湖泊科学   2021, Vol. 33 Issue (1): 11-27.  DOI: 10.18307/2021.0104.
0

专稿

引用本文 [复制中英文]

陈修报, 杨健, 刘洪波, 姜涛, 淡水贝类观察——生物阐释水污染和毒理的创新手段. 湖泊科学, 2021, 33(1): 11-27. DOI: 10.18307/2021.0104.
[复制中文]
Chen Xiubao, Yang Jian, Liu Hongbo, Jiang Tao. Freshwater Mussel Watch: An innovative approach for interpretations of aquatic pollution and toxicology. Journal of Lake Sciences, 2021, 33(1): 11-27. DOI: 10.18307/2021.0104.
[复制英文]

基金项目

中国水产科学研究院淡水渔业研究中心基本科研业务费项目(2019JBFM05)、中国水产科学研究院基本科研业务费项目(2019GH10)、广东省渔业生态环境重点实验室开放基金项目(FEEL-2019-7)和国家自然科学基金项目(311502166,31072214)联合资助

通信作者

杨健, E-mail:jiany@ffrc.cn

文章历史

2020-03-23 收稿
2020-05-06 收修改稿

码上扫一扫

淡水贝类观察——生物阐释水污染和毒理的创新手段
陈修报 , 杨健 , 刘洪波 , 姜涛     
(中国水产科学研究院淡水渔业研究中心, 长江中下游渔业生态环境评价和资源养护重点实验室, 无锡 214081)
摘要:淡水渔业是国民经济重要产业,在产量和产值均取得巨大成就的同时,也面临着严峻的水域生态环境污染形势.与此相适应,自2003年系统性提出以背角无齿蚌(Anodonta woodiana)为专用指示生物的创新性“淡水贝类观察”研究体系(Freshwater Mussel Watch)以来,已经成功地应用于国内外的江河、湖泊和池塘等渔业生态环境无机(特别是重金属)和有机污染物胁迫的监测、评价和预警,以及毒理学、污染物积累动力学和水质净化等方面研究.本文梳理了“淡水贝类观察”在被动监测、主动监测及渔业环境研究用模式动物开发等方面的研究进展,以期为渔业以及水域生态环境污染的有效监测、评价、保护以及阐释污染毒性机制提供有益参考.
关键词背角无齿蚌    淡水渔业生态环境    污染监测    模式动物    
Freshwater Mussel Watch: An innovative approach for interpretations of aquatic pollution and toxicology
Chen Xiubao , Yang Jian , Liu Hongbo , Jiang Tao     
(Key Laboratory of Fishery Eco-Environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, P. R. China)
Abstract: Freshwater fishery plays a critical role in the national economy. With the great achievements having been made in both production and value, its development is severely pressured by the aquatic environmental pollution. Consequently, an innovative approach of "Freshwater Mussel Watch" system was firstly proposed in 2003 using Anodonta woodiana as unique bioindicators for aquatic environments. To date, the approach has been successfully employed to bio-monitor, assess, and early warn various inorganic (especially heavy metals) and organic pollutants in different waters (especially lakes, rivers, and ponds) within China and around the world. Moreover, breakthroughs have been achieved on pollutant toxicology, bioaccumulation kinetics, and water purification by the approach. This paper summarizes the advances to date of "Freshwater Mussel Watch" approach on the studies of passive biomonitoring, active biomonitoring, and the development of model animals for freshwater environments for providing useful references to effectively monitor, assessment and conservation of fisheries and aquatic environment, as well as interpreter the corresponding toxic mechanism.
Keywords: Anodonta woodiana    freshwater fisheries eco-environment    pollution biomonitoring    model animal    

淡水渔业是国民经济的重要产业, 是农业农村经济的重要组成部分, 在保障粮食安全和优质蛋白质供给、增加农民收入和农村就业、加强生态文明建设等方面发挥了重要作用. 《2019中国渔业统计年鉴》显示我国淡水产品产量为3.156×107 t, 淡水养殖和捕捞产值为6350.04亿元, 淡水养殖面积为5.146×106 hm2[1].与此同时, 淡水渔业生态环境(包括内陆重要渔业水域如江河、湖泊、水库, 国家级水产种质资源保护区和重要人工养殖水域等)[2]也面临着较大的污染压力. 《2018中国渔业生态环境状况公报》指出,我国江河重要渔业水域总氮(TN)、总磷(TP)和重金属(如Cu)的超标面积分别为96.0 %、36.0 %和8.7 %, 湖泊、水库重要渔业水域TN、TP和Cu的超标面积分别为96.2 %、87.4 %和14.9 %, 国家级水产种质资源保护区(内陆)TN、TP、Cu的超标面积分别为89.5 %、3.7 %和9.8 % [2]; 此外, 有机污染物如滴滴涕(DDTs)、六六六(HCHs)也时常被检出, 甚至一些水域污染严重[3-4].因此, 迫切需要建立灵敏、有效、长期的污染监测、评价及预警研究体系.同时, 这也非常符合《关于加快推进水产养殖业绿色发展的若干意见》提出构建“优美水域生态环境”及《中共中央国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》部署“着力打好碧水保卫战”的战略要求.

水域生态环境的污染监测根据测试手段可分为理化监测和生物监测两大类[5-6].理化监测作为环境污染监测的一个重要手段, 具有快速、简便等优点, 但也存在着检测结果的“瞬时性”、无法反映污染综合效应及生物可利用性、一旦检出水体受到污染则损失往往难以挽回等局限性[3, 5].与理化监测相比, 生物监测具有以下优点:1)连续监测的功能, 是对污染状况长期的、历史的反映; 2)是对各种污染因子之间的协同、拮抗等作用做出的综合诊断; 3)敏感性高, 即使污染物在水环境中稀释了, 也能对其产生积累作用, 可对污染进行早期预警; 4)长期监测的人力和物力成本比较低等[3, 5-6].

贝类因具有营底栖生活、对污染物的高积累性和低代谢性等特征, 被证实为水域生态环境污染生物监测的理想指示生物[7-8].基于贝类对水环境特别是海洋环境污染物的生物监测, 在国际上(如美国、欧洲和亚太地区)非常活跃[9].其中最著名的莫过于美国国家海洋和大气管理局(NOAA)自1970s开始并迄今一直在延续的以紫贻贝(Mytilus edulis)等作为指示生物的“贝类观察”计划(Mussel Watch).其监测的污染物种类包括持久性有机污染物、重金属、石油烃、放射性元素及新兴污染物等, 监测范围已覆盖南美洲、中美洲、墨西哥、加勒比海、亚太地区、黑海和地中海地区[9].中国水产科学研究院南海水产研究所自1980s开始, 以近江牡蛎(Crassostrea rivularis)等作为指示生物的“南海贻贝观察”, 监测和评价了广东沿海生态环境的污染动态[10].而在淡水领域, 杨健等[11]于2003年创新性地提出了利用背角无齿蚌(Anodonta woodiana)(ND1和ITS1序列分析结果支持将传统上依据形态划分的背角无齿蚌(A. woodiana woodiana)、圆背角无齿蚌(A. woodiana pacifica)和椭圆背角无齿蚌(A. woodiana elliptica)归为同一物种, 即背角无齿蚌(A. woodiana)[12])作为指示生物来系统开展“淡水贝类观察”(Freshwater Mussel Watch)的设想[3, 13], 并成功应用于淡水渔业生态环境污染评价和毒理学研究[11, 13-20].本文综述了“淡水贝类观察”研究体系在被动监测、主动监测及渔业环境研究用模式动物开发等方面的研究进展, 以期为渔业生态环境污染的监测、评价、早期预警, 阐释污染毒性机制以及渔业绿色发展提供参考.

1 背角无齿蚌被筛选为“淡水贝类观察”研究体系的专用指示生物

背角无齿蚌作为指示生物具有许多独特的优点:1)广泛分布于我国各地(图 1A), 目前在世界(图 1B)其他地区也广泛分布[21-40], 如它是我国太湖蚌类的优势种之一, 密度为0.026 ind./m2, 生物量为0.82 g/m2, 相对丰度达到12.42 % [26]; 在波兰Vistula河谷的鱼塘综合体中, 其密度可高达9 ind./m2, 生物量达到3000 g/m2[35], 因此能够在全球范围内采集到标本进行比较分析, 研究结果的可比性较强; 2)营底栖生活, 活动范围狭窄, 较鱼虾类等游动性生物更能反映出特定水域的污染情况[3]; 3)对污染物的耐受能力强[41], 且对污染物具有高积累性和低代谢性, 能够有效监测污染动态[3]; 4)体内积累的污染物含量与水环境中污染物含量呈简单相关关系, 是对水环境污染动态的“连续性”监测[16]; 5)反映污染物的生物可利用性, 而非单纯地测定水环境污染物的绝对含量[3]; 6)对污染物的积累能力较其他贝类(如褶纹冠蚌(Cristaria plicata)、圆顶珠蚌(Unio douglasiae)、斑马贻贝(Dreissena polymorpha)、三角帆蚌(Hypriosis cumingii))更强[42-44], 能够起到污染灵敏监测和早期预警作用; 7)生命周期长, 寿命可长达10年, 能够对污染物进行长期的监测, 即使死亡之后贝壳仍能记录历史环境污染状况[45-46]; 8)规格适宜, 既容易采集, 又能够力保每个个体独立成为实验分析样本[3]; 9)人工繁养技术已经完全突破[47-50], 满足主动监测的要求; 10)在食用、培育珍珠、净化水质等方面具有较高的经济价值和生态价值[50-54], 对它们体内污染物的测定备受公众的关心和重视.综合上述, 背角无齿蚌被选定为“淡水贝类观察”研究体系的专用指示生物.

