投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:闫峰,王艳姣.基于泥沙因子的水深遥感反演模型.湖泊科学,2008,20(5):655-661. DOI:10.18307/2008.0515
YAN Feng,WANG Yan-jiao.Water depth retrieval models with remote sensing sediment parameter. J. Lake Sci.2008,20(5):655-661. DOI:10.18307/2008.0515
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7130次   下载 4391 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于泥沙因子的水深遥感反演模型
闫峰1, 王艳姣2
1.北京师范大学减灾与应急管理研究院, 北京 100875;2.中国气象局国家气候中心, 北京 100081
摘要:
针对悬浮泥沙影响水体遥感测深精度的问题,选择长江口南港至南槽为研究区,通过对遥感测深方法研究,结合悬浮泥沙光谱特性分析,把"泥沙因子"引入到水体遥感测深反演模型中,研究表明:1)单因子非线性模型中,指数模型对0-2m的水深反演效果较好,对数模型对2-7m的水深反演较好,二次回归模型对7-14m的水深反演效果较好;2)建立的BP人工神经网络水深反演模型综合了多个波段具有的水深信息,模型的反演效果好于单因子非线性模型;3)实验构建的泥沙遥感参数综合了不同波段具有的悬沙信息,削弱了叶绿素和外界环境条件对泥沙信息的干扰,可较好地反映悬沙浓度变化特征;4)建立的BP人工神经网络泥沙因子水深反演模型削弱了悬浮泥沙对遥感测深的影响,模型实际反演能力明显优于单因子非线性模型和多因子BP人工神经网络水深反演模型.
关键词:  水深遥感  泥沙影响因子  光谱反射率  模型
DOI:10.18307/2008.0515
分类号:
基金项目:国家博士后科学基金(20070420308);淮河流域气象开放基金项目(HRM200605)联合资助
Water depth retrieval models with remote sensing sediment parameter
YAN Feng1, WANG Yan-jiao2
1.Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, P.R.China;2.China Meteorological Administration, National Climate Center, Beijing 100081, P.R.China
Abstract:
In order to solve the problem of suspended sediment influencing water depth measurements by remote sensing technology, the remote sensing sediment parameter was constructed by experimental methods and introduced into the research of water depth retrieval methods to weaken the effect of suspended sediment to remote sensing bathymetry. The study area is the South Channel to the South Passage in the Yangtze River Estuary. Results showed that: 1) the exponential models can estimate the water depth of less than 2m well, and the logarithm models can retrieve water depths from 2m to 7m accurately and the quadratic regression models can calculate the water depths from 7m to 14m better in the single factor nonlinear inversion models of water depth; 2) the multiple factor water depth inversion model of BP artificial neural network (BPANN) integrate water depth information of multiple wavelengths, and it performs the stronger capability to retrieve the water depths than single factor nonlinear models; 3)remote sensing sediment parameter constructed by experimental methods integrate suspended sediment information of multiple wavelengths, and weakens the effect of chlorophyll and environmental factors, and it can characterize the variations of suspended sediment concentration (SSC) better; 4) the sediment parameter water depth retrieval model of BP artificial neural network (SPBPANN) weakens the influence of SSC to remote sensing bathymetry, it performs the strongest capability than single factor nonlinear models and BPANN model.
Key words:  Remote sensing of water depth  sediment parameter  spectral reflectance  model
分享按钮