摘要: |
藻类与细菌之间存在多种互作关系,二者间的相互作用会影响水体初级生产力、藻类群落组成、藻类之间的竞争和演替以及藻类水华的发展等。藻菌间的多种紧密互作和代谢耦联对水体中碳、氮、磷、硫等多种生源要素的循环产生影响。在淡水生态系统中,蓝藻水华仍然是威胁水环境健康的重要因素,部分水体中形成了周而复始发生蓝藻水华的稳定状态。蓝藻与其附生细菌间的互作和代谢关联是蓝藻水华维持的关键要素,在水体碳氮循环中发挥了重要作用。本文综述了蓝藻与细菌间的互作对蓝藻生长、产毒、群体维持和多样性的影响以及影响藻菌互作的因素,综述了蓝藻藻际中的碳氮相关功能微生物类群以及藻菌互作对水生态系统中碳氮循环的影响,分析了蓝藻群体颗粒、附着作用和环境因素如温度、营养盐、新型污染物和铁硫磷元素等对藻菌之间碳氮代谢关联和转化的影响及其对环境的反馈机制,并探讨了藻菌互作中碳氮转化过程与通量的主要研究方法,为深入了解蓝藻水华介导的藻菌互作机制和水体生源要素循环和通量的微生物过程提供参考。 |
关键词: 蓝藻 藻菌互作 碳氮循环 环境因素 |
DOI: |
分类号: |
基金项目:国家自然科学基金项目(32371606, 31971449),江苏省创新支撑计划(软科学研究)(BK20231516)联合资助。 |
|
Progress in research on cyanobacteria-bacteria interactions and their effects on carbon and nitrogen cycles |
Zhang Yuqing,Liu Jiayin,Cai Yuanfeng,Zhang Min,Shi Xiaoli,Du Yingxun,Su Yalin,Shi Li mei,Wu Qinlong
|
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences
|
Abstract: |
Algae and bacteria have various types of interactions, which considerably influence the primary productivity of aquatic ecosystems, shape the community composition of algae, dynamics of competition and succession among algal species, and development of algal blooms. Metabolic coupling facilitates the cycling of crucial biogenic elements, including carbon, nitrogen, phosphorus, and sulfur, throughout the water column. In freshwater ecosystems, cyanobacterial blooms remain a persistent and essential threat to the health of the aquatic environment, and a steady state of weekly cyanobacterial bloom occurrence has developed in some water bodies. Interactions and metabolic exchanges between cyanobacteria and associated bacteria are pivotal to carbon and nitrogen cycles in aquatic systems and are modulated by environmental factors. This review examines the implications of cyanobacteria-bacteria interactions on cyanobacterial growth, toxicity, colony persistence, and diversity and the factors influencing cyanobacteria-bacteria interactions. The influences of carbon- and nitrogen-related functional microbial communities on the cycling processes within the phycosphere and the broader aquatic ecosystem were assessed. Moreover, the effects of cyanobacterial community particles, attachment and environmental factors such as temperature, nutrient levels, pollutants, and iron, sulphur and phosphorus, on the metabolic linkage and transfer of carbon and nitrogen between cyanobacteria and bacteria were summarized, and the feedback mechanisms of these interactions were discussed. Additionally, principal research methodologies for studying algae-bacteria interactions and carbon and nitrogen transference between algae and bacteria were explored. Advances in these studies may provide insights into the mechanisms of algae-bacteria interactions mediated by cyanobacterial blooms and the microbiological processes underlying the cycling and fluxes of biogenic elements in water bodies. |
Key words: cyanobacteria algae-bacteria interactions carbon and nitrogen cycles environmental factor |