图 1 背角无齿蚌在中国(A)及世界(B)的分布(标记分布区域) Fig.1 Distribution of Anodonta woodiana in China (A) and the world (B)( marks distribution areas)
2 被动监测

被动监测是指采集并分析特定水域野生贝类体内的污染物含量, 从而评价水环境污染状况的方法[55].目前, 基于“淡水贝类观察”理念的被动监测已较为广泛地应用于国内、外(如日本[56]、波兰[43]、塞尔维亚[57-58])的江河、湖泊和池塘等淡水渔业生态环境中有机污染物(表 1)和重金属(表 2)等的监测、评价和预警.

表 1 基于背角无齿蚌作为指示生物的“淡水贝类观察”对不同水域有机污染物的被动监测* Tab. 1 Passive biomonitoring of organic pollutants in different waters by "Freshwater Mussel Watch" using Anodonta woodiana as bioindicator
表 2 基于背角无齿蚌作为指示生物的“淡水贝类观察”对不同水域重金属(平均干重含量, μg/g)的被动监测及与中国和国际标准的比较 Tab. 2 Passive biomonitoring of heavy metals (mean dry weight content, μg/g) in different waters by "Freshwater Mussel Watch" using Anodonta woodiana as bioindicator and comparison with national and intermational limits

背角无齿蚌软组织对水体中HCHs、DDTs、多氯联苯(PCBs)、丁基锡(BTs)、苯基锡(PTs)、多环芳烃(PAHs)、农药(如草达灭(MOL)、禾草丹(THI)、草枯醚(CNP))(表 1)以及微囊藻毒素(MC-RR、MC-LR)会产生明显的积累.虽然其中一些有机污染物(如HCHs和DDTs)在中国已禁用近20年, 但是蚌软组织仍能监测出这些污染物的环境残留.此外, 背角无齿蚌中MC-RR、MC-LR的积累量与蓝藻生物量之间呈现出正相关的趋势, 如太湖中较易暴发蓝藻水华的华庄和犊山水厂水域蚌样中MC-RR和MC-LR干重含量分别可高达11.2和0.47 μg/g[59].与中国和国际的水产(制)品的相关限量相比较(表 1), 蚌软组织中积累的HCHs、DDTs和PCBs等有机污染物尚未超标, 也反映出这些水域没有受到相关污染物的明显污染.

重金属作为全球重点防控的污染物, 对生物和人类的危害性极强[64-65], 也是“淡水贝类观察”的研究热点.从背角无齿蚌软组织中重金属的积累量可知:淡水环境中Co、Ni、Mo、Ag、Tl和Hg的含量普遍较低, 而Mn、Fe、Zn、Ba、Al、Cr、Cu、Cd、Pb和As的含量相对较高(表 2).特别需要重视的是, 杭埠-丰乐河中的Cr、太湖三山岛水域和漫山水域中的Cd以及嫩江中的Pb在背角无齿蚌中的积累量已超过我国相关标准(表 2), 波兰Licheński河中的Cu在背角无齿蚌中的积累量也已达到国际标准的限量(表 2), 提示这些水域可能受到相关重金属的污染.

除了软组织外, 背角无齿蚌的贝壳也有应用于水环境污染的监测和评价的潜力.研究表明幼蚌贝壳中Na和Cu的背景含量高于成蚌, 后者Mn含量显著高于前者, 而Ca、Na、Mn、Fe、Co、Cu、Mo、Ag和Tl在幼蚌和成蚌贝壳中的含量较为稳定[66].从重金属在贝壳中的分布来看, 珍珠层比棱柱层更为灵敏地反映了重金属(如Mn)的变化动态, 更适宜作为水环境重金属污染监测和评价的指示物[46].

值得注意的是, 被动监测也会面临一定的局限性[3, 9, 16, 67], 主要有:1)采集的野生贝类的规格、年龄、种质质量、污染物暴露史等生物因子很难保证一致, 这可能会影响到监测结果的阐释; 2)某些水域可能根本就没有样本可采, 造成监测“盲区”.因此, 突破这些限制将对“淡水贝类观察”应用的深度和广度具有重要意义.

3 主动监测

主动监测是指将洁净水体中的贝类移殖至待测水域, 然后定期回捕, 并进行污染物分析测定, 以监测环境污染动态的方法[16, 55].它具有传统采集水样分析等理化监测所不能替代的功效和所不具备的优势, 主要体现在其可连续监测自移殖开始至回捕结束整个时间段的污染水平变化动态, 真实反映污染物的生物可利用性, 并可实现对污染的早期预警[3, 5-6]; 此外, 该法也可有效克服上述被动监测在标本的可采性、规格、种质质量、污染背景可控性等方面的局限[55, 76].笔者实验室通过人工繁养技术, 在洁净的中国水产科学研究院淡水渔业研究中心南泉科研基地, 开发出了生物因子相同、遗传质量稳定、污染本底值较低、可向待测水域移殖和回收(由于背角无齿蚌在我国广泛分布, 故不存在外来种入侵的问题), 即“标准化”了的研究专用背角无齿蚌(简称“标准化”背角无齿蚌)[47-48, 50], 并发明了移殖贝类的专用网箱(图 2)[77], 进而建立了较为成熟的“淡水贝类观察”主动监测技术(图 3).

图 2 主动监测专用网箱 Fig.2 The unique cage for mussel transplantation of active biomonitoring
图 3 “淡水贝类观察”主动监测技术 Fig.3 Active biomonitoring technology of "Freshwater Mussel Watch"

目前, 该技术已成功应用于湖泊、河道等水域重金属污染的监测、评价和预警(表 3).研究结果显示, 虽然水体中重金属的含量均未超标[16, 78], “标准化”背角无齿蚌软组织积累的重金属含量亦未超过我国及国际相关标准的限量(表 3), 但是更为灵敏的污染因子(contamination factor, CF; CF=移殖组蚌样中重金属含量/对照组中相应重金属含量, CF=0表示无污染, CF < 1表示轻度污染, 1≤CF < 3表示中度污染, 3≤CF < 6表示重度污染, CF≥6表示严重污染[79-80])揭示了太湖五里湖和东湖可能受到Cu的污染, 太湖锡东水厂水域可能受到Al、Cu和Cd的污染(表 3), 对相关污染起到了灵敏的早期预警作用.

表 3 基于“标准化”背角无齿蚌的“淡水贝类观察”对不同水域重金属(干重含量, μg/g)的主动监测及污染评价 Tab. 3 Active biomonitoring of heavy metals (dry weight content, μg/g) in different waters by"Freshwater Mussel Watch" using "standardized" Anodonta woodiana and contamination assessment
4 渔业环境研究用模式动物开发

背角无齿蚌非常有潜力开发为渔业环境研究用模式动物:一是其生活史明确(图 4)、人工繁养技术成熟[47-50]、繁殖能力强(每次产卵量为数万枚, 且可分批产卵、分批排放), 能够为研究提供充足的不同生活史阶段的样本; 二是内部结构(图 5)及功能清晰, 且作为具有重要经济和生态价值的水产生物, 其生理(如滤水率、心率)、生化(如抗氧化酶、非酶蛋白)特征已经被广泛深入地研究[3], 作为模式动物的生物学理论背景清楚明确; 三是随着基因家族分析及组学(如转录组)测序的深入推进[83-84], 其遗传背景愈发清晰, 这为深入研究环境毒理学效应提供了极为重要的生物信息资源.目前, 基于背角无齿蚌已开展了毒理学、污染物积累动力学及水质净化等方面的模式动物探究, 并正在尝试建立标准化的背角无齿蚌“活体资源库”和标本“银行”[3].

