湖泊科学   2022, Vol. 34 Issue (3): 855-867.  DOI: 10.18307/2022.0312
0

研究论文—生物地球化学与水环境保护

引用本文 [复制中英文]

金苗, 吴敬禄, 占水娥, Shakhimardan Shaniyazov, 乌兹别克斯坦阿姆河流域水体中多环芳烃的分布、来源及风险评估. 湖泊科学, 2022, 34(3): 855-867. DOI: 10.18307/2022.0312
[复制中文]
Jin Miao, Wu Jinglu, Zhan Shuie, Shakhimardan Shaniyazov. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in waters of Amu Darya Basin, Uzbekistan. Journal of Lake Sciences, 2022, 34(3): 855-867. DOI: 10.18307/2022.0312
[复制英文]

基金项目

中国科学院战略性先导科技A类专项(XDA2006030101)和国家自然科学基金项目(U1603242)联合资助

通信作者

金苗, E-mail:mjin@niglas.ac.cn

文章历史

2021-02-24 收稿
2021-10-14 收修改稿

码上扫一扫

乌兹别克斯坦阿姆河流域水体中多环芳烃的分布、来源及风险评估
金苗1,2 , 吴敬禄1,2 , 占水娥1,2 , Shakhimardan Shaniyazov3     
(1: 中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室,南京 210008)
(2: 中国科学院大学,北京 100049)
(3: Berdakh Karakalpak State University, Nukus 230100,Uzbekistan)
摘要:为研究乌兹别克斯坦境内阿姆河地区水体中多环芳烃(PAHs)污染特征、来源并进行风险评估,采用高效液相色谱二极管阵列检测器串联荧光检测器法,对研究区域50个采样点中16种优先控制的多环芳烃进行了检测分析. 结果表明,阿姆河地区水体中多环芳烃总浓度范围为3.19~779 ng/L,平均值为98.4 ng/L,中位值为40.1 ng/L,单体浓度范围为0~333 ng/L,检出浓度最高的单体为苊烯,5种单体芴、蒽、荧蒽、芘和的检出率为100 %,单体苯并[b]荧蒽的检出总量最高,水样中总浓度为786 ng/L,平均值为15.7 ng/L,中值为2.79 ng/L. 不同水体含中低环多环芳烃(2~4环)与高环多环芳烃(5~6环)总浓度相近,但不同采样点间浓度差异较大. 浓度较高的采样点主要集中在阿姆河三角洲的城市、农业灌溉区及近咸海区域. 与世界不同研究区域相比,阿姆河流域多环芳烃浓度处于中等水平. 采用相对丰度法、同分异构体比值法及正定矩阵分解法相结合进行源解析,表明研究区域水体中多环芳烃多为混合来源,其中阿姆河下游河段水体多环芳烃主要来源于生物质燃烧,而阿姆河三角洲区域主要来源于生物质燃烧、石油、天燃气燃烧及汽车尾气排放. 生态风险评估结果显示,研究区水体单体多环芳烃中萘、苊、菲和蒽的生态风险较低,其余单体处于中等风险等级,其中苯并[b]荧蒽的污染程度较为严重;总体上阿姆河流域ΣPAHs风险等级相对较低,但仍有12和8个点位分别处于中等风险2和高风险等级,且主要集中在阿姆河三角洲地区,需采取相应措施加以控制.
关键词阿姆河流域    水体    多环芳烃    风险评估    
Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in waters of Amu Darya Basin, Uzbekistan
Jin Miao1,2 , Wu Jinglu1,2 , Zhan Shuie1,2 , Shakhimardan Shaniyazov3     
(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P.R.China)
(2: University of Chinese Academy of Sciences, Beijing 100049, P.R.China)
(3: Berdakh Karakalpak State University, Nukus 230100, Uzbekistan)
Abstract: In order to study the pollution feature, the pollution source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in waters of Amu Darya Basin in Uzbekistan, the concentrations of 16 priority PAHs were determined by high-performance liquid chromatography-diode array-fluorescence detector (HPLC-DAD-FLD). The results indicated that the total PAHs concentration in the surface water of Amu Darya Basin ranged from 3.19 to 779 ng/L with an average value of 98.4 ng/L and a median value of 40.1 ng/L. The monomer concentration of PAHs ranged from 0 to 333 ng/L, the monomer PAH with the highest concentration was Acy. The five monomer PAHs of Flu, Ant, Fla, Pyr and Chr had the detection rate of 100 % and the monomer BbF had the highest total amount. The total concentration of BbF was 786 ng/L with an average value of 15.7 ng/L and a median value of 2.79 ng/L. The PAHs with 2-4 rings had a similar concentration with the PAHs with 5-6 rings, while they had significant differences in each sampling site. The sampling sites with high concentrations were mainly concentrated in the cities, agricultural irrigation areas and the Aral Sea area of the Amu Darya Delta. Compared with surface waters in the world, the PAHs concentration in Amu Darya Basin was at a medium level. According to the relative abundance, molecular diagnostic ratios and positive matrix factorization analysis, the PAHs in Amu Darya Lower stream area mainly came from the biomass combustion while the PAHs in the Amu Darya Delta came from the biomass combustion pollution, combustion source and traffic pollution, affected by human activity. The results of ecological risk assessment indicated that Nap, Ace, Phe and Ant had a low ecological risk and other monomer PAHs were at the moderate risk, but BbF had a relatively high-risk level. Overall, the ΣPAHs were at the relatively low ecological risk in the study area while there were still 12 and 8 sampling sites at the moderate risk 2 and the high-risk level, appropriate control measures should be considered to prevent further pollution.
Keywords: Amu Darya Basin    water    polycyclic aromatic hydrocarbons (PAHs)    risk assessment    

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是具有致癌、致突变和致畸变的一类持久性有机污染物. 其高毒性、持久性以及生物富集效应对人类健康及生态环境造成极大危害, 其中16种单体多环芳烃早在1980s已被美国环境保护署(USEPA)确定为环境中优先控制污染物[1]. 近年来, 国内外学者分析了不同区域多环芳烃的分布、来源,并对当地环境、人类健康等进行了风险评价, 指出环境中多环芳烃的污染来源主要为煤炭、石油、木材等不完全燃烧、工业排放以及石油类物质泄露等. 同时, 水体中多环芳烃也可以通过地表径流、大气干湿沉降、生活及工业污水排放等方式进入环境介质并通过大气-水-土等途径在不同环境介质中迁移[2-4].

