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Scientific Significance Statement

Long-term datasets in aquatic science are important for detecting temporal changes, generating hypotheses regarding ecologi-
cal phenomena, and understanding the effects of stressors on ecosystems. With rapid technological advances over recent
decades, long-term data collection methodologies are continually refined, updated, and often completely switched. However,
there is a shortage of discourse regarding the best practices in switching methods for long-term data collection in aquatic eco-
systems. In this paper, we discuss factors that contribute to the successes and failures of method switches in long-term aquatic
datasets. We present three case studies that demonstrate successful method switching and then outline best practices for
maintaining data integrity during these transitions. Our goal is to initiate discussion among current and future managers of
long-term aquatic monitoring programs to help guide decisions regarding method switching.

Long-term datasets are foundational resources in aquatic
research, vital for establishing baselines and detecting shifts in
aquatic biodiversity, water quality, and ecosystem function.
For example, the Hawaii Ocean Time Series (HOTS), which
has sampled biogeochemical data at Station Aloha in the
North Pacific Subtropical Gyre since 1988, played a crucial
role in documenting temporal variability in ocean carbon

inventories and fluxes and provided the first evidence for a
multi-decade decline in marine pH associated with climate
change (Dore et al. 2009). Research from U.S. National Science
Foundation Long Term Ecological Research sites has advanced
understanding of ecosystem dynamics, including the long-
term effects of invasive species on lakes (e.g., Walsh
et al. 2016) and the influence of disturbances on watershed
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biogeochemical processes (e.g., Miniat et al. 2021). Finally,
another NSF initiative, the Continuous Plankton Recorder sur-
veys, are some of the longest-running aquatic long-term
datasets, with one survey collecting data continuously since
1931 (www.cprsurvey.org). These surveys have demonstrated
how climate change is affecting plankton communities.

The insights gained from such long-term datasets are only
as robust as the data that have been collected. It is, therefore,
a priority for those managing long-term datasets to ensure
data quality. Advances in technology or sampling methods
often leave researchers with a dilemma: switch to the newer
method (i.e., “emerging” method) and take advantage of
novel technologies, or continue with the older, existing
method (i.e., “established” method) and maintain continuity
in sampling protocol. Long-term dataset managers may
choose to adopt emerging methods for many reasons: the
emerging method could be faster, more efficient and/or more
cost-effective, it might offer real-time data collection, or it
could reveal previously unattainable or undetectable informa-
tion. As a group of early career researchers, many of the
authors of this essay have been in the position of taking
responsibility for managing long-term aquatic datasets and
have seen first-hand the importance of mindful data steward-
ship. Researchers commonly acknowledge the challenges asso-
ciated with method switching in long-term monitoring
programs. However, these discussions often occur informally
between small groups of colleagues, not among the wider sci-
entific community. As such, the literature lacks first-hand
examples of how to proceed with adopting new methods.
Here, our goal is to initiate broader discussion among current
and future managers of long-term datasets in the aquatic sci-
ences to help guide decisions about method switching. To
achieve this, we discuss indicators of method-switching suc-
cesses and failures. Then, we outline three case studies of
method-switching successes in long-term datasets and suggest
a set of best practices. We acknowledge that certain emerging
methods produce data resembling those of the established
methods but improve efficiency, speed, or cost-effectiveness,
whereas other emerging methods generate entirely new data
types. While the decision to begin collecting novel data types
is worthy of discussion, we focus on the former.

Factors determining the success or failure of a method
switch

A successful method switch in long-term data collection
depends on two factors: (1) achieving the pre-established
goals of the method switch and (2) ensuring that the data
collected from both methods are comparable, thereby
maintaining the dataset continuity. Thus, it is important for
researchers to establish clear goals for a method switch and to
follow well-defined best practices throughout the method
switch to ensure continuity (see Section Best practices for
method switching of this paper for best practices). As new

technological advances enable the collection of data at
increasingly finer resolutions, switching to methods that are
faster, more efficient, or more cost-effective can be appealing
to researchers managing long-term datasets. Researchers may
have many reasons to switch methods. For example, the
increased availability of remote sensors and autonomous
vehicles provides researchers with significantly more real-
time data than manual sampling methods, while reducing
researcher time and increasing data throughput (Latifi
et al. 2023). Furthermore, the rise of AI and machine learning
has increased the amount of data that can be processed and
information that can be obtained from a dataset (e.g., Fuchs
et al. 2022; Kraft et al. 2022). In addition, emerging technolo-
gies can enable the collection of previously unattainable or
undetectable data, for example, lowering detection limits
(e.g., Leskinen et al. 2012) or using eDNA to monitor rare,
cryptic, or invasive species (e.g., Barata et al. 2021). The
long-term, collaborative nature of these datasets means that
collection and management will be carried out by multiple
generations of students, post docs, faculty, and government/
agency scientists. The dynamic nature of such research teams
means that establishing clear goals from inception and fol-
lowing best practices during the transition will aid in
maintaining the integrity of long-term datasets during
method switches.