图 4 背角无齿蚌生活史 Fig.4 Life cycle of Anodonta woodiana
图 5 背角无齿蚌内部构造示意图 Fig.5 The schematic diagram of internal structure of Anodonta woodiana

在毒理学方面, 已开展了个体、组织、生化、细胞和分子水平的探索.通过个体水平的暴露研究, 发现不同生活史阶段背角无齿蚌对污染物毒性的敏感性差异明显, 总体表现为早期生活史阶段(如钩介幼虫、稚蚌)的敏感性远超过幼蚌和成蚌[17-18].例如, Cd2+对钩介幼虫24 h半致死浓度(24 h-LC50)为0.0018 mg/L[18], 对稚蚌和幼蚌96 h半致死浓度(96 h-LC50)分别为0.0047和4.5 mg/L[18], 对成蚌96 h-LC50高达134.9 mg/L[85], 其中Cd2+对钩介幼虫24 h-LC50和稚蚌96 h-LC50甚至低于我国《渔业水质标准》(GB 11607-1989)规定的Cd限量(0.005 mg/L)[18]; Cu2+对钩介幼虫24 h-LC50为0.082 mg/L[17], 对稚蚌、幼蚌和成蚌96 h-LC50分别为0.012、3.4和22.1 mg/L[17, 86], 其中Cu2+对稚蚌96 h-LC50非常接近我国《渔业水质标准》(GB 11607-1989)规定的Cu限量(0.01 mg/L).受到Cu2+致毒后, 背角无齿蚌会表现出闭壳肌收缩频率降低及贝壳张开幅度变小等行为变化趋势[19, 87], 贝壳中蛋白质含量则呈现出先增加再降低的变化趋势[88].重金属(如Cu、Cd)对背角无齿蚌的毒性效应, 往往是由于重金属在有机体内的高度积累从而诱导产生过量的活性氧(ROS)[89], 当ROS无法被及时清除时就会造成氧化损伤[89], 主要表现为DNA损伤[18, 57, 90]、DNA甲基化错位[91], 钙调节蛋白(CaM)基因表达量增加[92], 诱导(或先诱导再抑制)抗氧化酶(如SOD、CAT、GPx)的合成[85-86, 93-103],导致膜脂质过氧化[18, 85-86, 93-94, 104],诱导金属硫蛋白(MT)合成[105], 甚至导致组织结构病变[106]和蚌死亡[18].然而, 重金属对背角无齿蚌致毒的分子机制研究仍显不足, 今后需要多加关注.与之相反, 有机污染物(如多溴联苯醚-47、多溴联苯醚-209、2, 4-二氯苯酚、2, 4, 6-三氯苯酚、五氯苯酚、全氟辛烷磺酸、全氟辛酸)对背角无齿蚌的毒性效应研究集中于分子水平.例如, 多溴联苯醚-47和多溴联苯醚-209会导致Cu/Zn-SOD、CAT、HSP60和HSP70基因表达量增加[83, 107-109]; 2, 4-二氯苯酚和2, 4, 6-三氯苯酚会导致Se-GPx基因表达量增加[110]; 五氯苯酚会导致GST基因表达量增加[111-113]; 全氟辛烷磺酸和全氟辛酸会导致Prx基因表达量增加[114].鉴于此, 有机污染物对背角无齿蚌的分子间相互作用机制以及其他水平的响应特征可能是下一步研究的重点.值得注意的是, 生命系统在不同水平对污染物毒性的应答顺序大不相同, 个体和组织的应答效应可能要数天才能反映出来, 而生化、细胞和分子的应答时间可以短至数小时甚至数秒[115].因此, 有必要在上述主、被动监测的基础上, 开发出对相关污染物具有特异性的生物标志物, 从而更加快速、灵敏地进行污染物毒性评价及其污染早期预警.

在背角无齿蚌对污染物的积累动力学方面, 目前的研究还较少且仅局限于水相.利用水相Cd2+(0.168和0.675 mg/L)对背角无齿蚌开展28 d暴露及28 d释放研究, 发现随着Cd2+浓度的增加和暴露时间的延长, 蚌各组织(包括肾脏、鳃、消化腺、外套膜、内脏团、斧足、闭壳肌、血淋巴)中Cd2+积累量均显著增加, 其中肾脏、鳃、消化腺的生物积累因子(BCF)较高(约为102)且排出率较低(总体在40 %左右), 被认为是Cd2+积累的“靶组织/器官”[116].此外, 李威等[117]还证实了背角无齿蚌鳃、内脏团和外套膜是重金属(如Cu、Zn、As、Ni)积累的“靶组织/器官”.基于水相4, 4′-二氯二苯硫醚(1、10和100 μg/L)对背角无齿蚌开展28 d暴露及14 d释放研究, 发现蚌(鳃、肝脏和肌肉)对其吸收率为0.509~21.734 L/(d ·g), 排出率为0.083~0.221 d-1, 生物半衰期为3.14~8.35 d, BCF为3.662×103~124.979×103[118].这些研究均表明背角无齿蚌对水相污染物具有高积累性和低代谢性, 然而在渔业生态环境中以食物相存在的污染物[119]的积累动力学尚未知.因此, 在今后的研究中有必要同步探究水相和食物相污染物的积累特征.

利用背角无齿蚌开展水质净化方面的研究近年来备受关注, 已成为“以渔净水”领域的研究热点.背角无齿蚌作为“不投饵滤食性”代表性水产生物之一, 具有强大的不间断滤水功能(滤水率可高达60 L/(kg ·h))[120], 以水环境中的藻类、细菌、浮游动物、有机残渣及底泥为食[121-124], 在生态系统的物质循环和能量流动中发挥重要作用, 也被誉为“淡水生态系统工程师”[121].毋庸置疑, 背角无齿蚌通过强大的滤食作用能够显著、快速提升水体的透明度[121, 125-126], 例如, 净化20 d后水体中浊度和Chl.a浓度的下降幅度可高达90.9 %和90.8 % [121].此外, 由于对重金属的高积累性和低代谢性, 背角无齿蚌很有潜力用于渔业生态环境重金属污染的防控[44, 124, 127].其对水体中Al、Cr、Fe、Ni、Zn和Mo的去除率可分别达到63.0 %、80.3 %、12.7 %、100 %、81.8 %和4.8 % [127]; 对底泥释放的Al、Cr、Mn、Co、Cu、Zn、As和Mo的去除率可分别达到93.8 %、98.0 %、33.3 %、14.3 %、23.5 %、69.4 %、60.5 %和13.0 % [124].然而, 在背角无齿蚌能否降低水体富营养化水平方面尚存在一定争议.一些学者研究表明背角无齿蚌能够显著降低富营养化水体中Chl.a浓度, 并改变了浮游藻类的群落结构(使优势种由蓝藻转变成硅藻), 还能显著降低水体总悬浮物浓度, 通过提高水体透明度和沉积物表面光照条件, 显著提高底栖藻类的生物量, 从而改变富营养水体中底栖藻类和浮游藻类的竞争关系, 促进水生态系统从混水态向清水态转变[125, 128-129].此外, 对降低水体中TN、氨氮、硝态氮、TP、磷酸盐和CODMn浓度同样具有较好的效果, 对它们的去除率分别可达到24.1 %、90.9 %、42.6 %、70.0 %、58.1 %和50.0 % [124, 127-128].鉴于此, 认为利用背角无齿蚌能够有效防治水体富营养化[124-125, 127-129].另有一些学者则认为虽然背角无齿蚌能够显著降低微囊藻等蓝藻的数量及其所占的相对百分比, 但是迅速增加绿藻所占比例[130-131]; 可快速降低TN、TP和总溶解磷浓度, 然而会升高总溶解氮浓度[132], 特别是在高水温期间还可能导致TN和TP浓度增加[131], 或者在高密度养殖情况下虽可降低微型生态系统中悬浮态氮浓度, 但会明显增加水中的溶解性氮、磷浓度[130], 因此可能难以改善水体富营养化[130-132].笔者研究发现背角无齿蚌净化水质效果(包括重金属和营养盐)受到养殖密度和处理时间的共同影响[121, 124, 127, 133].根据不同水体污染的实际情况, 建立水质净化模型(如响应面优化分析)来确定蚌养殖密度和处理时间的最佳配比[121, 124, 127, 133], 应该能够提升背角无齿蚌对水质(包括理化指标、重金属和营养盐)的净化效果, 达到改善水质的目的.

5 结论与展望

综上所述, “淡水贝类观察”可能是世界上首个较为系统地应用指示生物阐释淡水渔业生态系统污染状况和毒理机制的研究体系[3], 目前已成功应用于国内外的江河、湖泊和池塘等淡水水域无机(特别是重金属)、有机污染物和藻毒素污染的监测、评价、预警和保护, 并在毒理学、污染物积累动力学及水质净化等方面进行模式动物开发研究, 展现出广泛的应用前景.为了更好地服务渔业绿色高质量发展、贯彻碧水保卫战的战略要求, 亟需开展以下工作:

1) 背角无齿蚌在全国乃至全球广泛分布, 且人工繁养技术成熟, 建议在更广泛的淡水水域中开展基于该蚌的被、主动监测(包括个体和生物标志物监测), 并建成标准化的背角无齿蚌“活体资源库”和标本“银行”, 以摸清各水域的污染背景、把握污染趋势, 从而更有针对性地提出水生态环境保护措施.