阿姆河是中亚水量最大的内陆河, 是咸海的两大水源之一, 同时也是乌兹别克斯坦境内的主要水源, 为当地提供工农业及生活用水. 阿姆河发源于帕米尔高原, 最终汇入乌兹别克斯坦境内的咸海, 在河口形成大规模的湿地三角洲. 苏联时期咸海流域地区曾大力建设运河、灌渠及水库, 水资源被大量节流用于发展工农业[5], 导致阿姆河径流量骤减, 咸海水体面积快速萎缩[6]. 另一方面, 工业和农业领域排放的污染物扩散到三角洲地区, 尤其是单一的棉花种植业, 为保持稳定的高产量逐年增加农药和化肥的使用, 致使咸海流域生态环境恶化, 严重威胁该地区居民的生活乃至生命健康[7]. 已有研究显示, 在咸海流域周边居民的血液、头发及尿液等组织中发现超标的砷及有机氯农药含量[8-11], 同时咸海流域的地表和地下水中氮及其他元素如铜、铅、铬和铀浓度也均高于世界卫生组织的限定值[12-14]. PAHs作为与人类活动最为相关的持久性有机污染物已被广泛关注, 但目前对咸海流域的PAHs污染水平, 尤其是水体污染的研究较少. 本文分析了乌兹别克斯坦境内阿姆河地区不同水体多环芳烃浓度、分布及来源, 并对其潜在风险进行了评估. 研究区域覆盖了乌兹别克斯坦境内阿姆河下游河段以及阿姆河三角洲地区, 其中下游河段区域主要位于花拉子模州境内, 该地种植业发达, 棉产量为全国最高, 也是水稻的主要产区, 而阿姆河三角洲区域则处于行政区卡拉卡尔帕克斯坦共和国内, 该区域首府努库斯及周边城市人口密集、交通条件优越, 同时也集中了化工厂、发电站等大型企业. 了解不同区域环境中PAHs的组成特征以及受人类活动及生态环境影响的因素, 可为该地区水资源及人类生态环境综合评估提供科学依据.

1 材料与方法 1.1 试剂与仪器

主要仪器:Agilent1200高效液相色谱-二极管阵列检测器串联荧光检测器(HPLC-DAD-FLD, 美国安捷伦科技有限公司)、固相萃取真空装置(美国色谱科公司)、纯水仪(MILLIPORE Elix Essential-5, 美国密里博公司)和旋转蒸发仪(BUCHI R-300, 瑞士步崎有限公司).

主要试剂及药品:德国默克色谱纯试剂:正己烷(n-Hexane)、乙腈(Acetonitrile)、甲醇(Methanol)、二氯甲烷(Dichloromethane). 16种美国环保部(USEPA)优先控制的多环芳烃(PAHs)混合标样,包括萘(naphthalene, Nap)、苊(acenaphthene, Ace)、苊烯(acenaphthylene,Acy)、芴(fluorine, Flu)、菲(phenanthrene, Phe)、蒽(anthracene, Ant)、荧蒽(fluoranthene, Fla)、芘(pyrene, Pyr)、苯并[a]蒽(benzo(a)anthracene, BaA)、(chrysene, Chr)、苯并[b]荧蒽(benzo(b)fluranthene, BbF)、苯并芘(benzo(a) pyrene, BaP)、茚并[1, 2, 3-c, d]芘(indeno(1, 2, 3-cd)pyrene, InP)、二苯并[a, h]蒽(dibenz(ah)anthracene, DahA)和苯并[g, h, i]苝(benzo(g, h, i)perylene,BghiP),均购于美国Accustandard公司.

1.2 样品采集

在乌兹别克斯坦境内的阿姆河下游河段及阿姆河三角洲范围内共设置采样点50个,其中阿姆河三角洲地区采样点45个;阿姆河下游河段采样点5个. 阿姆河三角洲位于阿姆河流域下游河段,在城市努库斯(42°27′11″N, 59°36′37″W)以下,河流分数支入咸海,形成面积达1万km2的广阔河口三角洲,是发达的农业灌溉区[15]. 阿姆河主要由冰雪融水和雨水供给,本次水样采集于2019年8月,具体采样位置及空间分布见图 1. 依据《水质采样技术指导》(HJ 494-2009) 相关内容,利用表层采样器采集水样,控制每个样点采样深度为0.50 m左右,体积大于1 L,装入密封玻璃瓶中低温冷藏备用.

图 1 阿姆河流域采样点分布 Fig.1 Distribution of sampling sites in Amu Darya Basin
1.3 前处理方法与仪器分析

1 L水样经0.45 μm混合纤维素滤膜过滤去除杂质后, 利用固相萃取装置进行富集,选用富集柱为C18柱(Supelco, 500 mg/6 mL). 富集前用甲醇和纯水各5 mL对小柱浸泡淋洗进行活化,水样富集后抽干30 min,用二氯甲烷与正己烷(V ∶V=7 ∶3)混合液20 mL进行洗脱,浓缩后用甲醇定容1 mL待测.

采用高效液相色谱二极管阵列检测器串联荧光检测器进行PAHs含量分析,荧光检测器除对Acy没有响应外,对其余15种PAHs响应灵敏,因此利用二极管阵列检测器测定Acy浓度,同时串联二极管阵列检测器测定的16种PAHs可以与荧光检测器依次对应,避免分析测试中的假阳性. 色谱柱为PAHs(4.6 μm ⅹ 250 mm,waters)专用柱;流动相为水和乙腈,流速为1 mL/min; 梯度洗脱程序:20 min内乙腈由初始60 % 上升至100 %,维持10 min;DAD检测波长为238 nm,荧光检测波长为梯度变化[16].

1.4 质量控制与质量保证

按照1.3节分别利用16种多环芳烃标准样品获得各物质对应的保留时间,同时采用多点校正外标曲线法对实际样品中多环芳烃物质进行定性定量. 方法在1~200 μg/L间线性良好,R2均大于0.99,各物质检出限在0.12~0.41 μg/L之间. 实验过程通过方法空白、平行样品、标样插标及加标回收率进行质量控制与质量保证. 16种物质相对标准偏差RSD值在0.5 % ~2.3 % 之间,方法空白以无目标物检出为准,加标回收率在80 % ~104 % 之间,符合质控要求. 加标回收率是在空白样品中加入固定浓度的标准物质再进行完整前处理操作,通过仪器定量分析空白样品中标样浓度可以指示整个前处理操作流程,确定方法适用性与稳定性; 另外在实际测试过程中随机抽取已完成定量的样品或者对测试结果存疑的样品加入标准物质进行复测,确保样品定性分析准确性,详细参数见附表Ⅰ.

