引用本文: | 施雅风,姜彤,王俊,张强,苏布达,秦年秀.全球变暖对长江洪水的可能影响及其前景预测.湖泊科学,2003,15(Z1):1-15. DOI:10.18307/2003.sup01 |
| SHI Yafeng,JIANG Tong,WANG Jun,ZHANG Qiang,SU Buda,QIN Nianxiu.Potential Impact of Climate Warming on the Yangtze Floods and Estimation of the Yangtze Floods Based on Hypothetical Climatic Scenarios. J. Lake Sci.2003,15(Z1):1-15. DOI:10.18307/2003.sup01 |
|
|
|
本文已被:浏览 7447次 下载 5958次 |
码上扫一扫! |
|
全球变暖对长江洪水的可能影响及其前景预测 |
施雅风1,2, 姜彤1, 王俊3, 张强1, 苏布达1,4, 秦年秀1,4
|
1.中国科学院南京地理与湖泊研究所, 南京 210008;2.中国科学院寒区旱区环境工程研究所, 兰州 730000;3.长江水利委员会水文局, 武汉 430000;4.中国科学院研究生院, 北京 100039
|
|
摘要: |
要长江流域近150a间发生的1870、1931、1935、1954与1998年特大洪水灾害损失严重;长江洪水是我国的心腹之患.1990年以来,长江大洪水高频发生,达6次.长江洪水的发生,除湖泊蓄洪功能减弱等因素外,与全球变暖有关.20世纪90年代为近千年中全球最暖的年代,水循环加快,长江中下游夏季降水量为近120a最多的十年,高出1961-1990平均值112mm;而降雨集中和大暴雨降水事件的增加是洪水增加的主要原因.区域气候模式模拟在CO2倍增时,长江流域温度升高2.2℃,夏季降水增加10%-20%,气溶胶的增加可能使此值降低一些.考虑气候变暖可能促进潜在蒸发增加9%-15%的假定情景,计算在降水增加10%,蒸发增加9%条件下,最大洪峰流量在大通站将会达到8.4×104 m3/s左右,己超过1998年洪峰流量;汉口站7.9×104 m3/s,超过有记录以来所有的洪峰流量;而在宜昌站高达6.94×104 m3/s,超过自有实测记录以来的除1896年和1981年以外所有的洪峰流量.假定情景的最高值出现在降水增加20%,蒸发增加15%时,大通站流量将达到9.45×104 m3/s,超过该站近百年最大值,1954年的9.26×104 m3/s;宜昌站将出现7.82×104 m3/s流量,超过1882年以来所有实测记录值,但比1870年据洪痕推算的10.5×104 m3/s仍有逊色.未来气候若继续变暖,降水量增加将给长江洪水防御带来巨大的压力.但上述估算是粗糙的,有一定的不确定性,需在以后的研究中进一步改进. |
关键词: 长江洪水 全球变暖 降水、径流与蒸发变化 假定情景下长江洪峰流量预测 |
DOI:10.18307/2003.sup01 |
分类号: |
基金项目:中国科学院知识创新工程重要方向项目(KZCX3-SW-331)和中国科学院南京地理与湖泊研究所知识创新工程所长专项基金(S220007)国家自然科学基金项目(402H112)联合资助 |
|
Potential Impact of Climate Warming on the Yangtze Floods and Estimation of the Yangtze Floods Based on Hypothetical Climatic Scenarios |
SHI Yafeng1,2, JIANG Tong1, WANG Jun3, ZHANG Qiang1, SU Buda1,4, QIN Nianxiu1,4
|
1.Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, P. R. China;2.Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou, 730000, P. R. China;3.Changjiang Water Resources Commission, Ministry of Water Resources, (CWRC), Wuhan 430000, P. R. China;4.Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
|
Abstract: |
There have been 6 heavy floods occur in the Yangtze River since 1991 which are related with a shortage of flood retention lakes as well as global warming. The 1990's were the warmest period of the last 1000 years characterized by accelerated hydrological circulation. The summer precipitation that occurred in the middle and lower reaches of the Yangtze River was the largest in magnitude and quantity of the recent 120 years; about 112 mm more than that in 1961-1990. Convergent precipitation and rainstorm events are the main driving factors for increasing floods in the Yangtze River. Climate model researchers indicate that coupled CO2 may lead to temperature increase of 2.2℃ and summer precipitation increase of 10%-20%. Based on the hypothetical scenarios that global warming may lead to an increase of latent evaporation of 9%-15%, the flood peak flow at Datong station will reach 84000 m3/s if the precipitation increases 10% and the evaporation increase 9%, exceeding that of 1998; the flood peak flow at Hankou station will reach 79000 m3/s, exceeding all recorded flood peak runoff; the flood peak flow at Yichang station will reach 69400 m3/s, exceeding the instrumental records, except 1896's and 1981's records. The third scenario, i.e. the maximum peak flow occurred when the precipitation increases 20% and the evaporation increases 15%, the flood runoff at Datong station will reach 94500 m3/s, exceeding the maximum value of last 100 years (namely 92600 m3/s in 1954). The Yichang station will have flood peak flow of 78200 m3/s, exceeding all the instrumental records since 1882, but less than the 105000 m3/s calculated based on flood trace of 1870. Persistent climate warming in the future will lead to increasing precipitation and which will put tremendous pressure on the controlling of the Yangtze floods. |
Key words: The Yangtze Floods global warming precipitation runoff and evaporation variations estimation on flood peak flow under the hypothetical scenarios |
|
|
|
|