2) 背角无齿蚌被越来越多地作为模式动物来开发, 然而还有一些深层次的机制需要破解.例如, 污染物(有机污染物、重金属、营养盐等)对背角无齿蚌的毒性机制及其积累动力学尚不完全清楚.只有从个体、组织、生化、细胞和分子等不同层次全面掌握污染物的积累规律和毒性效应特征, 才能更精准地阐释水生态污染状况, 更科学地应用生物操控技术改善水质.

6 参考文献

[1]
Fisheries Administration Bureau of Ministry of Agriculture and Rural Affairs, National Fisheries Technical Extension Center, China Society of Fisheries. 2019 China fishery statistics yearbook. Beijing: China Agricultural Press, 2019. [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2019中国渔业统计年鉴. 北京: 中国农业出版社, 2019.]
[2]
Ministry of Agriculture and Rural Affairs, Ministry of Ecology and Environment eds. 2018 Report on the state of the fishery eco-environment in China. Beijing: Chinese Academy of Fishery Sciences (Fishery Eco-Environment Monitoring Center, MARA), 2019. [农业农村部, 生态环境部. 2018中国渔业生态环境状况公报.北京: 中国水产科学研究院(农业农村部渔业生态环境监测中心), 2019. ]
[3]
Yang J. Research progress of diagnosis and early-warning technology by bioindicator and biomarker for fisheries ecological environment. Chinese Fishery Qualily and Standards, 2015, 5(2): 1-7. [杨健. 渔业生态环境指示生物诊断和预警技术研究进展. 中国渔业质量与标准, 2015, 5(2): 1-7.]
[4]
Du J, Huang H, Gong XH et al. Advances in persistent organic pollutant residues in shellfish and their detection technology. Chinese Fishery Qualily and Standards, 2019, 9(2): 44-61. [杜静, 黄会, 宫向红等. 贝类中持久性有机污染物残留与检测技术研究进展. 中国渔业质量与标准, 2019, 9(2): 44-61.]
[5]
Chen XB. Establishment of a "standardized population of Anodonta woodiana" and its transplant biomonitoring of heavy metal in freshwater environment[Dissertation]. Nanjing: Nanjing Agricultural University, 2012. [陈修报.淡水环境重金属监测用"标准背角无齿蚌"群体的建立及移殖应用研究[学位论文].南京: 南京农业大学, 2012. ]
[6]
Ravera O, Cenci R, Beone GM et al. Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. Journal of Limnology, 2003, 62: 61-70.
[7]
Goldberg ED. The Mussel Watch—A first step in global marine monitoring. Marine Pollution Bulletin, 1975, 6: 111.
[8]
Van Hassel JH, Farris JL. A review of the use of unionid mussels as biological indicators of ecosystem health// Farris JL, Van Hassel JH eds. Freshwater Bivalve Ecotoxicology. Boca Raton: CRC Press, Florida, Pensacola: SETAC Press, 2007: 19-49.
[9]
Farrington JW, Tripp BW, Tanabe S et al. Edward D. Goldberg's proposal of "the Mussel Watch": Reflections after 40 years. Marine Pollution Bulletin, 2016, 110: 501-510.
[10]
Jia XP ed. Research on sustainable development of marine fisheries in the South China Sea. Beijing: Science Press, 2003. [贾晓平. 南海海洋渔业可持续发展研究. 北京: 科学出版社, 2003.]
[11]
Yang J, Wang H, Zhu HY et al. Bioaccumulation of heavy metals in Anodonta woodiana from Wulihu area of Taihu Lake. Resources and Environment in the Yangtze Basin, 2005, 14(3): 362-366. [杨健, 王慧, 朱宏宇等. 背角无齿蚌(Anodonta woodiana)在五里湖中的重金属富集. 长江流域资源与环境, 2005, 14(3): 362-366.]
[12]
Zhao Y, Chen XB, Yang J et al. The species identification of three Anodonta woodiana species based on sequence differences of ND1 and ITS1 genes. Oceanologia et Limnologia Sinica, 2011, 42(4): 619-624. [赵颖, 陈修报, 杨健等. 利用ND1、ITS1序列研究三种背角无齿蚌(Anodonta woodiana)分类学问题. 海洋与湖沼, 2011, 42(4): 619-624.]
[13]
Yang J, Harino H, Liu HB et al. Monitoring the organotin contamination in the Taihu Lake of China by bivalve mussel Anodonta woodiana. Bulletin of Environmental Contamination and Toxicology, 2008, 81: 164-168.
[14]
Bian X, Liu H, Gan J et al. HCH and DDT residues in bivalves Anodonta woodiana from the Taihu Lake, China. Archives of Environmental Contamination and Toxicology, 2009, 56(1): 67-76.
[15]
Liu H, Yang J, Gan J. Trace element accumulation in bivalves Anodonta woodiana from the Taihu Lake, China. Archives of Environmental Contamination and Toxicology, 2010, 59(4): 593-601.
[16]
Chen X, Su Y, Liu H et al. Active biomonitoring of metals with cultured Anodonta woodiana: A case study in the Taihu Lake, China. Bulletin of Environmental Contamination and Toxicology, 2019, 102: 198-203.
[17]
Liu H, Chen X, Su Y et al. Effects of calcium and magnesium ions on acute copper toxicity to glochidia and early juveniles of the Chinese pond mussel Anodonta woodiana. Bulletin of Environmental Contamination and Toxicology, 2016, 97(4): 504-509.
[18]
Chen XB, Liu HB, Su YP et al. Acute toxicity of cadmium and its effects on lipid peroxidation and DNA damage in "standardized" Anodonta woodiana. Journal of Agro-Environmental Science, 2017, 36(10): 1960-1967. [陈修报, 刘洪波, 苏彦平等. 镉对"标准化"背角无齿蚌的急性毒性及脂质过氧化和DNA损伤的影响. 农业环境科学学报, 2017, 36(10): 1960-1967.]
[19]
Liu H, Chen X, Kang IJ et al. The valve movement response of three freshwater mussels Corbicula fluminea Müller 1774, Hyriopsis cumingii Lea 1852, and Anodonta woodiana Lea 1834 exposed to copper. Hydrobiologia, 2016, 770: 1-13.
[20]
Liu HB, Chen XB, Su YP et al. Influence of dissolved organic carbon on acute toxicity of copper to newly-transformed juveniles of the Chinese pond mussel Anodonta woodiana. Asian Journal of Ecotoxicology, 2017, 12(6): 900-905. [刘洪波, 陈修报, 苏彦平等. 溶解性有机碳影响铜对背角无齿蚌稚蚌的急性毒性研究. 生态毒理学报, 2017, 12(6): 900-905.]
[21]
Liu YY, Zhang WZ, Wang YX et al. China economic zoology-freshwater molluscs. Beijing: Science Press, 1979: 104-117. [刘月英, 张文珍, 王跃先等. 中国经济动物志-淡水软体动物. 北京: 科学出版社, 1979: 104-117.]
[22]
Dudgeon D, Morton B. The population dynamics and sexual strategy of Anodonta woodiana (Bivalvia: Unionacea) in Plover Cove Reservoir, Hong Kong. Journal of Zoology, 1983, 201: 161-183.
[23]
Ren SZ. Investigation on macroinvertebrate community and water quality in streams in Beijing area. Acta Scientiae Circumstantiae, 1991, 11(1): 31-46. [任淑智. 北京地区河流中大型底栖无脊椎动物与水质关系的研究. 环境科学学报, 1991, 11(1): 31-46.]
[24]
Local History Office of Hainan Province. History of Hainan Province: Fauna and Flora. Haikou: Hainan Publishing Press, 2012. [海南省地方志办公室. 海南省志:动植物志. 海口: 海南出版社, 2012.]
[25]
Cai YJ, Gong ZJ, Qin BQ. Standing crop and spatial distributional pattern of mollusca in Lake Taihu, 2006-2007. J Lake Sci, 2009, 21(5): 713-719. [蔡永久, 龚志军, 秦伯强. 太湖软体动物现存量及空间分布格局(2006-2007年). 湖泊科学, 2009, 21(5): 713-719. DOI:10.18307/2009.0516]
[26]
Xue TT, Liu XJ, Wu RW et al. Standing stock and spatial distribution pattern of unionids in Lake Taihu, China. J Lake Sci, 2019, 31(1): 202-210. [薛涛涛, 刘雄军, 武瑞文等. 太湖蚌类现存量及空间分布格局. 湖泊科学, 2019, 31(1): 202-210. DOI:10.18307/2019.0119]
[27]
Watters GT. A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea, 1834) (Bivalvia: Unionidae). Veliger, 1997, 40: 152-156.