表 附表Ⅰ PAHs的保留时间、回收率与相对标准偏差 Tab. 附表Ⅰ Retention time, recovery and relative standard deviation of PAHs
2 结果与讨论 2.1 含量与分布特征

表 1可知,16种PAHs在大多数水体样品中均有检出,研究区水体中∑PAHs浓度范围为3.19~779 ng/L,平均值和中位值分别为98.4和40.1 ng/L,单体浓度范围0~333 ng/L,检出浓度最高的单体为Acy. 从PAHs各单体组分检测结果分析可以看出,有5种单体物质检出率为100 %,分别是Flu、Ant、Fla、Pyr和Chr,单体BbF的检出率为98 %,但检出总量最高,水样中总浓度为786 ng/L,平均值为15.7 ng/L,中值为2.79 ng/L. 另外,DahA、BghiP、InP 3种单体物质的检出率较低,分别为76 %、73 % 和61 %,这主要由于低分子量多环芳烃具有较高的蒸汽压和水溶性,更易存在于水体中,而高分子量多环芳烃具有较低的水溶性和疏水性,致使水体中检出率较低[17]. 表 1中高环PAHs (5~6环)总浓度与中低环PAHs (2~4环)总浓度相近,但各单体物质变异系数较高,高环PAHs浓度范围区间较大,表明研究区水体PAHs浓度空间差异大.

表 1 阿姆河流域水体中PAHs检出情况统计 Tab. 1 Statistics of PAHs concentration of water samples in Amu Darya Basin

从各采样点PAHs的总浓度和16种单体浓度(图 2)可以看出,PAHs浓度较高的采样点主要集中在三角洲区域,平均值为104 ng/L,中值为41.5 ng/L. 下游河段区域PAHs浓度较低,平均值为47.4 ng/L,中值为33.4 ng/L,与文献中下游河口浓度高于中上游地区的特点相似[18-19],其中三角洲地区PAHs浓度范围为12.6~779 ng/L,浓度较高的采样点主要集中在城市周边、农业灌溉区及阿姆河下游靠近咸海区域,最高浓度位于31#采样点城市钦博伊(Chimboy)附近及10#咸海滩涂,浓度分别为779和573 ng/L; 三角洲区域浓度较低的采样点主要位于阿姆河支流及三角洲边缘非城镇区域. 下游河段采样点PAHs浓度有明显的从上至下递增的趋势,浓度峰值出现在46#采样点,浓度为76.5 ng/L. 已有研究表明[20-21],水中PAHs污染程度通常可以按PAHs总浓度分为4个水平:轻微污染(10~50 ng/L)、轻度污染(50~250 ng/L)、中度污染(250~1000 ng/L)和重度污染水平(>1000 ng/L). 研究区域50个采样点中达到轻度污染的共有18个,另有5个采样点处于中度PAHs污染水平.

图 2 阿姆河流域不同水体PAHs及单体浓度(ADD:三角洲区域;ADL:下游河段区域) Fig.2 Total and mean PAHs concentrations in Amu Darya Basin (ADD: Amu Darya Delta; ADL: Amu Darya Lower stream)

表 2列出了研究区水体与世界范围不同区域湖泊、河流流域水体中PAHs的浓度范围及平均浓度情况[18, 22-34]. 通常人口稠密的城市或工业化地区水体中PAHs浓度普遍较高,如阿姆河流域PAHs平均浓度水平低于黄河三角洲、伊朗侯尔河(Kor River)地区,并远低于建有水利渡槽的印度戈麦蒂河(Gomti River)及肯尼亚维多利亚湖维南湾(Winam Gulf,Lake Victoria)港口区域中PAHs浓度,但高于美国东部沿海地区萨斯奎哈纳河(Susquehanna River)和德国易北河和威瑟河(Elbe and Weser Rivers)等非城市地区;同时阿姆河流域的PAHs总浓度和平均浓度均高于同处于中亚地区的哈萨克斯坦巴尔喀什湖流域(Ili-Balkhash Basin),与墨西哥托斯湾(Todos Santos Bay)、中国长江下游支流以及意大利台伯河及河口(Tiber Rivers and estuary)等区域浓度相近,总体而言,与其他研究区域相比,阿姆河流域PAHs浓度处于中等水平.

表 2 近年来不同区域水体多环芳烃总浓度及平均浓度的比较 Tab. 2 Concentration ranges and mean values of PAHs in the surface water from recent studies of different regions
2.2 不同水体PAHs组成特征及来源解析

根据苯环个数将PAHs进行组成分类,利用不同苯环数PAHs相对丰度法可初步判断PAHs来源[35],下游河段和三角洲两个区域水体中PAHs的组成特征如图 3所示,所有采样点水体中PAHs的组成以中低环PAHs (2~4环)占比略高,其中下游河段水体PAHs组成中3环PAHs (Acy、Ace、Flu、Phe、Ant)占比为42 %,检出率最高的化合物为Phe和Flu. Phe通常与焦油生产有关,而Flu的产生则与生物质燃烧相关,表明该区域可能存在焦油燃烧和生物质燃烧污染;三角洲区域水体PAHs组成中5环物质(BbF、BkF、BaP、DahA)占比最高,为32 %,其次为4环(Fla、Pyr、BaA、Chr)和3环PAHs,所占比例分别为23 % 和18 %,表明该区域水体中PAHs多来源于化石燃料和木材等生物质在高温下的不完全燃烧. 通常水体中4环以下PAHs的浓度较高,而5环和6环PAHs占优的水体,如西班牙内陆浅水湖、埃及尼罗河水体及黄河河口流域等,其污染源主要是化石燃料的高温燃烧污染[36-39]. 在三角洲区域中有12个采样点的水体中高环PAHs浓度高于低环PAHs,并且PAHs的污染程度也处于较高的水平,这些采样点位主要位于城镇、集中农业灌溉区、废弃码头及近咸海水面区域,可能受到交通、工业及煤炭能源的污染[40]. 阿姆河三角洲和下游河段两区域水体PAHs各成分间没有明显相关性(P>0.05),表明三角洲区域水体PAHs的污染除下游河段汇入外,还存在其他污染源的输入,同时三角洲地区也因为常年径流量减少,总蒸发量大,大部分地区没有形成有效循环[41-43],工业用水需求不断加大及农业灌溉用水回流等原因影响整体区域水环境中PAHs浓度.

