投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:程云山,任艺晨,席贻龙,刘燕茹,何虎,范方威,陈东宜,李化炳.基于环境DNA技术和形态学鉴定的浮游植物多样性比较.湖泊科学,2024,36(5):1336-1352. DOI:10.18307/2024.0511
Cheng Yunshan,Ren Yichen,Xi Yilong,Liu Yanru,He Hu,Fan Fangwei,Chen Dongyi,Li Huabing.Comparative study on the biodiversity of phytoplankton based on environmental DNA technology and morphological identification. J. Lake Sci.2024,36(5):1336-1352. DOI:10.18307/2024.0511
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2138次   下载 1740 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于环境DNA技术和形态学鉴定的浮游植物多样性比较
程云山1,2, 任艺晨1,2, 席贻龙1, 刘燕茹2,3, 何虎2, 范方威2,4,5, 陈东宜2,4, 李化炳2,6
1.安徽师范大学生态与环境学院, 芜湖 241002;2.中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 南京 210008;3.河北大学生命科学学院, 保定 071002;4.中国科学院大学, 北京 100049;5.中国科学院大学中丹学院, 北京 100049;6.中国科学院抚仙湖高原深水湖泊研究站, 玉溪 652500
摘要:
浮游植物是湖泊生态系统的重要组成部分,检测其物种多样性和群落组成对了解湖泊生态系统功能具有重要意义。近年来,环境DNA技术越来越多地被应用于生态学调查中;但对于浮游植物的多样性检测,该方法与传统形态学鉴定获得结果的一致性尚不清楚,并且缺少基于环境DNA技术对真核浮游植物与原核浮游植物进行同时检测的研究。为此,本文比较研究了不同牧食强度下中宇宙实验体系中环境DNA技术和形态学鉴定在检测浮游植物(包括真核与原核浮游植物)物种多样性和群落组成上的异同。研究结果显示:(1)基于18S rRNA基因的环境DNA技术与形态学鉴定获得的浮游植物alpha多样性(物种多样性和Shannon-Wiener多样性指数)在不同牧食强度下中宇宙实验体系中的变化趋势一致;(2)与形态学鉴定结果相比,基于16S rRNA基因和18S rRNA基因的环境DNA技术能够检测到更多的浮游植物种类,并且能够很好地展现不同处理组中浮游植物群落组成的差异;(3)基于18S rRNA基因的环境DNA技术在浮游植物多样性检测上具有更高的精确性。尽管环境DNA技术在监测浮游植物生物量方面存在局限,但是其在浮游植物生物多样性检测方面比形态学鉴定具有显著的优势。本研究对环境DNA技术同时应用于真核和原核浮游植物检测进行了尝试,并证实了基于18S rRNA基因的环境DNA技术在浮游植物物种多样性和群落组成检测中具有更高的分辨率和精确性,可提供更加丰富的数据,为在浮游植物多样性研究和水生态环境监测中推广使用环境DNA技术提供了依据。
关键词:  环境DNA  形态学鉴定  浮游植物  多样性
DOI:10.18307/2024.0511
分类号:
基金项目:国家自然科学基金项目 (32171535,31971471,32101321)、青藏高原第二次科学考察项目(2019QZKK0503)和中国科学院南京地理与湖泊研究所自主部署科研项目(NIGLAS2022GS02)联合资助。
Comparative study on the biodiversity of phytoplankton based on environmental DNA technology and morphological identification
Cheng Yunshan1,2, Ren Yichen1,2, Xi Yilong1, Liu Yanru2,3, He Hu2, Fan Fangwei2,4,5, Chen Dongyi2,4, Li Huabing2,6
1.School of Ecology and Environment, Anhui Normal University, Wuhu 241002, P. R. China;2.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China;3.School of Life Sciences, Hebei University, Baoding 071002, P. R. China;4.University of Chinese Academy of Sciences, Beijing 100049, P. R. China;5.Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;6.The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, P. R. China
Abstract:
Phytoplankton is a crucial component of lake ecosystems, and understanding its species diversity and community composition is essential for grasping the functionality of lake ecosystems. In recent years, environmental DNA (eDNA) technology has increasingly been applied in ecological surveys. However, whether the results based on eDNA technology are in line with those obtained through traditional morphological identification for detecting phytoplankton remains unclear. Additionally, there is a lack of research on simultaneously detecting both eukaryotic and prokaryotic phytoplankton communities using eDNA technology. In this study, we compared the results obtained by eDNA technology and morphological identification in detecting the species diversity and community composition of phytoplankton (including both eukaryotic and prokaryotic ones) in in-situ mesocosms exposed to different intensities of grazing pressure. The results indicated that: (1) eDNA technology based on the 18S rRNA gene could obtain diversity of prokaryotic phytoplankton community, the trends in phytoplankton alpha diversity (species diversity and Shannon-Wiener index) obtained by eDNA technology were consistent with those by morphological identification in the in-situ mesocosms; (2) Compared with the results of morphological identification, eDNA technology based on the 18S rRNA gene and 16S rRNA gene detected more species, effectively highlighting differences in community composition among different treatment groups; (3) eDNA technology based on the 18S rRNA gene demonstrated higher precision in detecting phytoplankton diversity. Despite limitations in monitoring phytoplankton biomass, eDNA technology exhibited significant advantages over morphological identification in assessing phytoplankton biodiversity. This study attempted to apply eDNA technology to simultaneously detect both eukaryotic and prokaryotic phytoplankton, it confirms the higher resolution and precision of eDNA technology in detecting phytoplankton species diversity and community composition, providing more comprehensive data for phytoplankton monitoring. This provides a basis for the broader adoption of eDNA technology in the study of phytoplankton diversity and aquatic environmental monitoring.
Key words:  Environmental DNA  morphological identification  phytoplankton  diversity
分享按钮