投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:严照江,房冲,宋开山,王翔宇,吕云峰.浮游藻类物候遥感监测研究进展.湖泊科学,2025,37(1):1-13. DOI:10.18307/2025.0101
Yan Zhaojiang,Fang Chong,Song Kaishan,Wang Xiangyu,Lv Yunfeng.Advances in remote sensing monitoring of phytoplankton phenology. J. Lake Sci.2025,37(1):1-13. DOI:10.18307/2025.0101
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 78次   下载 72 本文二维码信息
码上扫一扫!
分享到: 微信 更多
浮游藻类物候遥感监测研究进展
严照江1,房冲1,宋开山1,王翔宇1,吕云峰2
1.中国科学院东北地理与农业生态研究所,长春 130102 ;2.长春师范大学地理科学学院,长春 130032
摘要:
浮游藻类广泛分布于海洋和内陆水体生态系统中,其生长和发育过程具有明显的时空异质性,对气候变化的响应也极为复杂。藻类物候描述了其在长期适应气候、水质和人类干预等因素下的周期性变化,从而形成一种与环境条件相适应的生长发育节律。它主要包括藻类的出现时间、增长高峰以及减少或消亡的时间等特征。遥感技术通过高时空分辨率持续获取叶绿素a浓度数据(浮游藻类生物量的表征参数),实现对藻类物候的长期监测。本文详细地回顾了近年来遥感藻类物候监测和提取方法的进展,指出目前存在的问题与不足,并对未来的发展趋势进行展望。首先,回顾了现有卫星遥感提供大范围时空连续的藻类生长信息。其次,总结了浮游藻类物候阶段的监测,以及估计藻类特定物候阶段的方法。同时,介绍了用于遥感时间序列估算藻类物候的常用数据处理方法,探讨了浮游藻类物候特性的变化趋势。最后,探索了可能影响藻类物候变化的因素和驱动机制。基于以上分析,本文指出未来藻类物候遥感的研究应重点关注:(1)开发并验证适用于不同水域环境的通用算法,结合机器学习等智能算法改进物候模型,提高物候监测精度和算法的业务化应用水平;(2)结合数值模型和生态系统动态模型,深入研究浮游藻类物候背后的驱动机制。
关键词:  藻类  物候  叶绿素a  海洋和内陆水体
DOI:10.18307/2025.0101
分类号:
基金项目:国家自然科学基金项目(U2243230,42101366,41971322);吉林省自然科学基金项目(YDZJ202401474ZYTS)联合资助
Advances in remote sensing monitoring of phytoplankton phenology
Yan Zhaojiang1,Fang Chong1,Song Kaishan1,Wang Xiangyu1,Lv Yunfeng2
1.Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 , P.R.China ;2.School of Geographic Science, Changchun Normal University, Changchun 130032 , P.R.China
Abstract:
Phytoplankton are widely distributed in marine and freshwater ecosystems. Their growth and development show considerable spatial and temporal variation, and their response to climate change is complex. Algal phenology describes the cyclical changes in phytoplankton under long-term adaptation to factors such as climate, water quality and human disturbance, establishing a growth rhythm tuned to environmental conditions. It primarily includes characteristics such as the timing of algal appearance, peak growth and decline or disappearance. Remote sensing technology continuously provides high spatio-temporal resolution data on chlorophyll-a concentrations (an indicator of phytoplankton biomass), allowing long-term monitoring of algal phenology. This paper provided a detailed review of recent advances in remote sensing methods for monitoring and extracting algal phenology, identified current issues and limitations, and looked ahead to future trends. First, it reviewed how existing satellite remote sensing provided comprehensive spatio-temporally continuous information on algal growth. Secondly, it summarized the monitoring of phytoplankton phenological stages and methods for estimating specific algal phenological phases. It also presented common data processing methods used to estimate algal phenology from remote-sensed time series and discussed changing trends in phytoplankton phenological characteristics. Finally, it examined the factors and mechanisms that may influence changes in algal phenology. Based on this analysis, future research on remote sensing of algal phenology should focus on: (1) developing and validating general algorithms suitable for different aquatic environments, integrating machine learning and other intelligent algorithms to improve phenological models and increase the accuracy of phenological monitoring and operational application, (2) combining numerical models with ecosystem dynamics models to investigate the driving mechanisms behind phytoplankton phenology.
Key words:  Algae  phenology  chlorophyll-a  oceans and inland waters
分享按钮