图 3 阿姆河下游河段区域(a)以及三角洲区域(b)PAHs物质组成 Fig.3 Composition of PAHs in the Amu Darya lower stream area (a) and Amu Darya Delta (b)

目前,常用的源解析方法还包括同分异构体比值法[44],研究区不同水样中同分异构体Ant/(Phe+Ant)和Flu/(Flu+Pyr)的比值见图 4. 一般认为[45-46],当Flu/(Flu+Pyr)比值小于0.4时,PAHs主要来源于石油及石油物质泄漏,当Flu/(Flu+Pyr)比值大于0.5时,PAHs主要来源于煤燃烧和包括草木在内的生物质燃烧;当Flu/(Flu+Pyr)比值介于0.4~0.5之间时,表明PAHs主要来源于高温燃烧,包括汽油、柴油和原油的燃烧以及机动车尾气排放,同时Ant/(Ant+Phe)的比值小于0.1和大于0.1也分别代表PAHs的石油来源和燃烧来源. 由图 4可知,在阿姆河下游河段区域PAHs的Ant/(Phe+Ant)和Flu/(Flu+Pyr)的比值分别在0.1~0.3和0.4~0.6之间,主要集中在燃烧区域,可见该地区水体中PAHs主要来源于燃烧,且主要为煤炭和草木等生物质燃烧;而三角洲区域水体中PAHs的Flu/(Flu+Pyr)比值中有部分样点小于0.4,说明该区域存在着石油源污染,结合Ant/(Phe+Ant)比值可以判别阿姆河三角洲流域中部分地区存在着PAHs的石油与燃烧混合源污染,约占采样点位的15 % 左右,其他大部分地区的PAHs仍来源于燃烧,约40 % 的地区水体样品中PAHs来源与交通污染有关,比值法较好地补充验证了相对丰度法对两个区域PAHs来源的判断.

图 4 乌兹别克斯坦阿姆河地区不同水体中PAHs来源同分异构体比值 Fig.4 Cross plots for PAHs isomeric ratios in sample sites of the Amu Darya Basin, Uzbekistan

采用EPA PMF5.0模型[47-48]分别对阿姆河下游河段和三角洲地区水体中PAHs来源进行定量分析,模型输入数据中包括水体中PAHs的质量浓度C和不确定度Unc,其中当C低于检测限(MDL)时,用$\frac{1}{2}MDL$代替,其不确定度Unc计算为$\frac{5}{6}MDL$; 当C高于MDL时,则${U_{{\rm{nc}}}} = \sqrt {{{\left( {EF \cdot C} \right)}^2} + {{\left( {\frac{1}{2}MDL} \right)}^2}} $. 式中,EF为误差分数,一般介于0.05~0.3之间,本研究中EF值为0.2[49]; 选择因子数2~6分别进行迭代运算,根据Q(Robust)Q(True)值等参数确认模型可信度.

阿姆河三角洲地区PMF运行结果见图 5,模型运行结果采用4因子,迭代数为17时定量解析PAHs来源,其Q(Robust)值136与Q(True)值140最为接近. 主因子1中Nap具有最高的因子载荷,其通常作为化工石油类物质泄漏指示物. 另外,具有较高因子载荷的Flu和Ace也同属低环PAHs,一般认为其来自石油泄漏及石油化工产品污染[50];BbF和Inp等高环PAHs则为汽柴油高温燃烧产物[51]. 三角洲地区人口众多,努库斯、莫伊纳克、钦博伊等大中型城市每天产生大量生活污水和工业废水,同时沿咸海地带发展渔业,渔业船舶航行及沿岸排放废水可以引入大量石油类物质,因此化工石油类污染源为三角洲地区PAHs主要来源. 主因子2中主要载荷Acy是木柴燃烧的指示物,Ant的产生与燃煤有关; 该地区农业生产较为发达,其所属的卡拉卡尔帕克斯坦共和国的耕地面积是乌兹别克斯坦全国耕地面积第2大行政区[52],木材秸秆等生物质也是其主要燃料来源. 主因子3中主要载荷BaA和Chr来自天然气燃烧,根据《BP世界能源统计年鉴(2019)》数据: 2019年乌兹别克斯坦天然气产量为566亿m3,占世界总产量的1.5 %,消费量为426亿m3,是该区域的主要初级能源,Fla、Pyr和Phe则主要来源于焦炭燃煤燃烧. 主因子4中具有较高载荷因子主要为高环PAHs,与柴油汽油燃烧相关,通常为交通运输过程中机动车柴油汽油的燃烧、泄漏及尾气排放[53-55].

图 5 阿姆河三角洲地区PMF源成分谱 Fig.5 Source profiles obtained from the PMF model in the Amu Darya Delta area

阿姆河下游河段地区PMF运行结果如图 6,模型运行结果采用2因子,Q(Robust)值与Q(True)值均为21.6. 主因子1中具有较高载荷的Acy为木柴等生物质燃烧源指示物,主因子2中高环PAHs单体InP、Bghip、DahA具有较高载荷,这些单体均来自于柴油高温燃烧的交通污染. 下游河段地区位于乌兹别克斯坦花拉子模州,主要依靠农业经济,棉植业是该区域农业的基础,同时畜牧业也在区域内占有举足轻重的经济地位,该行政区农村人口远高于城市人口[52],煤炭、秸秆等为该区域居民的主要燃料来源,同时行政区内有通向首都塔什干的主要路线,交通运输活动繁忙,可以解释下游河段区域PAHs主要来源.

