投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:杨平,张逸飞,金宝石,谭立山,仝川.基于不同模型的河口区水产养殖塘水-气界面CH4气体传输速率及扩散通量研究.湖泊科学,2019,31(1):268-281. DOI:10.18307/2019.0125
YANG Ping,ZHANG Yifei,JIN Baoshi,TANG Lishan,TONG Chuan.Estimate of gas transfer velocity and diffusion flux of CH4 across water-air interface from aquaculture ponds in subtropical estuaries based on different model methods. J. Lake Sci.2019,31(1):268-281. DOI:10.18307/2019.0125
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5279次   下载 2612 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于不同模型的河口区水产养殖塘水-气界面CH4气体传输速率及扩散通量研究
杨平1,2,3, 张逸飞1, 金宝石1, 谭立山1, 仝川1,2,3
1.湿润亚热带生态-地理过程教育部重点实验室, 福州 350007;2.福建师范大学地理科学学院, 福州 350007;3.福建师范大学亚热带湿地研究中心, 福州 350007
摘要:
模型估算法是水-气界面甲烷(CH4)通量监测的主要方法.本研究选择6种不同的参数化模型方法估算了2015年6、8和10月两个亚热带河口养殖塘水-气界面CH4传输速率(kx)及其扩散通量,探讨了河口养殖塘kx及CH4扩散通量的变化特征和影响因子.结果表明:研究期间,不同模型估算下的kx及其扩散通量均值在闽江河口养殖塘变化范围分别为1.60±0.75~6.29±1.30 cm/h和9.19±2.67~30.64±6.28 μmol/(m2·h),在九龙江河口养殖塘的变化范围分别为0.89±0.19~6.07±0.61 cm/h和3.18±0.48~21.03±2.13 μmol/(m2·h);kx及其扩散通量在两个河口区均呈现随时间推移而升高的特征;整个养殖期间,养殖塘水-气界面平均CH4传输速率kx呈现闽江河口略高于九龙江河口(P>0.05),但水-气界面平均CH4扩散通量呈现闽江河口显著高于九龙江河口的特征(P<0.05);风速、水体溶解CH4浓度和盐度是调控河口区养殖塘水-气界面CH4扩散通量变化的重要因子;不同模型估算出的河口养殖塘水-气界面CH4传输速率kx存在差异,表明模型估算法获得的水-气界面CH4扩散通量存在一定的不确定性.
关键词:  甲烷  气体传输速率  扩散通量  环境因素  水产养殖塘  亚热带河口
DOI:10.18307/2019.0125
分类号:
基金项目:国家自然科学基金项目(41801070,41671088,41371127)和福建师范大学亚热带河口生物地球化学创新团队项目(IRTL1205)联合资助.
Estimate of gas transfer velocity and diffusion flux of CH4 across water-air interface from aquaculture ponds in subtropical estuaries based on different model methods
YANG Ping1,2,3, ZHANG Yifei1, JIN Baoshi1, TANG Lishan1, TONG Chuan1,2,3
1.Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fuzhou 350007, P. R. China;2.School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P. R. China;3.Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou 350007, P. R. China
Abstract:
Diffusion model methods are frequently applied in monitoring water-atmosphere methane (CH4) fluxes. To explore the variation character and influence factors of CH4 transfer velocity (kx) and diffusive fluxes across the water-atmosphere interface from aquaculture shrimp ponds, this study chooses six different model methods for estimating kx and CH4 diffusive fluxes in the Min River estuary (MRE) and Jiulong River estuary (JRE) on the southeast coast of China. For each estuary, water samples were collected using a hydrophore sampler from three shrimp ponds in June, August, and October 2015, respectively. Meanwhile, meteorological parameter (air temperature, wind speed and atmospheric pressure) and water-quality indicators (water temperature, pH, dissolved oxygen and salinity) were measured in situ using a portable instrument. A headspace equilibration technique was used for the measurement of dissolved CH4 concentration. The mean kx at MRE and JRE ponds during the study period ranged between 1.60±0.75 and 6.29±1.30 cm/h, and 0.89±0.19 and 6.07±0.61 cm/h,respectively. The mean CH4 diffusive fluxes in the MRE and JRE ponds over the study period ranged between 9.19±2.67 and 30.64±6.28 μmol/(m2·h), and 3.18±0.48 and 21.03±2.13 μmol/(m2·h), respectively. The results showed that kx and CH4 diffusive fluxes across the water-atmosphere interface from the estuaries of shrimp ponds greatly varied in spatial and seasonal dynamics. The CH4 diffusive fluxes were significantly higher from the shrimp ponds in the Min River estuary than in the Jiulong River estuary (P<0.05). Average seasonal kx (or CH4 diffusive fluxes) in MRE and JRE shows an increasing trend over time. The wind speed, water dissolved CH4 concentration and salinity are important factors that drive the changes in CH4 diffusive fluxes emission. There are differences in CH4 transfer velocity across the water-atmosphere interface from aquaculture shrimp ponds between the different model methods, indicating that the CH4 diffusive fluxes from the model-based estimation has a certain degree of uncertainty.
Key words:  Methane (CH4)  gas transfer velocity  diffusion flux  environmental factor  aquaculture ponds  subtropical estuary
分享按钮