[28]
Hubenov Z. Anodonta (Sinanodonta) woodiana (Lea, 1834) (Mollusca: Bivalvia: Unionidae)—A new invasive species for the Bulgarian malacofauna. Acta Zoologica Bulgarica, 2006, 58(1): 35-40.
[29]
Zhao Y, Tang F. Trichodinid ectoparasites (Ciliophora: Peritricha) from Misgurnus anguillicaudatus (Cantor) and Anodonta woodiana (Lea) in China, with descriptions of two new species of Trichodina Ehrenberg, 1838. Systematic Parasitology, 2007, 67(1): 65-72.
[30]
Kim BH, Baik SK, Hwang SO et al. Operation of CROM system and its effects of on the removal of seston in a eutrophic reservoir using a native freshwater bivalve (Anodonta woodiana) in Korea. Korean Journal of Ecology and Environment, 2009, 42(2): 161-171.
[31]
Pou-Rovira Q, Araujo R, Boix D et al. Presence of the alien Chinese pond mussel Anodonta woodiana (Lea, 1834) (Bivalvia, Unionidae) in the Iberian Peninsula. Graellsia, 2009, 65(1): 67-70.
[32]
Klenovšek D, Govedič M, Vaupotič M. Record of the China mussel Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae) in Slovenia. Natura Sloveniae, 2012, 14(1): 35-38.
[33]
Masaki S, Yoshihiro A. A record of Sinanodonta woodiana used as a foodstuff in Laos. Chiribotan, 2014, 44: 13-15.
[34]
Bolotov IN, Bespalaya YV, Gofarov MY et al. Spreading of the Chinese pond mussel, Sinanodonta woodiana, across Wallacea: one or more lineages invade tropical islands and Europe. Biochemical Systematics and Ecology, 2016, 67: 58-64.
[35]
Spyra A, Jędraszewska N, Strzelec M et al. Further expansion of the invasive mussel Sinanodonta woodiana (Lea, 1834) in Poland—establishment of a new locality and population features. Knowledge and Management of Aquatic Ecosystems, 2016. DOI:10.1051/kmae/2016028
[36]
Wu Y, Zhou Y, Qiu Y et al. Occurrence and risk assessment of trace metals and metalloids in sediments and benthic invertebrates from Dianshan Lake, China. Environmental Science and Pollution Research, 2017, 24: 14847-14856.
[37]
Konečný A, Popa OP, Bartáková V et al. Modelling the invasion history of Sinanodonta woodiana in Europe: Tracking the routes of a sedentary aquatic invader with mobile parasitic larvae. Evolutionary Applications, 2018, 11: 1975-1989.
[38]
Kondakov AV, Palatov DM, Rajabov ZP et al. DNA analysis of a non-native lineage of Sinanodonta woodiana species complex (Bivalvia: Unionidae) from Middle Asia supports the Chinese origin of the European invaders. Zootaxa, 2018, 4462(4): 511-522.
[39]
Cilenti L, Mancinelli G, Scirocco T et al. First record of Sinanodonta woodiana (Lea, 1834) in an artificial reservoir in the Molise region, Southeast Italy. BioInvasions Records, 2019, 8(2): 320-328.
[40]
Kondakov AV, Konopleva ES, Vikhrev IV et al. Phylogeographic affinities, distribution and population status of the non-native Asian pond mussels Sinanodonta lauta and S. woodiana in Kazakhstan. Ecologica Montenegrina, 2020, 27: 22-34.
[41]
Bielen A, Bošnjak I, Sepčić K et al. Differences in tolerance to anthropogenic stress between invasive and native bivalves. Science of the Total Environment, 2016, 543: 449-459.
[42]
Zhou YM, Qiang JH, Wang QZ et al. Heavy metal residue levels of several mussels in Nenjiang-Qiqihar river. Arid Environmental Monitoring, 1995, 9(1): 44-47. [周晏敏, 强建华, 王庆忠等. 嫩江-齐齐哈尔江段几种蚌类重金属残毒水平. 干旱环境监测, 1995, 9(1): 44-47.]
[43]
Królak E, Zdanowski B. The bioaccumulation of heavy metals by the mussels Anodonta woodiana (Lea, 1834) and Dreissena polymorpha (Pall.) in the Heated Konin Lakes. Archives of Polish Fisheries, 2001, 9: 229-237.
[44]
Xia TX, Liu XH, Zhao MS. The clearance and accumulation of Cu, Zn and Cd from water by the freshwater mussels (Anodonta woodiana and Hyriopsis cumingii). Fisheries Science, 2009, 28(4): 183-187. [夏天翔, 刘雪华, 赵孟彬. 2种淡水蚌类对水环境中Cu、Zn和Cd的去除与累积. 水产科学, 2009, 28(4): 183-187.]
[45]
Afanasjev SA, Zdanowski B, Kraszewski A. Growth and population structure of the mussel Anondonta woodiana (Lea, 1834) (Bivalvia, Unionidae) in the Heated Konin Lakes system. Archives of Polish Fisheries, 2001, 9: 123-131.
[46]
Chen XB, Jiang T, Liu HB et al. A preliminary study on elemental profile in the shell of freshwater bivalve Anodonta woodiana. China Environmental Science, 2016, 36(8): 2516-2521. [陈修报, 姜涛, 刘洪波等. 基于EPMA的背角无齿蚌贝壳中元素分布的初步研究. 中国环境科学, 2016, 36(8): 2516-2521.]
[47]
Chen XB, Yang J, Wen HB et al. Studies on the morphology of Anodonta woodiana elliptica at several important developmental stages and its effective temperature sum during parasitism. Journal of Nanjing Agricultural University, 2010, 33(4): 100-104. [陈修报, 杨健, 闻海波等. 椭圆背角无齿蚌发育关键阶段形态结构以及寄生有效积温的研究. 南京农业大学学报, 2010, 33(4): 100-104.]
[48]
Chen X, Yang J, Liu H et al. Element concentrations in a unionid mussel (Anodonta woodiana) at different life stages. Journal of the Faculty of Agriculture Kyushu University, 2012, 57(1): 139-144.
[49]
Chen XB, Yang J. Gametogenesis and development of freshwater bivalve molluscs: A review. Journal of Fishery Sciences of China, 2011, 18(4): 944-952. [陈修报, 杨健. 淡水蚌类发生与发育研究进展. 中国水产科学, 2011, 18(4): 944-952.]
[50]
Chen X, Liu H, Su Y et al. Morphological development and growth of the freshwater mussel Anodonta woodiana from early juvenile to adult. Invertebrate Reproduction and Development, 2015, 59(3): 131-140.
[51]
Shi AJ, Wu ZW. Histochemical study of the mantle of Anodonta woodiana. Chinese Journal of Zoology, 1986, 4: 1-3. [石安静, 吴中文. 背角无齿蚌外套膜的组织化学研究. 动物学杂志, 1986, 4: 1-3.]
[52]
Wen HB, Xu GC, Hua D. Preliminary observation on parasitic metamorphosis development of Anodonta woodiana pacifica. Journal of Shanghai Fisheries University, 2006, 15(2): 252-256. [闻海波, 徐钢春, 华丹. 圆背角无齿蚌寄生变态发育的初步观察. 上海水产大学学报, 2006, 15(2): 252-256.]
[53]
Ma MS, Chen XB, Su YP et al. Characteristic analysis of mineral elements and amino acid contents in wild and farmed swan mussels (Anodonta woodiana). Food Science, 2012, 33(8): 142-145. [马明硕, 陈修报, 苏彦平等. 野生和养殖背角无齿蚌矿质元素和氨基酸含量的特征分析. 食品科学, 2012, 33(8): 142-145.]
[54]
Rahayu SYS, Solihin DD, Manalu W et al. Nucleus pearl coating process of freshwater mussel Anodonta woodiana (Unionidae). HAYATI Journal of Biosciences, 2013, 20(1): 24-30.
[55]
Bervoets L, Voets J, Smolders R et al. Metal accumulation and condition of transplanted zebra mussel (Dreissena polymorpha) in metal polluted rivers. Aquatic Ecosystem Health and Management, 2005, 8(4): 451-460.