图 6 阿姆河下游河段PMF源成分谱 Fig.6 Source profiles obtained from the PMF model in the Amu Darya lower stream area

土壤沉积物中PAHs通常是长时间积累的结果,而水体环境中PAHs则可以在一定程度上反映近期环境行为. 近年来乌兹别克斯坦工业发展迅速,其工业地位在中亚地区举足轻重,天然气、有色金属等产业都较为发达; 同时作为农业大国,农业产值占国内生产总值的25 % ~30 %,种植业尤其是棉花种植,仍是本国的经济支柱之一. 综合研究区域水体中PAHs分布特征,结合相对丰度法、同分异构体比值法和正定矩阵分解法3种源解析方法得出,三角洲地区工业生产过程中煤和石油天然气能源的燃烧、石油化学品泄漏及汽车尾气的排放等均导致了区域水体环境中PAHs浓度升高,阿姆河三角洲及下游河段地区水体中PAHs来源均有木材等生物质低温燃烧的贡献,但农业活动产生的生物质燃烧以及作为主要生活能源的木柴燃烧产生的PAHs占下游河段地区水体中PAHs的比重更大.

一般来说,枯水期水量下降、循环不畅等原因可能导致环境水体中PAHs浓度增加[56],同时丰水期由于降水集中,雨量及地表径流量增加,促使包括工农业污染、城市交通污染在内的污染物随地表径流以及灌渠进入水体环境[57],因此不同季节水体中PAHs浓度和组成变化各不相同. 乌兹别克斯坦境内阿姆河流域属大陆性气候,降雨主要集中在冬、春季节,本次样品采集在8月完成,处于该区域全年炎热干燥时期,水体蒸发作用增强同时PAHs从沉积物和悬浮颗粒物上解析作用加大[58],可能导致PAHs浓度和组成变化,因此有必要对其他季节阿姆河流域水体的PAHs情况进一步研究.

2.3 水体污染水平及风险评价

USEPA水质标准规定了地表水中13种PAHs浓度限值[59],用于评估水体中PAHs污染程度. 本研究中水体样品BaP的浓度均超过USEPA标准,同时分别有86 %、75 %、69 %、45 % 和18 % 的水样中单体BbF、DahA、InP、BaA和BkF浓度超过标准限制;另外11个样点的∑PAHs总浓度超过欧盟规定的允许水生生物暴露安全限制的最大浓度[60],占总采样点的21 %,表明目前该区域水体中PAHs可能通过生物富集作用对人类健康产生影响.

本研究同时采用Kalf风险熵值法结合曹志国等和Li等[61-62]的研究,以忽略浓度(negligible concentrations,NCs)和最大允许浓度(maximum permissible concentrations,MPCs)作为16种PAHs单体的参考浓度,通过计算风险熵值对阿姆河流域水体多环芳烃的生态风险进行评价,风险熵值(risk quotient,RQ)计算公式为:

$ RQ = {c_{{\rm{PAHs}}}}/{c_{{\rm{QV}}}} $ (1)
$ R{Q_{{\rm{NCs}}}} = {c_{{\rm{PAHs}}}}/{c_{{\rm{QV}}\left( {{\rm{NCs}}} \right)}} $ (2)
$ R{Q_{{\rm{MPCs}}}} = {c_{{\rm{PAHs}}}}/{c_{{\rm{QV}}\left( {{\rm{MPCs}}} \right)}} $ (3)

式中,cPAHs为水体中各单体PAHs的质量浓度;cQV为各单体PAHs所对应的风险标准值,其中cQV(NCs)cQV(MPCs)分别为最低风险标准值和最高风险标准值;RQNCsRQMPCs则分别表示最低风险和最高风险浓度风险熵值. 对于单体PAHs, 当RQNCs < 1时,一般认为风险较低可以忽略,当RQNCs≥1且RQMPCs < 1时,处于中等风险,应采取措施防止进一步污染;而当RQMPCs≥1时,可能已经造成了污染,需引起重视并积极干预控制,其中PAHs单体及∑PAHs风险分级情况见表 3.

表 3 单体PAHs与∑PAHs风险等级分级 Tab. 3 Risk grading of monomeric PAHs and ∑PAHs

阿姆河流域表层水体中单体PAHs主要处于3个等级(图 7):单体Nap、Ace、Phe和Ant的RQMPCsRQNCs值均小于1,为低风险等级;单体BbF的RQNCs值和RQMPCs值均大于1,提示该类PAHs单体存在的风险较高;其余PAHs单体的RQMPCs值小于1而RQNCs大于1,提示已经具有一定的生态风险,应引起重视. 另外,根据研究区域内ΣPAHs生态风险熵值,采样点位中有12和8个点位分别处于中等风险2和高风险等级,高风险等级主要集中在阿姆河三角洲地区,由于阿姆河最终汇聚蓄积咸海区域,可能会加重咸海地区污染水平,因此需制定合理的防控计划.

图 7 采样点风险熵值:单体PAHs生态风险熵值(a);不同采样点ΣPAHs生态风险熵值(b) Fig.7 Ecological risks of PAHs in water samples collected in the study area: RQNCs and RQMPCs for single pollutants (a), and ∑RQNCs and ∑RQMPCs for total pollutants (b)
3 结论

1) 乌兹别克境内阿姆河流域采集的水体样品中,∑PAHs浓度在3.19~779 ng/L之间,均值为98.4 ng/L,中值40.1 ng/L,与世界不同区域的湖泊流域水体相比,PAHs浓度处于中等水平.

2) 50个采样点主要集中于阿姆河三角洲和阿姆河下游河段两个区域,其中三角洲区域既有下游河段汇入蓄积又存在其他污染源的输入. 高环PAHs占比略高于中低环PAHs,但各采样点间浓度差异较大.

3) 源解析分析PAHs来源显示,阿姆河下游河段地区PAHs主要来源于煤炭和草木等生物质燃烧;三角洲区域水体受生物质燃烧、石油燃烧的混合来源的污染,部分地区水体污染也与交通污染有关.

4) 生态风险评估结果显示,PAHs总浓度超过欧盟最大允许浓度的规定限值,表明水体中PAHs可能会通过水生生物富集作用对人类健康构成一定威胁. 经风险熵值法分析,单体PAHs中Nap、Ace、Phe和Ant处于较低风险,而BbF的RQNCs值和RQMPCs值均大于1,污染程度较为严重,其余单体均列为中等风险等级; ∑PAHs风险熵值显示研究区域内近半数点位风险等级相对较低,中高风险等级点位主要集中在阿姆河三角洲地区,需引起重视.