Accordingly, method switching failures in long-term
datasets usually occur when (1) the pre-established goal(s) are
not met and/or (2) the data collected from the established and
emerging method are not comparable, resulting in a discon-
tinuous dataset. While not meeting a pre-established goal is
often straightforward (e.g., financial or labor cost was not
reduced, the detection limit was not lowered, etc.), discontin-
uous datasets will compromise one’s ability to capture ecologi-
cal insights but can occur for a variety of reasons. For
example, what was measured previously and what the new
method captures may be representative of the same ecological
process but are not the same measurement (e.g., algal
chlorophyll a vs. total cell biovolume; Ramaraj et al. 2013).
Furthermore, as emerging technologies increase sample
throughput through automation, the scale of data collection
may change dramatically. This can make statistical compari-
son between the established and emerging methods challeng-
ing (Cutter 2013). Finally, switching to a method that lowers
the limits of quantification or detection can sometimes be
straightforward to account for. However, in other cases, this
may complicate comparisons between old and new methods.
While the collectors of such data may appreciate and under-
stand these changes, long-term datasets often serve a variety
of different end-users, making the ability to capture ecological
insights increasingly difficult.

Due to the numerous challenges associated with method
switches (Fig. 1), it can be difficult to define a method switch
as a success or a failure; rather, outcomes exist on a contin-
uum. For example, while a method switch might be
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considered a “success” within its own long-term data collec-
tion program, it may pose challenges for other researchers
aiming for methodological consistency between studies.
Switching to more advanced technology might make it more
difficult for other labs to replicate methodologies, reducing
global access to and comparability among datasets. Further-
more, researchers may be motivated to repeatedly switch
methods to capture the “best” data when a field is just esta-
blishing long-term datasets. Chasing “the best,” unfortu-
nately, can lead to delays in establishing datasets that would
benefit policy and regulation. A prime example of this is
micro- and nanoplastics pollution research, which suffers
from a lack of continuous datasets despite a decade of wide-
spread interest in the topic (Lusher and Primpke 2023). Given
these nuanced challenges, there are often many reasons to
avoid method switching altogether.

Three case studies on successful method switching
To highlight method-switching successes in long-term

datasets, we present case studies that fall into three common
categories of method switching: (1) manual-to-manual,
(2) automated-to-automated switching, and (3) manual-to-
automated. Here, “manual” refers to methods where the
majority of the method, analysis, and interpretation is carried
out by a person (e.g., measuring Secchi disk depth or cell cou-
nting with light microscopy). Conversely, “automated” refers
to methods where most of the method, analysis, and interpre-
tation is carried out by a machine or an automated process
(e.g., satellite imaging or flow cytometry).

Manual-to-manual: A new method to increase the
precision of fish age estimation

Long-term datasets characterizing fish age are essential for
assessing and managing fish populations, studying life histo-
ries and responses to environmental change, and ensuring
sustainable fisheries (e.g., Fergusson et al. 2018). The conven-
tional method for fish aging is to collect fish otoliths, which
feature incremental growth patterns—similar to tree rings
(Campana 1999). Fish age can be determined by counting
annual growth rings (Campana 1999), but environmental
stressors and physiological factors can obscure these growth
patterns, making visual aging challenging (Heimbrand
et al. 2020). However, emerging methods, such as chemical
aging based on otolith elements (e.g., magnesium, zinc, and
phosphorus), can enhance precision: Heimbrand et al. (2020)
found higher overall precision and percentage agreement
among humans analyzing otolith images of Baltic Cod with
chemical vs. visual makers. These findings demonstrate
method switching success because (1) the researcher’s goal of
increasing precision in age estimate was fulfilled and (2) the
data from both methods are comparable (Fig. 2A).

Automated-to-automated: Digitizing long-term aerial
surveys

Aerial imaging surveys offer crucial data for long-term
monitoring of the distribution and abundance of aquatic
organisms. For example, the Chesapeake Bay Program (CBP)
has employed aerial surveys to map the abundance and distri-
bution of submerged aquatic vegetation in the Chesapeake
Bay and its tributaries since 1984 (Orth et al. 2022). Although
the CBP originally used a panchromatic camera for its surveys,
in 2014, it introduced a digital mapping camera to incorpo-
rate emerging technology. By 2016, CBP had completely
phased out the film. This case study demonstrates a method
switching success because (1) it fulfilled the researchers’ goals
of eliminating a data processing step, increasing picture reso-
lution, and increasing spatial accuracy (Orth et al. 2022) and
(2) data from the film (established) and digital (emerging)
methods are comparable (Fig. 2B), allowing for a continuous
dataset.