[56]
Uno S, Shiraishi H, Hatakeyama S et al. Accumulative characteristics of pesticide residues in organs of Bivalves (Anodonta woodiana and Corbicula leana) under natural conditions. Archives of Environmental Contamination and Toxicology, 2001, 40: 35-47.
[57]
Kolarević S, Knežević-Vukčević J, Paunović M et al. Monitoring of DNA damage in haemocytes of freshwater mussel Sinanodonta woodiana sampled from the Velika Morava River in Serbia with the comet assay. Chemosphere, 2013, 93: 243-251.
[58]
Kolarević S, Kračun-Kolarević M, Kostić J et al. Assessment of the genotoxic potential along the Danube River by application of the comet assay on haemocytes of freshwater mussels: The joint danube survey 3. Science of the Total Environment, 2016, 540: 377-385.
[59]
Yu RP, Tao GJ, Gong XQ et al. Determination of microcystins in Anodonta woodiana by high performance liquid chromatography combined with electrospray ionization mass spectrometry. Journal of Instrumental Analysis, 2007, 26(5): 671-674. [虞锐鹏, 陶冠军, 贡小清等. 高效液相色谱——质谱联用方法测定背角无齿蚌体内微囊藻毒素. 分析测试学报, 2007, 26(5): 671-674.]
[60]
Bian XS, Liu HB, Gan JL et al. Residues of PCBs in Anodonta woodiana from the Taihu Lake, China. Journal of Agro-Environment Science, 2008, 27(2): 767-772. [边学森, 刘洪波, 甘居利等. 太湖背角无齿蚌中多氯联苯的残留. 农业环境科学学报, 2008, 27(2): 767-772.]
[61]
Fang BX, Wu YG, Liu BX et al. Concentrations, sources and risk assessment of polycyclic aromatic hydrocarbons in Anodonta woodiana from the largest river into Chaohu. Environmental Pollution & Control, 2017, 39(7): 699-703. [方冰芯, 吴义国, 刘丙祥等. 巢湖最大入湖河流背角无齿蚌中多环芳烃的含量、来源及风险评价. 环境污染与防治, 2017, 39(7): 699-703.]
[62]
National Health and Family Planning Commission of PRC, China Food and Drug Administration eds. GB 2762-2017. National Food Safety Standard for Contaminants in Foods. Beijing: China Standards Press, 2017. [中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2762-2017.食品安全国家标准食品中污染物限量.北京: 中国标准出版社, 2017. ]
[63]
Nauen CE. Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular, 1983.
[64]
Storelli MM, Barone G, Storelli A et al. Trace metals in tissues of Mugilids (Mugil auratus, Mugil capito, and Mugil labrosus) from the Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 2006, 77: 43-50.
[65]
Kubier A, Wilkin RT, Pichler T. Cadmium in soils and groundwater: A review. Applied Geochemistry, 2019, 108: 104388.
[66]
Chen X, Su Y, Liu H et al. Mineral composition variation in the shells of freshwater mussel Anodonta woodiana at different growth stages. Invertebrate Reproduction and Development, 2017, 61: 274-282.
[67]
Andral B, Stanisiere JY, Sauzade D et al. Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin, 2004, 49: 412-704.
[68]
Liu HB, Yang J, Gan JL. Residues of mercury in the bivalve mussels Anodonta woodiana from the Wulihu area of the Taihu, China. Journal of Agro-Environment Science, 2009, 28(2): 411-415. [刘洪波, 杨健, 甘居利. 太湖五里湖水域背角无齿蚌中汞的残留. 农业环境科学学报, 2009, 28(2): 411-415.]
[69]
Liu HB, Yang J, Gan JL. Mercury residues in tissues of bivalve mussels Anodonta woodiana from Taihu Lake. Shanghai Environmental Sciences, 2009, 28(3): 106-109. [刘洪波, 杨健, 甘居利. 太湖重点水域背角无齿蚌中汞的残留. 上海环境科学, 2009, 28(3): 106-109.]
[70]
Yang J, Qu JQ, Liu HB. Characteristics of element bioaccumulation between farmed and wild swan mussels Anodonta woodiana. Ecology and Environmenta1 Sciences, 2010, 19(3): 570-575. [杨健, 曲疆奇, 刘洪波. 野生及养殖背角无齿蚌中元素的生物积累特征. 生态环境学报, 2010, 19(3): 570-575.]
[71]
Chen XB, Su YP, Sun L et al. Bioaccumulation characteristics of heavy metals in bivalve Anodonta woodiana from different habitats with different pollution backgrounds. Journal of Agro-Environment Science, 2013, 32(5): 1060-1067. [陈修报, 苏彦平, 孙磊等. 不同污染背景生境中背角无齿蚌的重金属积累特征. 农业环境科学学报, 2013, 32(5): 1060-1067.]
[72]
Yu J. Pollution characteristics and source analysis of heavy metal in bivalves from Hangbu River[Dissertation]. Hefei: Anhui University, 2016. [余骏.杭埠河流域贝类重金属的污染特征及源解析[学位论文].合肥: 安徽大学, 2016. ]
[73]
Jia Y, Wang L, Qu Z et al. Distribution, contamination and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China. Environmental Science and Pollution Research, 2017, 25(7): 7012-7020.
[74]
Ministry of Agriculture of PRC ed. NY 5073-2006. Residue limit of toxic substances in nuisanceless foods and aquatic products. Beijing: China Standard Press, 2006. [中华人民共和国农业部. NY 5073-2006.无公害食品-水产品中有毒有害物质限量.北京: 中国标准出版社, 2006. ]
[75]
Šlejkovec Z, Byrne AR, Smodiš B et al. Preliminary studies on arsenic species in some environmental samples. Fresenius Journal of Analytical Chemistry, 1996, 354: 592-595.
[76]
Chen XB, Su YP, Liu HB et al. Biomonitoring of heavy metal pollution in Wulihu Bay of Taihu Lake by transplanting "standardized" Anodonta woodiana. China Environmental Science, 2014, 34(1): 225-231. [陈修报, 苏彦平, 刘洪波等. 移殖"标准化"背角无齿蚌监测五里湖重金属污染. 中国环境科学, 2014, 34(1): 225-231.]
[77]
Chen XB, Yan J, Liu HB et al. Aquaculture cages used for hanging culture of environmental monitoring mussels: China, ZL201310603132.92015. 2015. [陈修报, 杨健, 刘洪波等.用于环境监测贝类吊养的养殖网箱: 中国, ZL201310603132.92015. 2015. ]
[78]
Wang Y, Chen XB, Liu HB et al. Biomonitoring of heavy metal contamination of Maifenbang River using Anodonta woodiana. Environmental Science and Technology, 2019, 42(S2): 267-274. [王洋, 陈修报, 刘洪波等. 基于背角无齿蚌对麦粉浜河道重金属污染监测. 环境科学与技术, 2019, 42(S2): 267-274.]
[79]
Okay OS, Ozmen M, Güngördü A et al. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels. Environmental Monitoring and Assessment, 2016, 188: 352.
[80]
Allafta H, Opp C. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Scientific Reports, 2020, 10: 6979.
[81]
Chen XB, Su YP, Liu HB et al. Active biomonitoring of heavy metal pollution level of Wulihu area, Taihu Lake using "standardized" Anodonta woodiana. J Lake Sci, 2014, 26(6): 857-863. [陈修报, 苏彦平, 刘洪波等. 基于"标准化"背角无齿蚌对太湖五里湖重金属污染的主动监测. 湖泊科学, 2014, 26(6): 857-863. DOI:10.18307/2014.0607]
[82]
Sun L, Chen XB, Su YP et al. Variation of heavy metal contents in swan mussels (Anodonta woodiana) transplanted into Donghu Lake. Acta Hydrobiologica Sinica, 2014, 38(1): 203-208. [孙磊, 陈修报, 苏彦平等. 东湖移殖背角无齿蚌中重金属的含量变化. 水生生物学报, 2014, 38(1): 203-208.]
[83]
Xia X, Huang C, Zhang D et al. Molecular cloning, characterization, and the response of Cu/Zn superoxide dismutase and catalase to PBDE-47 and -209 from the freshwater bivalve Anodonta woodiana. Fish and Shellfish Immunology, 2016, 51: 200-210.