4 附录

附表Ⅰ见电子版(DOI:10.18307/2022.0312).

5 参考文献

[1]
Bojes HK, Pope PG. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regulatory Toxicology and Pharmacology, 2007, 47(3): 288-295. DOI:10.1016/j.yrtph.2006.11.007
[2]
Qiu YW, Zhang G, Liu GQ et al. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuarine, Coastal and Shelf Science, 2009, 83(1): 60-66. DOI:10.1016/j.ecss.2009.03.018
[3]
Shi Z, Tao S, Pan B et al. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 2005, 134(1): 97-111. DOI:10.1016/j.envpol.2004.07.014
[4]
Tao YQ, Zhao RH. Occurrence and distribution of persistent organic pollutants in water of Chinese lakes and reservoirs. J Lake Sci, 2020, 32(2): 309-324. [陶玉强, 赵睿涵. 持久性有机污染物在中国湖库水体中的污染现状及分布特征. 湖泊科学, 2020, 32(2): 309-324. DOI:10.18307/2020.0203]
[5]
Deng MJ, Long AH. Evolution of hydrologic and water resources and ecological crisis in the Aral Sea basin. Journal of Glaciology and Geocryology, 2011, 33(6): 1363-1375. [邓铭江, 龙爱华. 咸海流域水文水资源演变与咸海生态危机出路分析. 冰川冻土, 2011, 33(6): 1363-1375.]
[6]
Wu JL, Ma L, Jilili Abuduwaili. Lake surface change of the Aral Sea and its environmental effects in the arid region of the central Asia. Arid Land Geography, 2009, 32(3): 418-422. [吴敬禄, 马龙, 吉力力阿不都外力. 中亚干旱区咸海的湖面变化及其环境效应. 干旱区地理, 2009, 32(3): 418-422.]
[7]
Bekturganov Z, Tussupova K, Berndtsson R et al. Water related health problems in central Asia—A review. Water, 2016, 8(6): 219. DOI:10.3390/w8060219
[8]
Törnqvist R, Jarsjö J, Karimov B. Health risks from large-scale water pollution: Trends in Central Asia. Environment International, 2011, 37(2): 435-442. DOI:10.1016/j.envint.2010.11.006
[9]
Ataniyazova OA, Baumann RA, Liem AK et al. Levels of certain metals, organochlorine pesticides and dioxins in cord blood, maternal blood, human milk and some commonly used nutrients in the surroundings of the Aral Sea (Karakalpakstan, Republic of Uzbekistan). Acta Paediatrica: Oslo, Norway, 2001, 90(7): 801-808. DOI:10.1111/j.1651-2227.2001.tb02808.x
[10]
Erdinger L, Eckl P, Ingel F et al. The Aral Sea disaster—human biomonitoring of Hg, As, HCB, DDE, and PCBs in children living in Aralsk and Akchi, Kazakhstan. International Journal of Hygiene and Environmental Health, 2004, 207(6): 541-547. DOI:10.1078/1438-4639-00325
[11]
Jensen S, Mazhitova Z, Zetterström R. Environmental pollution and child health in the Aral Sea region in Kazakhstan. Science of the Total Environment, 1997, 206(2/3): 187-193. DOI:10.1016/S0048-9697(97)80009-5
[12]
Crosa G, Froebrich J, Nikolayenko V et al. Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Research, 2006, 40(11): 2237-2245. DOI:10.1016/j.watres.2006.04.004
[13]
Kawabata Y, Yamamoto M, Aparin V et al. Uranium pollution of water in the western part of Uzbekistan. Journal of Radioanalytical and Nuclear Chemistry, 2006, 270(1): 137-141. DOI:10.1007/s10967-006-0320-5
[14]
Friedrich J. Uranium contamination of the Aral Sea. Journal of Marine Systems, 2009, 76(3): 322-335. DOI:10.1016/j.jmarsys.2008.03.020
[15]
Schlüter M, Savitsky AG, McKinney DC et al. Optimizing long-term water allocation in the Amudarya River delta: A water management model for ecological impact assessment. Environmental Modelling & Software, 2005, 20(5): 529-545. DOI:10.1016/j.envsoft.2004.03.005
[16]
Zhi H, Zhao ZH, Zhang L. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. Chemosphere, 2015, 119: 1134-1140. DOI:10.1016/j.chemosphere.2014.09.054
[17]
Li QY, Zhao ZH, Jiang Y et al. Vertical distribution characteristics of organochlorine pesticides and polycyclic aromatic hydrocarbons in a sedimentary core from Zhouxi Bay, Lake Poyang. J Lake Sci, 2016, 28(4): 765-774. [郦倩玉, 赵中华, 蒋豫等. 鄱阳湖周溪湾沉积物中有机氯农药和多环芳烃的垂直分布特征. 湖泊科学, 2016, 28(4): 765-774. DOI:10.18307/2016.0409]
[18]
Jia TQ, Lei RR, Wu XL et al. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in tributary waters of the lower reaches of the Yangtze River, China. Environmental Science, 2020, 41(5): 2221-2228. [贾天琪, 雷荣荣, 武小琳等. 长江下游支流水体中多环芳烃的分布及生态风险评估. 环境科学, 2020, 41(5): 2221-2228. DOI:10.13227/j.hjkx.201911123]
[19]
Liu M, Hou LJ, Zou HX et al. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of tidal Flats of the Yangtze Estuary. China Environmental Science, 2001, 21(4): 343-346. [刘敏, 侯立军, 邹惠仙等. 长江口潮滩表层沉积物中多环芳烃分布特征. 中国环境科学, 2001, 21(4): 343-346. DOI:10.3321/j.issn:1000-6923.2001.04.014]
[20]
Feng CL, Xia XH, Shen ZY et al. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environmental Monitoring and Assessment, 2007, 133(1/2/3): 447-458. DOI:10.1007/s10661-006-9599-5
[21]
Chen YY. The spatial and temporal distribution, source and bioavailability of PAHs in Qiantang River[Dissertation]. Hangzhou: Zhejiang University, 2008. [陈宇云. 钱塘江水体中多环芳烃的时空分布、污染来源及生物有效性[学位论文]. 杭州: 浙江大学, 2008. ]
[22]
Shen BB, Wu JL, Zhan SE et al. Residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters of the Ili-Balkhash Basin, arid Central Asia: Concentrations and risk assessment. Chemosphere, 2021, 273: 129705. DOI:10.1016/j.chemosphere.2021.129705
[23]
