 湖泊科学, 2017, 29(4): 887-895. DOI:10.18307/2017.0412]
[41]
Brandão LPM, Brighenti LS, Staehr PA et al. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake. Biogeosciences, 2018, 15(9): 2931-2943. DOI:10.5194/bg-15-2931-2018
[42]
Chen J, Yang H, Zeng Y et al. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China. Science of the Total Environment, 2018, 625: 27-38. DOI:10.1016/j.scitotenv.2017.12.275
[43]
Birdwell JE, Engel AS. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Organic Geochemistry, 2010, 41(3): 270-280. DOI:10.1016/j.orggeochem.2009.11.002
[44]
Ohno T, Chorover J, Omoike A et al. Molecular weight and humification index as predictors of adsorption for plant-and manure-derived dissolved organic matter to goethite. European Journal of Soil Science, 2007, 58(1): 125-132. DOI:10.1111/j.1365-2389.2006.00817.x
[45]
Liu L, Liu JD, Wu DR et al. Distributed simulation of global solar radiation over mountainous region in Yunnan Province. Meteorological and Environmental Sciences, 2014, 37(1): 13-19. [刘玲, 刘建栋, 邬定荣等. 云南山地太阳总辐射的分布式模拟. 气象与环境科学, 2014, 37(1): 13-19. DOI:10.3969/j.issn.1673-7148.2014.01.003]
[46]
Xia TX, Pan JZ, Liu XH et al. Non-point source pollution characteristics in Fuxianhu Lake watershed and variation law of N and P in lake water. Journal of Agro-Environment Science, 2008, 27(4): 1340-1345. [夏天翔, 潘继征, 刘雪华等. 抚仙湖水体N P变化及其非点源污染特征. 农业环境科学学报, 2008, 27(4): 1340-1345. DOI:10.3321/j.issn:1672-2043.2008.04.011]
[47]
Dai X, Zhou Y, Ma W et al. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China. Ecological Engineering, 2017, 99: 417-428. DOI:10.1016/j.ecoleng.2016.11.011
[48]
Aburto-Medina A, Shahsavari E, Salzman SA et al. Elucidation of the microbial diversity in rivers in south-west Victoria, Australia impacted by rural agricultural contamination (dairy farming). Ecotoxicology and Environmental Safety, 2019, 172: 356-363. DOI:10.1016/j.ecoenv.2019.01.112