投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:张小琴,吴成城,佘亮亮,包为民.基于微分响应的流域产流分单元修正方法.湖泊科学,2021,33(6):1906-1913. DOI:10.18307/2021.0624
Zhang Xiaoqin,Wu Chengcheng,She Liangliang,Bao Weimin.A spatial distributed runoff correction approach based on differential response. J. Lake Sci.2021,33(6):1906-1913. DOI:10.18307/2021.0624
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2532次   下载 2226 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于微分响应的流域产流分单元修正方法
张小琴1, 吴成城1, 佘亮亮2, 包为民1
1.河海大学水文水资源学院, 南京 210098;2.宁波弘泰水利信息科技有限公司, 宁波 315000
摘要:
为考虑洪水预报误差的空间变化,提出一种基于微分响应的流域产流分单元修正方法.该方法建立了各单元流域产流与流域出口流量之间的微分响应关系,采用正则化最小二乘法结合逐步迫近进行反演求解,将产流误差估计量分配给相应单元流域实现流域产流分单元修正.将构建的方法应用于大坡岭流域和七里街流域进行新安江模型产流修正,比较分析了流域产流分单元修正、流域面平均产流修正和自回归修正的效果.结果表明:流域产流分单元修正效果优于流域面平均产流修正;随着预见期的增大,产流微分响应修正效果优于自回归修正.该方法通过汇流系统将流域出口断面流量信息进行分解用于修正各单元流域产流,有利于提高实时洪水预报精度.
关键词:  洪水预报  产流修正  微分响应  误差空间变化  新安江模型
DOI:10.18307/2021.0624
分类号:
基金项目:国家重点研发计划项目(2019YFC0409000)、国家自然科学基金项目(51709076)和中央高校基本科研业务费专项资金项目(B200202026)联合资助.
A spatial distributed runoff correction approach based on differential response
Zhang Xiaoqin1, Wu Chengcheng1, She Liangliang2, Bao Weimin1
1.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P. R. China;2.Ningbo Hong Tai Water Conservancy Information Technology Company, Ningbo 315000, P. R. China
Abstract:
To consider the spatial variation of errors in flood forecasting, a spatial distributed runoff correction approach (SDR) based on differential response is proposed. The method establishes the differential response relationships between discharge at basin outlet and runoff of each sub-basin. The regularized least square algorithm and stepwise approximation are used to calculate the estimated runoff errors. The estimated runoff errors are allocated to correct runoff in each sub-basin. The performances of SDR, areal mean runoff correction (AMR) and autoregressive technique (AR) on updating the Xin'anjiang Model (XAJ) predictions are compared in the Dapoling and Qilijie Basins. The results show that the SDR performs better than the AMR; and with increasing lead time the proposed method exhibits more stable correction performance than the AR. The SDR approach can decompose the discharge information at basin outlet to correct runoff in each sub-basin through the flow concentration system, which can account for the spatial variability of errors and improve real-time flood forecasting.
Key words:  Flood forecasting  runoff correction  differential response  error spatial variation  Xin'anjiang Model
分享按钮