[84]
Qu F, Xiang Z, Zhou Y et al. Tumor necrosis factor receptor-associated factor 3 from Anodonta woodiana is an important factor in bivalve immune response to pathogen infection. Fish and Shellfish Immunology, 2017, 71: 151-159.
[85]
Xing HF, Li YQ, Yang HZ et al. Effects of cadmium on antioxidant enzyme activities and lipid peroxidation in the mantle and gill of the freshwater bivalve A. woodiana woodiana. Acta Scientiae Circumstantiae, 2013, 33(3): 856-860. [邢慧芳, 李涌泉, 杨慧珍等. 镉对背角无齿蚌外套膜和鳃抗氧化酶活性及脂质过氧化的影响. 环境科学学报, 2013, 33(3): 856-860.]
[86]
Liu H, Chen X, Su Y et al. Biochemical changes in Chinese pond mussel Anodonta woodiana (Lea, 1834) following exposure to copper. Journal of the Faculty of Agriculture Kyushu University, 2018, 63(2): 311-318.
[87]
Liu HB, Chen XB, Yang J. Valve movement behavior of three freshwater mussels Corbicula fluminea, Hyriopsis cumingii and Anodonta woodiana under natural light. Chinese Journal of Fisheries, 2018, 31(4): 27-31. [刘洪波, 陈修报, 杨健. 自然光照下三种淡水贝类张闭壳的活动特征. 水产学杂志, 2018, 31(4): 27-31.]
[88]
Kurnia AI, Purwanto E, Mahajoeno E. Exposure copper heavy metal (Cu) on freshwater mussel (Anodonta woodiana) and its relation to Cu and protein content in the body shell. Nusantara Bioscience, 2010, 2: 48-53.
[89]
Katsumiti A, Gilliland D, Arostegui I et al. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis. Aquatic Toxicology, 2014, 153: 39-52.
[90]
Wu W, Yang J, Qu JH et al. Level of 8-hydroxy-2-deoxyguanosine in swan mussels Anodonta woodiana from Taihu Lake and its preliminary application to assess water pollution. Ecology and Environmental Sciences, 2010, 19(1): 1-5. [吴伟, 杨健, 瞿建宏等. 太湖背角无齿蚌组织中8-羟基脱氧鸟苷的含量及在水体污染评价中的初步应用. 生态环境学报, 2010, 19(1): 1-5.]
[91]
Cao ZM, Yang J. Analysis of the methylation in genome DNA from different tissues of Anodonta woodiana. Ecology and Environmental Sciences, 2009, 18(6): 2011-2016. [曹哲明, 杨健. 背角无齿蚌不同组织的基因组DNA甲基化分析. 生态环境学报, 2009, 18(6): 2011-2016.]
[92]
Xia X, Liang G, Zheng X et al. Characterization of calmodulin in the clam Anodonta woodiana: differential expressions in response to environmental Ca2+ and Cd2+. Turkish Journal of Biochemistry, 2018, 43(4): 403-416.
[93]
Chen XB, Liu HB, Su YP et al. Response characteristics of lipid peroxidation in different tissues of "standardized" Anodonta woodiana juveniles to cadmium. Jiangsu Agricultural Sciences, 2017, 45(20): 190-192. [陈修报, 刘洪波, 苏彦平等. "标准化"背角无齿蚌幼蚌的不同组织对镉的脂质过氧化响应特征. 江苏农业科学, 2017, 45(20): 190-192.]
[94]
Xu FF, Fan XS, Li YC et al. Evaluation of Cd induced oxidative stress on Anodonta woodiana based on the integrated biomarker response. Journal of Safety and Environment, 2017, 17(6): 2438-2444. [许芳芳, 范信生, 李玉成等. 基于整合生物标志物响应法的镉对背角无齿蚌氧化损伤胁迫效应评估. 安全与环境学报, 2017, 17(6): 2438-2444.]
[95]
Li YQ, Xing HF, Yang HZ et al. Tissue damage and regulation of antioxidant enzyme activity by cadmium in the digestive gland and foot of freshwater mussel Anodonta woodiana. Acta Scientiae Circumstantiae, 2015, 35(10): 3399-3405. [李涌泉, 邢慧芳, 杨惠珍等. 镉致背角无齿蚌消化腺组织损伤及调节消化腺和斧足的抗氧化酶活性. 环境科学学报, 2015, 35(10): 3399-3405.]
[96]
Yang HZ, Liu N, Li YQ et al. Effects of cadmium on glutathione contents and activities of glutathione related enzymes in gill and hepatopancreas of Anodonta woodiana woodiana. Journal of Agro-Environment Science, 2015, 34(1): 15-21. [杨惠珍, 刘娜, 李涌泉等. 镉对背角无齿蚌主要组织谷胱甘肽含量和相关酶活性的影响. 农业环境科学学报, 2015, 34(1): 15-21.]
[97]
Li YQ, Yang HZ, Ren YJ et al. Effects of cadmium on apoptosis-related enzymes activity and cellularity changes of the mantle of freshwater mussel Anodonta woodiana. Journal of Shanxi Agricultural Sciences, 2016, 44(8): 1108-1113. [李涌泉, 杨惠珍, 任玉娟等. 镉对背角无齿蚌外套膜细胞凋亡相关酶活性和细胞结构的影响. 山西农业科学, 2016, 44(8): 1108-1113.]
[98]
Liu MN, Liu N, Li YQ et al. Effect of cadmium on superoxide dismutase activities of digestive gland and gill in Anodonta woodiana. Journal of Shanxi Agricultural Sciences, 2016, 44(6): 750-753. [刘蒙南, 刘娜, 李涌泉等. 镉对背角无齿蚌消化腺和鳃组织SOD活力的影响. 山西农业科学, 2016, 44(6): 750-753.]
[99]
Yang HZ, Liu N, Wei XX et al. Oxidative damage of cadmium on liver and gill of freshwater mussel Anodonta woodiana woodiana. Journal of Agro-Environment Science, 2017, 36(4): 651-656. [杨惠珍, 刘娜, 卫晓溪等. 镉对背角无齿蚌鳃和肝脏氧化损伤的影响. 农业环境科学学报, 2017, 36(4): 651-656.]
[100]
Ren YJ, Liu MN, Wang L et al. Effect of cadmium on the content of metallothionein in the tissues of the freshwater mussel, Anodonta woodiana. Journal of Shanxi Agricultural Sciences, 2017, 45(2): 211-214. [任玉娟, 刘蒙南, 王兰等. 镉对背角无齿蚌组织中金属硫蛋白含量的影响. 山西农业科学, 2017, 45(2): 211-214.]
[101]
Jing WX, Liu N, Wang L. Effect of cadmium on the activities of antioxidant enzymes in the gill of Anodonta woodiana. Journal of Shanxi Agricultural Sciences, 2018, 46(5): 752-755. [井维鑫, 刘娜, 王兰. 镉对背角无齿蚌鳃组织抗氧化酶活性的影响. 山西农业科学, 2018, 46(5): 752-755.]
[102]
Jing WX, Lin ZG, Lang L et al. Oxidative stress in the gills and digestive gland of Anodonta woodiana exposure to cadmium. Journal of Shanxi Agricultural Sciences, 2019, 47(8): 1334-1340. [井维鑫, 林子根, 郎朗等. 镉暴露对背角无齿蚌鳃和消化腺的氧化应激. 山西农业科学, 2019, 47(8): 1334-1340.]
[103]
Jia JB, Jing WX, Li YQ et al. Oxidative damage effect of chronic cadmium exposure on the liver of the freshwater mussel Anodonta woodiana. Letters in Biotechnology, 2019, 30(2): 207-211. [贾嘉宝, 井维鑫, 李涌泉等. 慢性镉暴露对背角无齿蚌肝脏的氧化损伤效应. 生物技术通讯, 2019, 30(2): 207-211.]
[104]
Lin ZG, Jing WX, Wang L. Effect of sub-chronic copper exposure on the antioxidant system in the gills of Anodonta woodiana. Journal of Agro-Environment Science, 2019, 38(6): 1233-1239. [林子根, 井维鑫, 王兰. 亚慢性铜暴露对背角无齿蚌鳃抗氧化系统的影响. 农业环境科学学报, 2019, 38(6): 1233-1239.]
[105]
Li Y, Yang H, Liu N et al. Cadmium accumulation and metallothionein biosynthesis in cadmium-treated freshwater mussel Anodonta woodiana. PLoS One, 2015, 10(2): e0117037. DOI:10.1371/journal.pone.0117037
[106]
Li YK. The effects of heavy metal copper on histological structure of gills Anodonta woodiana elliptica. Journal of Huaibei Coal Industry Teachers College: Natural Science, 2010, 31(4): 36-40. [李雨奎. 硫酸铜对椭圆背角无齿蚌鳃的组织结构的影响. 淮北煤炭师范学院学报:自然科学版, 2010, 31(4): 36-40.]
[107]
Xia X, Xue S, Wang X et al. Response a chronic effects of PBDE-47: Up-regulations of HSP60 and HSP70 expression in freshwater bivalve Anodonta woodiana. Fish and Shellfish Immunology, 2017, 65: 213-225.