Aziz F, Syed JH, Malik RN et al. Occurrence of polycyclic aromatic hydrocarbons in the Soan River, Pakistan: Insights into distribution, composition, sources and ecological risk assessment. Ecotoxicology and Environmental Safety, 2014, 109: 77-84. DOI:10.1016/j.ecoenv.2014.07.022
[24]
Macías-Zamora JV, Mendoza-Vega E, Villaescusa-Celaya JA. PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere, 2002, 46(3): 459-468. DOI:10.1016/S0045-6535(01)00069-8
[25]
Siemers AK, Mänz JS, Palm WU et al. Development and application of a simultaneous SPE-method for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, heterocyclic PAHs (NSO-HET) and phenols in aqueous samples from German Rivers and the North Sea. Chemosphere, 2015, 122: 105-114. DOI:10.1016/j.chemosphere.2014.11.022
[26]
Gao XQ, Wang XX, Wang H et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in overlying water during flood seasons from the Yellow River Delta, China. Ecology and Environmental Sciences, 2017, 26(5): 831-836. [高晓奇, 王学霞, 汪浩等. 黄河三角洲丰水期上覆水中PAHs分布、来源及生态风险研究. 生态环境学报, 2017, 26(5): 831-836.]
[27]
Wang YZ, Liu MZ, Dai Y et al. Health and ecotoxicological risk assessment for human and aquatic organism exposure to polycyclic aromatic hydrocarbons in the Baiyangdian Lake. Environmental Science and Pollution Research, 2021, 28(1): 574-586. DOI:10.1007/s11356-020-10480-1
[28]
Shi BF, Yang XP, Liu XX. Distribution characteristics and sources of polycyclic aromatic hydrocarbons in surface soil. Journal of Agro-Environment Science, 2010, 29(5): 904-909. [史兵方, 杨秀培, 刘细祥. 土壤中多环芳烃的分布特征及其来源分析. 农业环境科学学报, 2010, 29(5): 904-909.]
[29]
Montuori P, Aurino S, Garzonio F et al. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. Science of the Total Environment, 2016, 566/567: 1254-1267. DOI:10.1016/j.scitotenv.2016.05.183
[30]
Kafilzadeh F, Shiva AH, Malekpour R. Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River, Iran. Middle-East Journal of Scientific Research, 2011, 10(1): 1-7.
[31]
Ko FC, Baker J, Fang MD et al. Composition and distribution of polycyclic aromatic hydrocarbons in the surface sediments from the Susquehanna River. Chemosphere, 2007, 66(2): 277-285. DOI:10.1016/j.chemosphere.2006.05.033
[32]
Eremina N, Paschke A, Mazlova EA et al. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia. Environmental Pollution, 2016, 210: 409-418. DOI:10.1016/j.envpol.2015.11.034
[33]
Nagy AS, Simon G, Szabó J et al. Polycyclic aromatic hydrocarbons in surface water and bed sediments of the Hungarian upper section of the Danube River. Environmental Monitoring and Assessment, 2013, 185(6): 4619-4631. DOI:10.1007/s10661-012-2892-6
[34]
Kwach BO, Lalah JO. High concentrations of polycyclic aromatic hydrocarbons found in water and sediments of car wash and Kisat areas of Winam Gulf, Lake Victoria-Kenya. Bulletin of Environmental Contamination and Toxicology, 2009, 83(5): 727-733. DOI:10.1007/s00128-009-9859-5
[35]
Malik A, Verma P, Singh AK et al. Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environmental Monitoring and Assessment, 2011, 172(1/2/3/4): 529-545. DOI:10.1007/s10661-010-1352-4
[36]
Hijosa-Valsero M, Bécares E, Fernández-Aláez C et al. Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Science of the Total Environment, 2016, 544: 797-810. DOI:10.1016/j.scitotenv.2015.11.160
[37]
Badawy MI, Embaby MA. Distribution of polycyclic aromatic hydrocarbons in drinking water in Egypt. Desalination, 2010, 251(1/2/3): 34-40. DOI:10.1016/j.desal.2009.09.148
[38]
Li J, Li FD. Polycyclic aromatic hydrocarbons in the Yellow River estuary: Levels, sources and toxic potency assessment. Marine Pollution Bulletin, 2017, 116(1/2): 479-487. DOI:10.1016/j.marpolbul.2016.11.043
[39]
Fan B, Wang XN, Huang Y et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China. Environmental Science, 2019, 40(5): 2101-2114. [范博, 王晓南, 黄云等. 我国七大流域水体多环芳烃的分布特征及风险评价. 环境科学, 2019, 40(5): 2101-2114. DOI:10.13227/j.hjkx.201809034]
[40]
Tian DN, Dang LH, Ding RM et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the surface waters of the Yinchuan wetlands. Environmental Science, 2019, 40(7): 3068-3077. [田大年, 党丽慧, 丁润梅等. 银川市湿地表层水中多环芳烃的分布、来源及生态风险评价. 环境科学, 2019, 40(7): 3068-3077. DOI:10.13227/j.hjkx.201812096]
[41]
Matlyuba M, Nekqadam N, Nilufar A. Results of research on the study of the chemical composition of the Amu Darya River's water in the dynamics. American Journal of Medicine and Medical Sciences, 2019, 9(7): 270-274. DOI:10.5923/j.ajmms.20190907.09
[42]
Zhou WW, Li J, Hu J et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of the central and eastern areas of the Qinghai-Tibetan Plateau. Environmental Science, 2018, 39(3): 1413-1420. [周雯雯, 李军, 胡健等. 青藏高原中东部表层土壤中多环芳烃的分布特征、来源及生态风险评价. 环境科学, 2018, 39(3): 1413-1420. DOI:10.13227/j.hjkx.201707207]
[43]
Xu Y, Chen JF, Xu L et al. Distribution and risk assessment of organochlorine pesticides and polychlorinated biphenyls in surficial sediments from Lake Baiyangdian. J Lake Sci, 2020, 32(3): 654-664. [许妍, 陈佳枫, 徐磊等. 白洋淀表层沉积物中有机氯农药和全多氯联苯的分布特征及风险评估. 湖泊科学, 2020, 32(3): 654-664. DOI:10.18307/2020.0306]
