投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:欧阳常悦,秦宇,刘臻,梁越.基于机器学习的水-气界面CO2、CH4扩散通量预测及影响因素分析——以三峡水库为例.湖泊科学,2023,35(2):449-459. DOI:10.18307/2023.0206
Ouyang Changyue,Qin Yu,Liu Zhen,Liang Yue.Prediction of CO2, CH4 diffusion fluxes at the water-air interface and analysis on its influencing factors using machine learning algorithms in the Three Gorges Reservoir. J. Lake Sci.2023,35(2):449-459. DOI:10.18307/2023.0206
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2234次   下载 1897 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于机器学习的水-气界面CO2、CH4扩散通量预测及影响因素分析——以三峡水库为例
欧阳常悦, 秦宇, 刘臻, 梁越
重庆交通大学河海学院, 环境水利工程重庆市工程实验室, 重庆 400074
摘要:
传统的水-气界面温室气体通量的监测方法具有诸多局限,对其影响因素的分析也大多基于数学统计层面。对此,本研究提供了一种较为新颖的研究和分析方法——基于机器学习的数据预测和分析。本研究采用2种经典机器学习算法——随机森林(RF)和支持向量机(SVM)和2种深度学习算法——卷积神经网络(CNN)和长短时记忆神经网络(LSTM),通过环境因素预测水库水-气界面CO2和CH4扩散通量。此外,采用RF中的特征重要性评估和经典算法决策树(DT),对环境因素和水库温室气体扩散通量的关系进行了全新角度的数据挖掘和分析。结果表明:深度学习算法的预测效果均较好,经典机器学习算法中RF预测效果显著优于SVM。LSTM和RF分别产生了最优的CO2扩散通量和CH4扩散通量的预测精度,均方根误差(RMSE)分别为0.424 mmol/(m2·h)和0.140 μmol/(m2·h),预测值与实测值的R2分别为0.960和0.758。RF的特征重要性评估表明沉积物因子和营养因子均为影响CO2和CH4扩散通量的关键因子,气候因子和水环境因子相较次之。采用决策树描绘决定CO2扩散通量源和汇的环境因子的极限阈值,决策树对所有样本的分类准确性高达100%,且其结果还表明低浓度的溶解无机碳和碱性条件有利于水体成为CO2汇。因此,使用机器学习算法预测和分析水库水-气界面温室气体通量的潜力巨大。
关键词:  机器学习  深度学习  温室气体通量  预测  三峡水库
DOI:10.18307/2023.0206
分类号:
基金项目:国家自然科学基金项目(51609026)和重庆市研究生科研创新项目(CYS22402)联合资助。
Prediction of CO2, CH4 diffusion fluxes at the water-air interface and analysis on its influencing factors using machine learning algorithms in the Three Gorges Reservoir
Ouyang Changyue, Qin Yu, Liu Zhen, Liang Yue
Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, P. R. China
Abstract:
Traditional methods for monitoring greenhouse gas fluxes at the water-air interface in reservoirs have many limitations. The analysis on its influencing factors is also mainly based on mathematical statistics. This study provides an innovative approach by using machine learning algorithms. In this study, two traditional machine learning algorithms (Random forests (RF) and Support vector machine (SVM)) and two deep learning algorithms (Convolutional neural network (CNN) and long and short term memory neural network (LSTM)) were applied to predict CO2 and CH4 diffusion fluxes. In addition, the feature importance assessment in RF and the decision tree (DT) are used to analyze the relationship between environmental factors and GHG diffusion fluxes in reservoirs from a new perspective. The results showed that deep learning produced excellent prediction accuracy, whereas prediction accuracy of RF was significantly better than SVM in traditional machine learning. LSTM and RF yielded optimal accuracy in predicting CO2 flux and CH4 flux, respectively. The root mean square error (RMSE) was 0.424 mmol/(m2·h) and 0.140 μmol/(m2·h) and R2 of the predicted and measured values were 0.960 and 0.758, respectively. RF identified sediment and nutrient as critical environmental factors to GHG fluxes, followed by climate factors and water environment factors. Lastly, a decision tree was used innovatively to depict the limiting threshold of environmental factors that determines the source or sink of CO2. The classification accuracy of this decision tree is as high as 100% in this study. The results of decision tree also showed that low dissolved inorganic carbon concentration and alkaline conditions are favorable for water to absorb atmospheric CO2. These results demonstrate the great potential of using machine learning algorithms to predict and analyze GHG fluxes at the water-air interface in reservoirs.
Key words:  Machine learning  deep learning  greenhouse gas flux  prediction  Three Gorges Reservoir
分享按钮