投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:朱先龙,雷逸伦,杨予,罗鸿,赖睿聪,罗文磊,王荣,徐润冰,邢鹏.抚仙湖浮游植物群落结构对水体垂直混合过程的响应.湖泊科学,2025,37(1):36-49. DOI:10.18307/2025.0111
Zhu Xianlong,Lei Yilun,Yang Yu,Luo Hong,Lai Ruicong,Luo Wenlei,Wang Rong,Xu Runbing,Xing Peng.Response of phytoplankton community structure to the vertical mixing process in Lake Fuxian. J. Lake Sci.2025,37(1):36-49. DOI:10.18307/2025.0111
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 87次   下载 56 本文二维码信息
码上扫一扫!
分享到: 微信 更多
抚仙湖浮游植物群落结构对水体垂直混合过程的响应
朱先龙1,2,3,雷逸伦1,杨予1,罗鸿1,赖睿聪1,罗文磊2,3,4,5,王荣2,3,4,5,徐润冰1,邢鹏2,3
1.云南大学生态与环境学院,云南高原山地生态与退化环境修复重点实验室,昆明 650091 ;2.中国科学院南京地理与湖泊研究所,湖泊与流域水安全重点实验室,南京 211135 ;3.中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室,南京 211135 ;4.中国科学院抚仙湖高原深水湖泊研究站,玉溪 652500 ;5.抚仙湖高原深水湖泊云南省野外科学观测研究站,玉溪 652500
摘要:
深水湖泊冬季热力分层消亡,水体上下混合,水动力过程改变营养盐的分布格局,可能影响湖泊生态系统中浮游植物群落的演替。本研究在2022年11月—2023年4月高原深水湖泊抚仙湖的热力分层消亡期、混合期和分层形成期,开展水体垂直剖面的理化环境因子及浮游植物群落高频观测,探究浮游植物群落时空变化特征及其对热力学混合过程的响应。结果表明:水体混合过程引起湖泊理化环境因子显著的时空变化,与分层消亡期和形成期相比,混合期水体总磷(TP)、溶解性有机磷(DOP)、正磷酸盐(PO3-4-P)和叶绿素a(Chl.a)浓度显著增加,总氮(TN)、溶解氮(DN)、颗粒氮(PN)、氨氮(NH3-N)和硝态氮(NO-3-N)浓度显著降低。浮游植物群落中,绿藻门的转板藻属(Mougeotia)和小球藻属(Chlorella)在整个观测期密度较高,蓝藻门的长孢藻属(Dolichospermum)和拟柱孢藻属(Cylindrospermopsis)在分层消亡期密度较高,硅藻门的直链藻属(Melosira)和隐藻门隐藻属(Cryptomonas)在混合期密度高,绿藻门的栅藻属(Scenedesmus)在分层形成期密度较高。冗余分析发现,NH3-N、PO3-4-P和碱性磷酸酶活性的动态变化显著影响浮游植物群落组成;而且,浮游植物不同种类对氮、磷营养盐的敏感性各不相同,其中长孢藻属和转板藻属的密度与氮营养盐呈正相关、与磷营养盐呈负相关;而其他浮游植物密度则呈现相反规律,分别与氮营养盐呈负相关,与磷营养盐呈正相关。通过结构方程模型分析水体混合期间浮游植物群落动态变化的驱动机制,发现一方面水温对浮游植物群落结构有直接影响;另一方面,水温通过调节不同形态的氮(NO-3-N、NH3-N)、磷(PO3-4-P和DOP)营养盐浓度,从而间接地驱动浮游植物群落结构变化。这些直接和间接的影响共同作用,最终引起水体中Chl.a浓度变化。本研究有助于认识深水湖泊热力分层变化对生态系统结构和功能的影响。在全球变化背景下,加强对湖库热力分层的作用机制及其生态环境效应研究,有助于深水湖泊生态系统的保护和管理。
关键词:  抚仙湖  垂直混合  浮游植物  营养盐  驱动因子
DOI:10.18307/2025.0111
分类号:
基金项目:国家自然科学基金项目(U2102216);云南省基础研究计划项目(202201AT070093,202101AU070133)联合资助
Response of phytoplankton community structure to the vertical mixing process in Lake Fuxian
Zhu Xianlong1,2,3,Lei Yilun1,Yang Yu1,Luo Hong1,Lai Ruicong1,Luo Wenlei2,3,4,5,Wang Rong2,3,4,5,Xu Runbing1,Xing Peng2,3
1.Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091 , P.R.China ;2.Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135 , P.R.China ;3.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135 , P.R.China ;4.The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500 , P.R.China ;5.Fuxianhu Research Station for Plateau Deep Lake Ecosystem, Yuxi 652500 , P.R.China
Abstract:
During winter, the decline of thermal stratification and the mixing of water in deep lakes can alter the distribution pattern of nutrients, and potentially affect the succession of phytoplankton communities in lake ecosystems. In this study, high-frequency observations of physicochemical environmental factors and phytoplankton communities were conducted along vertical profiles during stratification decline, mixing, and stratification formation periods in Lake Fuxian, a deep plateau lake, from November 2022 to April 2023. The spatiotemporal characteristics of phytoplankton communities in response to the thermodynamic mixing process were investigated. The results showed that the mixing process caused significant spatiotemporal changes in physicochemical environmental parameters. Compared with the stratification-declining period and stratification-formation period, the concentrations of total phosphorus (TP), dissolved organic phosphorus (DOP), phosphate (PO3-4-P), and chlorophyll-a (Chl.a) in the water were significantly increased during the mixing period, while the concentrations of total nitrogen (TN), dissolved nitrogen (DN), particulate nitrogen (PN), ammonium nitrogen (NH3-N), and nitrate nitrogen (NO-3-N) were significantly decreased by mixing. Among the phytoplankton community, the green algae Mougeotia and Chlorella had higher densities than other species throughout the observation period, while the cyanobacteria Dolichospermum and Cylindrospermopsis had the highest densities during the stratification-declining period, and the diatom Melosira and the cryptomonad Cryptomonas had the highest densities during the mixing period, and the green algae Scenedesmus had the highest densities during the stratification formation period. Redundancy analysis showed that the dynamic changes in NH3-N, PO3-4-P, and alkaline phosphatase activities significantly influenced the composition of the phytoplankton community. Moreover, the sensitivity of phytoplankton to nitrogen and phosphorus nutrients varied among different species. Dolichospermum and Mougeotia showed a positive correlation with N nutrients and a negative correlation with nutrients, while the densities of other phytoplankton species exhibited an opposite pattern, showing a negative correlation with nitrogen and a positive correlation with phosphorus. Structural equation modeling was used to analyze the driving mechanisms of phytoplankton community dynamics during the water mixing period. On one hand, water temperature directly impacted the structure of the phytoplankton community. On the other hand, water temperature indirectly drove changes in the structure of the phytoplankton community by regulating the concentrations of different forms of nitrogen (NO-3-N, NH3-N) and phosphorus (PO3-4-P and dissolved organic phosphorus). Ultimately, these direct and indirect effects collectively contribute to the changed in the concentration of Chl.a. This study contributed to our understanding of the effects of thermal stratification changes on the structure and function of lake ecosystems in deep lakes. In the context of global changes, strengthening research on mechanisms and ecological environmental effects of thermal stratification in lakes and reservoirs can support the protection and management of lake ecosystems.
Key words:  Lake Fuxian  vertical mixing  phytoplankton  nutrient  driving factors
分享按钮