[44]
Li GCH, Xia XH, Wang R et al. Pollution of polycyclic aromatic hydrocarbons (PAHs)in middle and lower reaches of the Yellow River. Environment Science, 2006, 27(9): 1739-1743. [李恭臣, 夏星辉, 王然等. 黄河中下游水体中多环芳烃的分布及来源. 环境科学, 2006, 27(9): 1739-1743. DOI:10.13227/j.hjkx.2006.09.008]
[45]
Gu YG, Li HB, Lu HB. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China: Occurrence, sources and biological risk. Ecological Engineering, 2017, 101: 179-184. DOI:10.1016/j.ecoleng.2017.02.007
[46]
Zhang LF, Dong L, Ren LJ et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. Journal of Environmental Sciences, 2012, 24(2): 335-342. DOI:10.1016/S1001-0742(11)60782-1
[47]
Liu F, Yang QS, Hu YJ et al. Distribution and transportation of polycyclic aromatic hydrocarbons (PAHs) at the Humen river mouth in the Pearl River Delta and their influencing factors. Marine Pollution Bulletin, 2014, 84(1/2): 401-410. DOI:10.1016/j.marpolbul.2014.04.045
[48]
Ge W, Cheng QQ, Chai C et al. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons in agricultural soils from Shandong. Environmental Science, 2017, 38(4): 1587-1596. [葛蔚, 程琪琪, 柴超等. 山东省农田土壤多环芳烃的污染特征及源解析. 环境科学, 2017, 38(4): 1587-1596. DOI:10.13227/j.hjkx.201608199]
[49]
Sun HF, Zhang Y, Xie JF. Applications of positive matrix factorization (PMF) for source apportionment of PAHs in the environment. Asian Journal of Ecotoxicology, 2015, 10(4): 25-33. [孙海峰, 张勇, 解静芳. 正定矩阵因子分解模型在环境中多环芳烃源解析方面的应用. 生态毒理学报, 2015, 10(4): 25-33. DOI:10.7524/AJE.1673-5897.20141021003]
[50]
Wan HB, Zhou J, Luo D et al. Distribution, source characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments of lakes along the middle reaches of the Yangtze River. J Lake Sci, 2020, 32(6): 1632-1645. [万宏滨, 周娟, 罗端等. 长江中游湖泊表层沉积物多环芳烃的分布、来源特征及其生态风险评价. 湖泊科学, 2020, 32(6): 1632-1645. DOI:10.18307/2020.0606]
[51]
Wang CL, Zou XQ, Zhao YF et al. Source apportionment and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water from Yangtze River, China: Based on PMF. Environmental Science, 2016, 37(10): 3789-3797. [王成龙, 邹欣庆, 赵一飞等. 基于PMF模型的长江流域水体中多环芳烃来源解析及生态风险评价. 环境科学, 2016, 37(10): 3789-3797. DOI:10.13227/j.hjkx.2016.10.016]
[52]
Chen X, Emazar M. Water resource and its utilization in Uzbekistan. Beijing: China Environmental Science Press, 2019. [陈曦, 伊纳扎马赫穆多夫. 乌兹别克斯坦水资源及其利用. 北京: 中国环境科学出版社, 2019.]
[53]
Li T, Wang Y, Xu F et al. Pollution characteristics, source apportionment and risk assessment of polycyclic aromatic hydrocarbons in surface water from Taihu Lake Basin. Environmental Science & Technology, 2018, 41(11): 198-204. [李涛, 王玉, 徐枫等. 太湖流域地表水中多环芳烃的来源解析及风险评价. 环境科学与技术, 2018, 41(11): 198-204.]
[54]
Zhang K, Liang B, Wang JZ et al. Polycyclic aromatic hydrocarbons in upstream riverine runoff of the Pearl River Delta, China: An assessment of regional input sources. Environmental Pollution, 2012, 167: 78-84. DOI:10.1016/j.envpol.2012.03.049
[55]
Zhao X, Qiu HR, Zhao YL et al. Distribution of polycyclic aromatic hydrocarbons in surface water from the upper reach of the Yellow River, Northwestern China. Environmental Science and Pollution Research, 2015, 22(9): 6950-6956. DOI:10.1007/s11356-014-3846-z
[56]
Han J, Liang YS, Zhao B et al. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environmental Pollution, 2019, 251: 312-327. DOI:10.1016/j.envpol.2019.05.022
[57]
Wang D, Wang YK, Singh VP et al. Ecological and health risk assessment of PAHs, OCPs, and PCBs in Taihu Lake basin. Ecological Indicators, 2018, 92: 171-180. DOI:10.1016/j.ecolind.2017.06.038
[58]
Wang YZ, Zhang SL, Kong FQ et al. Seasonal distribution, composition, and source apportionment of polycyclic aromatic hydrocarbons and organochlorine pesticides in the main stream of the Luanhe River. Environmental Science, 2017, 38(10): 4194-4211. [王乙震, 张世禄, 孔凡青等. 滦河干流水体多环芳烃与有机氯农药季节性分布、组成及源解析. 环境科学, 2017, 38(10): 4194-4211. DOI:10.13227/j.hjkx.201703107]
[59]
Meng Y, Liu XH, Lu SY et al. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Science of the Total Environment, 2019, 651: 2497-2506. DOI:10.1016/j.scitotenv.2018.10.162
[60]
Wang YZ, Zhang SL, Cui WY et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River basin, China: Seasonal distribution, source apportionment, and potential risk assessment. Science of the Total Environment, 2018, 618: 419-429. DOI:10.1016/j.scitotenv.2017.11.066
[61]
Cao ZG, Liu JL, Luan Y et al. Pollution characteristics, risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments and water of the Luan River, China. Acta Scientiae Circumstantiae, 2010, 30(2): 246-253. [曹治国, 刘静玲, 栾芸等. 滦河流域多环芳烃的污染特征、风险评价与来源辨析. 环境科学学报, 2010, 30(2): 246-253. DOI:10.13671/j.hjkxxb.2010.02.014]
[62]
Li Y, Liu M, Hou LJ et al. Geographical distribution of polycyclic aromatic hydrocarbons in estuarine sediments over China: Human impacts and source apportionment. Science of the Total Environment, 2021, 768: 145279. DOI:10.1016/j.scitotenv.2021.145279