引用本文: | 光洁,韦玉春,黄家柱,李云梅,闻建光,郭建平.分季节的太湖悬浮物遥感估测模型研究.湖泊科学,2007,19(3):241-249. DOI:10.18307/2007.0303 |
| GUANG Jie,WEI Yuchun,HUANG Jiazhu,LI Yunmei,WEN Jianguang,GUO Jiangping.Seasonal suspended sediment estimating models in Lake Taihu using remote sensing data. J. Lake Sci.2007,19(3):241-249. DOI:10.18307/2007.0303 |
|
|
|
本文已被:浏览 8165次 下载 3784次 |
码上扫一扫! |
|
分季节的太湖悬浮物遥感估测模型研究 |
光洁1,2, 韦玉春3, 黄家柱3, 李云梅3, 闻建光1,2, 郭建平1,2
|
1.中国科学院遥感应用研究所遥感科学国家重点实验室, 北京 100101;2.中国科学院研究生院, 北京 100039;3.南京师范大学地理科学学院, 南京 210097
|
|
摘要: |
根据1996-2002年无锡太湖监测站的水质资料分析, 太湖悬浮物具有季节性特征, 因而分季节的悬浮物估测模型比单一的模型可能更加适合用来估测太湖全年的悬浮物浓度。在分析太湖水体光谱特征的基础上, 根据太湖悬浮物的季节性分布特征, 使用春夏秋冬四季的Landsat TM/ETM图像和准同步的水质采样数据, 建立了太湖分季节的悬浮物估算模型。结果表明:估测因子(B2+B3)/(B2/B3)在舂、秋、冬三季都能很好地估测出悬浮物的浓度(R2>0.52)。夏季由于叶绿素的干扰性较大, 悬浮物的估测效果不理想。冬季的估测效果最好(R2=0.81), 模型为lnSS=14.656×(B2+B3)/ (B2/B3)+1.661, 其中, ln SS表示悬浮物取自然对数后的值, B2、B3为TM/ETM图像经过6S大气校正、3×3低通滤波后第2、3波段的反射率值。 |
关键词: 悬浮物 分季节模型 遥感 实测光谱 太湖 |
DOI:10.18307/2007.0303 |
分类号: |
基金项目:国家"863"计划项目(2003AA131060);国家自然科学基金(40571110,40471091)联合资助 |
|
Seasonal suspended sediment estimating models in Lake Taihu using remote sensing data |
GUANG Jie1,2, WEI Yuchun3, HUANG Jiazhu3, LI Yunmei3, WEN Jianguang1,2, GUO Jiangping1,2
|
1.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Institute of Remote Sensing Applications, CAS, Beijingl00101, P. R. China;2.Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China;3.College of Geographical Science, Nanjing Normal University, Nanjing 210097 R. China
|
Abstract: |
Suspended sediment in Lake Taihu has its seasonal character according to the analysis of in situ data acquired by Taihu Monitoring Wuxi Station during 1996-2002, so seasonal models may better than a single model for estimating suspended sediment in Lake Taihu.After analyzing the spectral characteristic of Lake Taihu, seasonal suspended sediment estimating models were built based on four Landsat TM/ETM images, respectively in spring, summer, autumn and winter, as well as synchronous in situ data.Result shows that (B2+B3)/(B2/B3) is a good index for estimating suspended sediment in Spring, Autumn and Winter (R2>0.52).The summer model is not sound due to the disturbance of high chlorophyll concentration, as alga boom in summer.The winter model has the best effect in estimating suspended sediment (R2=0.81).The Winter model is ln55 = 14.656 x (B2+B3)/ (B2/B3)+1.661, in which ln5S is the natural logarithm of suspended sediment concentration, B2 and B3 are the reflectance in Band 2 and B3 of the Landsat TM/ETM images after 6S atmospheric correction and a 3x3 low-pass filtering. |
Key words: suspended sediment seasonal model remote sensing field spectral Lake Taihu |
|
|
|
|