投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:曹娟,姚晓军,靳惠安,张调风,高永鹏,张大弘,赵全宁.基于实测与模拟的青海湖冰厚时空变化特征.湖泊科学,2021,33(2):607-621. DOI:
Cao Juan,Yao Xiaojun,Jin Hui'an,Zhang Tiaofeng,Gao Yongpeng,Zhang Dahong,Zhao Quanning.Spatiotemporal variation of ice thickness of Lake Qinghai derived from field measurements and model simulation. J. Lake Sci.2021,33(2):607-621. DOI:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 74次   下载 67 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于实测与模拟的青海湖冰厚时空变化特征
曹娟1, 姚晓军1, 靳惠安1,2, 张调风3, 高永鹏4, 张大弘1, 赵全宁5
1.西北师范大学地理与环境科学学院, 兰州 730070;2.甘肃林业职业技术学院, 天水 741020;3.青海省气候中心, 西宁 810000;4.云南大学国际河流与生态安全研究院, 昆明 650091;5.青海省气象科学研究所, 西宁 810000
摘要:
湖冰厚度是湖泊在封冻期的重要物理参数,明晰其时空变化特征对于认识气候变暖背景下的湖冰响应规律具有重要的理论价值和现实意义.基于ERA5 Climate Reanalysis气温数据集、MODIS MOD09GQ数据产品和2019年湖冰钻孔测厚数据及雷达测厚数据,重建2000-2019年青海湖冰厚时间序列并分析其时空变化特征.结果表明:①2019年3月实测青海湖湖冰厚度平均增长速率为0.30 cm/d,高于2月份(0.12 cm/d).基于度日法湖冰生长模型模拟的2018年11月-2019年3月青海湖冰厚平均增长速率为0.34 cm/d,与实际观测数据相比,模拟冰厚误差为±2 cm,但在河流入湖口处和湖区南侧误差较大,且冰厚模拟数值在3月中旬前高估而之后有所低估.②青海湖多年平均冰厚介于32~37 cm,其中2008-2016年湖冰厚度年际变化剧烈,呈现先增大再稳定后减小的趋势.冻结初期湖冰厚度增长迅速,12月和1月湖冰增长速率分别为0.45和0.41 cm/d,2月后冰厚增长速率放缓,2月和3月分别为0.29和0.14 cm/d.③2000-2019年冰厚整体呈现北厚南薄、东厚西薄的空间格局,多年冰厚变化幅度湖区西部较东部稳定,湖冰平均厚度与完全封冻时长及封冻期呈正相关.
关键词:  湖冰  冰厚  机载测冰雷达  度日法湖冰生长模型  青海湖
DOI:
分类号:
基金项目:国家自然科学基金项目(41861013)、云南大学引进人才科研项目(YJRC3201702)、中国科学院“西部之光”人才培养引进计划项目和西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-14-4)联合资助.
Spatiotemporal variation of ice thickness of Lake Qinghai derived from field measurements and model simulation
Cao Juan1, Yao Xiaojun1, Jin Hui'an1,2, Zhang Tiaofeng3, Gao Yongpeng4, Zhang Dahong1, Zhao Quanning5
1.College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, P. R. China;2.Gansu Forestry Technological College, Tianshui 741020, P. R. China;3.Qinghai Climate Center, Xining 810000, P. R. China;4.Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, P. R. China;5.Institute of Qinghai Meteorological Science Research, Xining 810000, P. R. China
Abstract:
Ice thickness is an important physical parameter of a lake in the freezing period. It is of great theoretical and practical significance to understand the spatiotemporal characteristics of lake ice, which helps study how lake ice responds to climate under the background of global warming. Based on the ERA5 Climate Reanalysis temperature dataset, MODIS MOD09GQ data product, and ice borehole and radar thickness measurements in 2019, the thickness of lake ice in Lake Qinghai between 2000 and 2019 was reconstructed and the spatial-temporal variation characteristic was analyzed. The results showed that the average growth rate of ice thickness in March (0.30 cm/d) was faster than that in February (0.12 cm/d) based on the field survey data. The average growth rate of ice thickness in Lake Qinghai from November 2018 to March 2019 was 0.34 cm/d simulated by the degree-day model, with the ice thickness error of ±2 cm compared with the actual observation data. However, the error was large at the entrance of the river and the south side of Lake Qinghai. Meanwhile, the simulation of ice thickness was overestimated before the mid-March but underestimated later. The annual average ice thickness of Lake Qinghai was 32-37 cm, in which, it fluctuated dramatically in 2008-2016, showing the tendency of thickening first, then stabilizing and finally thinning. At the beginning of lake freezing, the ice thickness increased rapidly with the growth rate of 0.45 cm/d in December and 0.41 cm/d in January. After February, the rate slowed down, and it was 0.29 cm/d in February and 0.14 cm/d in March. On the whole, the ice thickness of Lake Qinghai showed a spatial pattern of being thicker in the north and east, whereas being thinner in the south and west, years of spatial change were more stable in the west than in the east. The average thickness of lake ice was positively correlated with complete freezing duration and the freeze-up period.
Key words:  Lake ice  ice thickness  airborne ice radar  degree-day model  Lake Qinghai
分享按钮