Manual-to-automated: Toward near-real-time
phytoplankton community monitoring

Understanding phytoplankton community dynamics is
important for assessing ecosystem health, addressing climate
change impacts, protecting water quality, and guiding man-
agement efforts. Traditionally, researchers have assessed phy-
toplankton community composition using light microscopy,
which involves time-consuming sample preparation and
visual identification. Recognizing the labor intensity of this
approach, the benefits of the recent development of auto-
mated observing technologies are clear (Muller-Karger
et al. 2018). Imaging flow cytometry is a commonly explored
technique as an alternative to manual cell counting (Owen
et al. 2022). This automated method combines the high-

Fig. 1. Common reasons why method switches fail.
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event-rate capability of flow cytometry with the benefits of
single-cell image capture, generating tens of thousands
of phytoplankton images per hour. Together with machine
learning, flow cytometry can enable near-real-time monitor-
ing of in situ phytoplankton communities by automatically
classifying images (Fuchs et al. 2022). This case study demon-
strates a successful method switch because it fulfilled the
researchers’ goal of reducing person-hours. Although there are
discrepancies between data collected using the manual cou-
nting (established) and the flow cytometry/machine learning

(emerging) methods (Fig. 2C), the researchers have
implemented a multiyear overlap period of methodologies,
which allows end data users to implement their own calibra-
tion methods depending on the application (e.g., Fischer
et al. 2020).

Best practices for method switching
1. Consider the type of method switch and establish goals—

Determine the broad type of method switch (i.e., manual-to-

Fig. 2. Examples of best practices for method switching. (A) Compare the two methods. Data from Heimbrand et al. (2020). (B) Make method switch
explicit on graphs. Data from Virginia Institute of Marine Science SAV monitoring and restoration program (http://www.vims.edu/bio/sav). (C) Include
an overlap period. Data from the IFCB104 station at Santa Cruz Municipal Wharf, California Ocean Observing Data Systems Portal—CalHABMAP
(https://data.caloos.org).
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manual, manual-to-automated, or automated-to-automated)
and research potential pitfalls associated with that type of
switch. Consider changes in cost-per-datum. Establish clear
goals for the method switch (Fig. 3).

2. Create a plan—Ensure there is a robust plan in place for
implementing the emerging method. Plans might include
creating new standard operating procedures, planning a
pilot program for the emerging method, and/or deter-
mining overlap time between the two methods. This
should also include a data management plan, covering
considerations such as quality assurance and quality
control (QA/QC), updating of algorithms, updating of
published methods, making the switch clear in metadata,
and so forth.

3. Compare data collected from both methods—Before fully
transitioning, statistically compare data collected from
both approaches. The comparison should consider: (1) Are
there differences in the results between the two methods?
(2) If so, what are these differences and are they consis-
tent? (3) Are the datasets and metadata comparable

between the two methods? (4) What are potential explana-
tions for differences? (5) How do the outcomes of data
QA/QC compare? (6) Did the switch meet pre-established
goals?

4. Consider involving other research groups in intercalibration
studies—You will likely not be the only group considering
switching to the novel method. Intercalibration studies,
like the GEOTRACES (Cutter 2013) program for ocean bio-
geochemistry, involve the sharing of data between labora-
tories to achieve the lowest systematic and random errors
and maximize the precision and accuracy of analytical
methods.

5. Maintain an active dialogue and continuously revisit the deci-
sion to proceed with the method switch—After statistically
comparing methods, consider the advantages and disad-
vantages of keeping the established method vs. switching
to the emerging method. Have an open conversation with
collaborators about how to move forward with the switch:
proceed, do not proceed, or continue with both methods
concurrently. Consider the longevity of the approach and

Fig. 3. Conceptual diagram for best practices for method switching in the aquatic sciences. Created with BioRender.com.
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financial barriers to the emerging method if other research
groups are gathering congruous datasets. Finally, maintain
flexibility when defining the switch as a success or failure if
the original end goals have not been met. For example,
if data from a new method to improve detection limit can-
not be properly inter-calibrated with the existing long-term
data due to many zeros produced by the older method,
consider the advantages of the additional insight provided
by the new method when deciding whether the method
switch has failed.

6. Make method switches clear in publications and datafiles—
Make the method switch clear in downstream applications
by describing both methodologies thoroughly and
explaining the rationale behind the switch, explicitly
showing the switch in figures (Fig. 2C), and discussing the
implications of the method switch, including guidance on
how to address the method switch when analyzing long
term trends (e.g., were detection limits or SI units changed?
How were the two datasets aggregated for analysis?).
Finally, if data are publicly available, all details about the
method switch and its effects on end-user interpretation
should be provided in metadata and a README guide file
following FAIR Data Principles, which promote the consci-
entious management and stewardship of digital scientific
data by improving its Findability, Accessibility, Interpret-
ability, and Reuse (Wilkinson et al. 2016).

Conclusion
Long-term aquatic datasets provide invaluable insights.

However, maintaining their integrity amidst evolving
methodologies poses challenges. This raises two consider-
ations for dataset managers: whether to adopt emerging
methodologies or maintain established techniques and how
to ensure data integrity during a method transition. While
the decision to switch methods is case-specific, our paper
addresses the critical need for structured discussions on
such switches and the development of standardized
guidelines for transparent data reporting. With the aquatic
sciences trending toward increasingly collaborative, inter-
disciplinary research that employs automated data collec-
tion methods and Big Data (Durden et al. 2017), dataset
managers must deliberate on adapting their data collection
methods to ensure continuous and effective monitoring of
Earth’s ecosystems.
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