[108]
Xue SP, Wang H, Song GY et al. Molecular characterization of Aw HSP70 from freshwater bivalve Anodonta woodiana: Effects of PBDE-47 on its expression. Asian Journal of Ecotoxicology, 2019, 14(5): 168-176. [薛士鹏, 王涵, 宋国英等. 淡水双壳类背角无齿蚌Aw HSP70基因克隆及多溴联苯醚-47对其表达的影响. 生态毒理学报, 2019, 14(5): 168-176.]
[109]
Wang H, Zhang S, Xue SP et al. Effects of polybrominated diphenyl ether-47 on the heat shock protein HSP60 expressions of freshwater bivalve Anodonta woodiana. Freshwater Fisheries, 2019, 49(5): 3-9. [王涵, 张珊, 薛士鹏等. 多溴联苯醚-47对淡水背角无齿蚌热休克蛋白基因表达的影响. 淡水渔业, 2019, 49(5): 3-9.]
[110]
Xia X, Hua C, Xue S et al. Response of selenium-dependent glutathione peroxidase in the freshwater bivalve Anodonta woodiana exposed to 2, 4-dichlorophenol, 2, 4, 6-trichlorophenol and pentachlorophenol. Fish and Shellfish Immunology, 2016, 55: 499-509.
[111]
Liu Q, Shang X, Ma Y et al. Isolation and characterization of two glutathione S-transferases from freshwater bivalve Anodonta woodiana: Chronic effects of pentachlorophenol on gene expression profiles. Fish and Shellfish Immunology, 2017, 64: 339-351.
[112]
Hua CX, Zhang K, Liu QC et al. Effects of PCP on the ρ-GST expression in the freshwater bivalve Anodonta woodiana. Asian Journal of Ecotoxicology, 2019, 14(5): 177-187. [华春秀, 张科, 刘庆春等. 五氯苯酚对淡水双壳类背角无齿蚌ρ型谷胱甘肽S-转移酶表达的影响. 生态毒理学报, 2019, 14(5): 177-187.]
[113]
Xia XC, Liu QC, Hua CX et al. Cloning of σ-GST gene in Anodonta woodiana and its expression analysis under pentachlorophenol stress. Biotechnology Bulletin, 2019, 35(5): 93-101. [夏西超, 刘庆春, 华春秀等. 背角无齿蚌σ-GST基因克隆与五氯酚胁迫表达分析. 生物技术通报, 2019, 35(5): 93-101.]
[114]
Xia X, Yu R, Li M et al. Molecular cloning and characterization of two genes encoding peroxiredoxins from freshwater bivalve Anodonta woodiana: Antioxidative effect and immune defense. Fish and Shellfish Immunology, 2018, 82: 476-491.
[115]
Van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 2003, 13: 57-149.
[116]
Jing W, Lang L, Lin Z et al. Cadmium bioaccumulation and elimination in tissues of the freshwater mussel Anodonta woodiana. Chemosphere, 2019, 219: 321-327.
[117]
Li W, Yang J, Chen XB et al. The distribution of elements in the tissues of mussel Anodonta woodiana. Journal of Agro-Environment Science, 2010, 29(3): 597-603. [李威, 杨健, 陈修报等. 背角无齿蚌组织中的元素分布研究. 农业环境科学学报, 2010, 29(3): 597-603.]
[118]
Zhang X, Fang B, Wang T et al. Tissue-specific bioaccumulation, depuration and metabolism of 4, 4'-dichlorodiphenyl sulfide in the freshwater mussel Anodonta woodiana. Science of the Total Environment, 2018, 642: 854-863.
[119]
Luoma SN, Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environment Science & Technology, 2005, 39: 1921-1931.
[120]
Peng JH, Chen WX, Luan JG et al. The effects of temperature and pH on the filtration rates of two species of freshwater mollusks. Chinese Journal of Zoology, 2004, 39(6): 2-6. [彭建华, 陈文祥, 栾建国等. 温度、pH对二种淡水贝类滤水率的影响. 动物学杂志, 2004, 39(6): 2-6.]
[121]
Chen XB, Su YP, Liu HB et al. Purification capacity of Anodonta woodiana on fishpond water. Chinese Journal of Environmental Engineering, 2015, 9(4): 1757-1762. [陈修报, 苏彦平, 刘洪波等. 背角无齿蚌对养鱼水体的净化效果. 环境工程学报, 2015, 9(4): 1757-1762.]
[122]
Su YP, Chen XB, Liu HB et al. The dietary algae at different juvenile stages of Anodonta woodiana. Journal of Fishery Sciences of China, 2014, 21(4): 736-746. [苏彦平, 陈修报, 刘洪波等. 背角无齿蚌幼蚌食物中的藻类组成. 中国水产科学, 2014, 21(4): 736-746.]
[123]
Su YP, Chen XB, Liu HB et al. Characteristics of dietary algae selection for Anodonta woodiana at different growth stages from the aquaculture pond. Acta Hydrobiologica Sinica, 2016, 40(3): 634-640. [苏彦平, 陈修报, 刘洪波等. 不同生长阶段背角无齿蚌对养殖池塘藻类的摄食选择特征. 水生生物学报, 2016, 40(3): 634-640.]
[124]
Chen XB, Liu HB, Ge XP et al. Purification capacity of Anodonta woodiana on heavy metals released from the aquaculture pond sediment. Ecological Science, 2020, 39(1): 20-26. [陈修报, 刘洪波, 戈贤平等. 背角无齿蚌对养殖池塘底泥释放重金属的净化效果. 生态科学, 2020, 39(1): 20-26.]
[125]
Yu X, Zhang XF, Liu ZW. The effect of Anodonta woodiana on the competitive relationship between benthic and planktonic algae in shallow aquatic ecosystem. Ecological Science, 2012, 31(3): 301-305. [喻晓, 张修峰, 刘正文. 背角无齿蚌(Anodonta woodiana)对浅水系统底栖和浮游藻类竞争关系的影响. 生态科学, 2012, 31(3): 301-305.]
[126]
Kim BH, Lee JH, Hwang SJ. Inter- and intra-specific differences in filtering activities between two unionids, Anodonta woodiana and Unio douglasiae, in ambient eutrophic lake waters. Ecological Engineering, 2011, 37: 1957-1967.
[127]
Chen XB, Su YP, Liu HB et al. Study on purification effect of swan mussels Anodonta woodiana for fishpond water. Chinese Journal of Environmental Engineering, 2015, 9(12): 5714-5720. [陈修报, 苏彦平, 刘洪波等. 背角无齿蚌净化养殖水体中的重金属. 环境工程学报, 2015, 9(12): 5714-5720.]
[128]
Ding T, Li L, Peng L et al. Studies on elimination of chlorophyll-a and ingestion rate in eutrophic water by Anodonta woodiana elliptica. Acta Hydrobiologica Sinica, 2010, 34(4): 779-786. [丁涛, 李林, 彭亮等. 背角无齿蚌摄食率及对水中叶绿素a清除能力的研究. 水生生物学报, 2010, 34(4): 779-786.]
[129]
Wu ZK, Qiu XC, Zhang XF et al. Effects of Anodonta woodiana on water quality improvement in restoration of eutrophic shallow lakes. J Lake Sci, 2018, 30(6): 1610-1615. [吴中奎, 邱小常, 张修峰等. 富营养化浅水湖泊生态修复中背角无齿蚌(Anodonta woodiana)对水质改善的影响. 湖泊科学, 2018, 30(6): 1610-1615. DOI:10.18307/2018.0612]
[130]
Yang DM, Chen YW, Liu Z W et al. Top-down effects of Anodonta woodiana on nutrient concentration and phytoplankton community composition in a microcosm ecosystem. J Lake Sci, 2008, 20(2): 228-234. [杨东妹, 陈宇炜, 刘正文等. 背角无齿蚌滤食对营养盐和浮游藻类结构影响的模拟. 湖泊科学, 2008, 20(2): 228-234. DOI:10.18307/2008.0215]
[131]
Zhang S, Chen XK, Xiao LJ et al. The effects of Cristaria plicata and Anodonta woodiana on nutrients and phytoplankton in a tropical eutrophic reservoir: A microcosm experiment. Ecological Science, 2011, 30(3): 280-287. [张帅, 陈修康, 肖利娟等. 褶纹冠蚌和背角无齿蚌对水体营养盐和浮游植物的影响. 生态科学, 2011, 30(3): 280-287.]
[132]
Wei XF, Guan BH, Liu ZW. Research on water purification of Anodonta woodiana. Ecological Science, 2016, 35(1): 56-60. [魏小飞, 关保华, 刘正文. 背角无齿蚌对水体净化作用的研究. 生态科学, 2016, 35(1): 56-60.]
[133]
Chen XB, Liu HB, Su YP et al. Purification capacity of Anodonta woodiana on nutrients released from pond sediment. Marine Sciences, 2017, 41(11): 8-13. [陈修报, 刘洪波, 苏彦平等. 背角无齿蚌(Anodonta woodiana)对池塘底泥释放营养盐的净化效果. 海洋科学, 2017, 41(11): 8-13.]